
the small systems journal

More Memory-Same Price 4K Now Standard In 6800

San Antonio-The SwTPC 6800 computer system, always a best buy is now an even greater bargain. Price reductions by the manufacturers of MOS memory circuits have made it possible to now offer the standard $\$ 395.006800$ computer kit with 4 K of memory instead of 2 K as previously. Memory circuits are 21 L 02 types which make possible powering up to 24 K of memory in the stock chassis with the standard power supply.

The Southwest Technical 6800 at $\$ 395.00$ includes everything needed to work with your terminal. You get 4 K of static MOS memory and a serial interface as part of the basic package. These are not extra cost options (?) as in many computer systems on the market.

8K MEMORY CARDS ANNOUNCED -

For those 6800 systems needing the maximum possible amount of memory, Southwest Technical Products announces 8 K memory cards. These memory expansion cards have 8 K Bytes of low power MOS memory per board. These kits feature the new 4 K static RAMS that are now becoming available. These new RAMS make it possible to put 8 K of memory on a board without crowding the parts, or using small hard to solder connecting lines. These new memory boards feature DIP switch address selection and a write protect switch on each board.
The low power consumption of this new memory board makes it possible to use up to 48 K of memory in the standard 6800 chassis with the stock power supply. Priced at $\$ 250.00$ these memory cards cost no more than less dense memories from other sources.

PRICES CUT ON 4K MEMORIES

Southwest Technical Products has reduced the price of its standard 4 K memory card by 20%. These cards use low power 21 L 02 static mamories. The new price for the MP-M memory kit is $\$ 100.00$ for a full 4 K kit.

This kit contains 4 K of memory with full buffering and dual on-board voltage regulators. Six of these memory cards may be used in a standard 6800 chassis to provide 24 K of memory for the system. Memory now becomes even more of a bargain -24 K for only $\$ 600.00$.

Who Needs It?

We continue to get reports from customers who are amazed at the ease of assembly of the 6800 computer. One reports that he purchased test equipment before ordering a computer at the advice of friends who owned brand " X " machines. His total use of the test equipment was zero (0) when he installed
each board in the 6800 and they all proceeded to work perfectly the first time. He later found in comparing notes with other 6800 owners that his was not a unique experience.
People who have built most of the various types of computers on the market generally agree that our instructions are the best and most complete. So don't worry about purchasing the least expensive computer system, there are still good honest values being offered in the world of personal computing.

SUPER SOFTWARE

"Lack of Software" can no longer be used as an excuse by those who have the poor taste to purchase computers using older, less elegant processors than the MC-6800. Southwest Technical Products has not only editor-assembler and game programs available for the 6800 , but also both 4 K and 8 K BASIC.

The ability to run ANSII standard BASIC programs on the 6800 make the enormous number of BASIC programs out there all usable on the SwTPC 6800. That's right, you can run anyones BASIC programs on the 6800 provided they are written in standard BASIC (as most are). 4 K Basic at $\$ 4.95$ and 8 K BASIC at $\$ 9.95$ are inexpensive enough for anyone to own. They do not cost hundreds of dollars as in some systems, or only become available when combined with purchase of huge amounts of memory as in others.

Loading even a relatively long program such as 8K BASIC into your SwTPC 6800 is not a long procedure when the AC-30 cassette interface is used. This super reliable and inexpensive ($\$ 79.95$ complete with cabinet and power supply) cassette interface uses the "Kansas City" standard format and will load 8K BASIC in approximately five minutes.

LIKE TO A HALF MEGABYTE

You probably know our Z-80 CPU card. It's the finest and most powerful card available. Not only does it have a guaranteed speed of 4 MHz and a crystal-controlled $2 / 4 \mathrm{MHz}$ clock rate, it also has a power-on memory jump feature that greatly simplifies starting-up.

Now we've developed an outstanding 4K RAM memory card for this CPU card (or for any S-100 bus CPU card). Our new Model 4KZ is a static memory that has:
(1) a guaranteed speed of 4 MHz
(2) a memory-bank-select feature.

As you would expect with a Cromemco product, this new Model 4KZ gives you advanced performance at low cost. It achieves its 4 MHz speed while using proven, reliable, low-power memory chips (21L02's). How? By a novel design that uses address anticipation.

ENORMOUSLY EXPANDABLE

You get staggering expandability in the new 4 KZ - to 512 kilobytes if you'd like.

Here's how: with the $4 K Z$ you can organize memory into as many as 8 banks of 64 K bytes each.

Then an 8 -position switch on the 4 KZ selects a given bank.

With memory expandability like that, Cromemco's CPU and RAM cards are the basic hardware for a broad range of jobs - even jobs that untll now were only for large computers.

LOW PRICED

The new $4 K Z$ has the high quality Cromemco is known for. It is available at computer stores or directly from the factory.

Just a word of caution. The $4 K Z$ is bound to be in demand, so we suggest you act promptly.
4K Static RAM Memory kit (Model 4KZ-K) \$1954K Static RAM Memory assembled,burned-in and tested (Model 4KZ-W) . $\$ 295$
ZPU card kit (Model ZPU-K) \$295
ZPU card assembled, burned-inand tested (Model ZPU-W)\$395

page 34

The computer was creded to free mankind fiom the drudgery af doing tresome chores best lefl 10 din dutomaton. In most computers, there is an extremely helpful monitor program such as the SYS 8 fromatm dvailable in versions by IMSAI and Processor Technology. Sometimes, the writers of such programs leave the user with a few residual chores to do, like entering line numbers lor each command or operation. Bill Nico wasn'l satisfied with that, and proceeded to patch in an automatic line numbering feature for SYS 8, described in ! is article on Sweet Auto Line.

A key component of a usable system concept is the mass storage subsystem. In this issue, Jack Breimeir, one of the engineers on the Phi-Deck design, and Ira Rampil of the University of Wisconsin begin d two part article on The Digital Cassette Subsystem. In part 1 you'll find some background information on digital recording, and details of the problem of head interface electronics for digital recording.

Mass storage is the critically important component of a personal computing system which is often passed up on grounds of price or complexity. People tend to have preconceived ideas that a controller which is a complicated technological nightmare will double the price of a drive alone. However, demonstrations of accomplishment are a way to dispel preconceived biases. Dr Kenneth B Welles shows in his article on the Economy Floppy Interface that buying just a couple of drives and building a relalively inexpensive homebrew controller can give anyone the delvantages of over 200 K bytes on line per drive. His circuit takes just 17 common integrated circuits (one of which is an LSI communications processing device).

Color television inlerlaces are slating to become popular. However, not everyone has a color television silting around idly. Is it possible to have a color lerminal and mon have to use a color television sel? Subjective color is a possibility that is explored by Steve Bain in his article Color Displays on Black and White Television Sets. Read Steve's article and lind out bow you too may be able 10 add a color modulation eflee to a blach and white television ret.

Serid storage mediad are widely used in low cost compuler systems. They range in pertormance from paper tape through cassette tapes with maneal controk lohigh pertormance programmably controlled cassettes, tape carridge dives and fiall industry slandard magnetic lape drives. Find out some of the bachground inlormation pertinent 10 use at most magnetic tape serial media in Brian D Murphy's article, Serial Storage Media: An Introduction and Glossary.

Human interactions with computers go both ways. For computer outputs, most people thinh in terms of visual displays. This completely ignores the use of other senses like hearing (or touch or smell for that matter). In Audible Interrupts for Humans, Charles F Douds describes a simple circuit which can lake advantage of the dudio channel of the human sysiem.

Here you are, a novice or experienced filer, cruising along in your ancient Cub under VFR conditions when ... all of a sudden, VFR becomes IFR and you can't see. If you had an inexpensive Omega navigation system in a portable package in your copilot's seat, you'd at ledst know where you are on the map with an accuracy of about 1 mile. In his article Cub 54, Where Are You? (Or How to Navigate Using Mini-O), Ralph Burhans begins a multiple article discussion on Omega navigation, design of an Omega receiver for use with a small computer as a personal navigation system, and software for determination of position information. Aviation enthusiasts and boating enthusiasts who are into microcomputers will be able to use this information to help make an experimental robol navigator.

Is it an impossible dream? Is it conceivable to make an dudio casselte IO port with only a single bit line in each direction? Well, if you ignore the need for connecting wires, clipping diodes and isolation capacitors, then you can use a "hardwareless" software technique such as that described in Daniel Lomax's The Impossible Dream Cassette Interface.

Most of today's microprocessors have all of their functions centralized without a single device. The F8 microprocessor by Fairchild Semiconductor is unique in that it divides the system functions among several basic circuits. In his article, Microprocessor Update: The F8 System, Robert Baker describes this rather unique way of approaching the development of a microprocessor system.

Upon recciving that first microprocessor, the budding computer hobbyist is often confronted with disdainful stares and must endure such comments as, "Well now, let's see it do something." If you have a Mole rola 6800 hased system will MIKBUG, Joln Rathkey's article, A MIKBUG Roadmap . . . , will did you in getting your system to "do something' that will satisly even the most doubting of your critics

In several manalatured produals which have been appearing lately, a hexadecimal input heyboad is one feature of the computer processon foseph Hoegerl describes how this nol of Calculator Keyboard Input for the Microcomputer can be wied up and used to replace loggle witches. His vession is lon an 8008 sh sem, but the sume hardwate is applicable io other computers ds well.

If you are interested in designing your own ITL circuits you should be aware that there is a definite limit to the number of gates that can be interconnected. In TTL Loading Considerations Greg Tomalesky explains how these limits are determined by circuit designers and gives advice on what pitfalls to watch out for when designing your own TTL circuits.

Charles towerton has come up with an interesting and lightly coded pachage of 8080 routines to perform utility functions for applicalions sof: wate. The design goals of filting inte 256 bytes yet providing a wealth of extensions to the machine's instruc tion set are well met, as can be seen from his article's documentation of the package.

In the Queue

Foreground

```
SWEET AUTO LINE Software - Nico
BUILD THIS ECONOMY FLOPPY DISK INTERFACE Mass Storage Systems - Welles
AUDIBLE INTERRUPTS FOR HUMANS
Human Interfaces - Douds
THE IMPOSSIBLE DREAM CASSETTE INTERFACE
Mass Storage - Lomax
CALCULATOR KEYBOARD INPUT FOR THE MICROCOMPUTER Hardware - Hoegerl
ADD SOME BARC TO YOUR 8080 Systems Software - Howerton
```


Background

```
THE DIGITAL CASSETTE SUBSYSTEM, Part 1 Hardware - Rampil-Bremeir
COLOR DISPLAYS ON BLACK AND WHITE TELEVISION SETS
Visual Perception Tricks - Bain
SERIAL STORAGE MEDIA: Introduction and Glossary
Systems Software - Murphy
CUB 54, WHERE ARE YOU? (Or How to Navigate Using Mini-O)
Applications - Burhans
MICROPROCESSOR UPDATE: THE F8 SYSTEM
Processors - Baker
A MIKBUG ROADMAP...
Software - Rathkey
TTL LOADING CONSIDERATIONS
Hardware - Tomalelsky
```


Nucleus

In This BYTE
An Idea Whose Time Has Come!
Letters
Ask BYTE

What's New?
Baker Street Irregular
Classified Ads
Description: A Multi Cassette Controller
Clubs, Newsletters
Book Reviews
BYTE's Bugs
Further Notes on Bar Codes
Kil O'Byte
BYTE's Bits
The Word "Byte" Comes of Age . . .
About the Cover - Venus de Plotto
BOMB
Reader's Service

FEBRUARY 1977
Volume 2
Number 2 BUTE

PUBLISHERS
Virginia Peschke
Manfred Peschke
EDITOR
Carl T Helmers Jr
PRODUCTION MANAGER
Judith Havey
CIRCULATION MANAGER
Manfred Peschke
ASSISTANT PUBLISHER
Debra Boudrieau
CO-OP EDITOR
Raymond G A Cote
PRODUCTION EDITOR
Karen Gregory
DEALER CIRCULATION
Deena Zealy
CIRCULATION
Kimberly Barbour
Cheryl Hurd
Anne Jackson
Deborah R Luhrs
Carol Nyland
ADVERTISING
Elizabeth Alpaugh
Virginia Peschke
ART
Matthew Arnold
Noreen Bardsley
Mary Jane Frohlich
Lynn Malo
Bill Morello
SPECIAL PRODUCTS
Susan Pearne
Floyd Rehling
TYPOGRAPHY
Custom Marketing Resources Inc
Goodway Graphics
Mary Lavoie
Taimi Woodward
PHOTOGRAPHY
Ed Crabtree
Custom Marketing Resources Inc
PRINTING
The George Banta Company
Custom Marketing Resources Inc
Lennie Cashion
Larry Davis
Jeff Pratt
ASSOCIATES
Bob Baker
Walter Banks
Dan Fylstra
Portia Isaacson
Harold A Mauch
TRAFFIC MANAGER
Peter Travisano

This month, for the first time, we run a guest editorial. The writer of this essay is Portia Isaacson, who is chairperson of the 1977 National Compuler Conference which will be held in Dallas TX /une 13-16 1977. (The conference this year for the first time recognizes the existence of our new trend in computing, personal computing, by creating a special theme for that purpose and taking the unprecedented step of adding a special exhibit hall for personal computing displays.) Here is an interesting view of the history and state of personal computing by un individual who has been enthusiastically participating right from the start. Portia is a professor of computer science at the University of Texas at Dallas and a principal in the Micro Store, a retail computer outlet located at 6345 Central Expressway, Richardson TX 75080, which is run by her husband David Wilson.

Personall Computing:

An Idea Whose Time Has Come!

Portia Isaacson, PhD
University of Texas at Dallas Richardson TX 75080

It is clear that we are entering a dramatic new era in which information processing power will be abundantly available for use by the individual consumer...

Several years ago we knew that computers were going to become very small and very inexpensive. However, predictions of the effect of inexpensive computers did not begin to cover the strength of today's personal computing movement, where we find enthusiasm at a very high pitch. It is clear that we arc entering a dramatic new cra in which information processing power will be abundantly available for use by the individual consumer.

The only thing one could be sure about during the past year when writing about the personal computing movement is that by the time the article was printed it would certainly be antiquated. Every month there are several new computer clubs, several new computer stores, hundreds more computers owned by individuals, and a noticeably higher level of excitement among insiders to the movement. To most of us the whole idea of personal computing is so delightfully intoxicating that we can't quite believe its time has really come - but it has!

The personal computing movement started quietly enough when MITS announced a computer kit for under $\$ 500$. Soon afterwards kits were available from several different manufacturers featuring the computer, a keyboard, a TV display interface, audio cassette interface, and the BASIC language; all for little more than $\$ 1,000$. Wow! A really operational system for about the price of a good TV or stereo - clearly in personal range. So the hardware and BASIC
software were available. The other needed ingredient was imagination.

There was no shortage of imagination. In fact, almost everyone who has ever worked with a computer has, at some time or another, been stricken with computeritis the infection of the imagination with ideas about "what neat things could be done with a computer if only I had access." For years we've known that students many times substitute the computer center for other forms of recreational activity. Also, that many programmers can be found in the wee hours with their company computer, doing their own thing.

Applications of a personal computer are as far ranging as the individuals who imagine them. Personal accounting, music generation, library maintenance, language analysis, stock market analysis, game playing, model train control, household control, and tutoring are only a few of the known applications. The computer has few inherent limitations.

A "movement" can be characterized by the people involved. What kinds of people are "into" personal computing? And how many? Based on the circulation of the major personal computing publications and the attendance at conventions, 100,000 is surely a very conservative estimate of the rapidly growing number of involved pcople. What are these people like? True, at first, they

Continued on page 140

Introducing Sol Systems
A complete computer/ferminal concept with all the standard features,software and peripheral gear you want in your personal computer

Sol Systems put it all together. One source for hardware and software. One source for engineered compatibility of computer and peripherals. That's the Sol plan.

Though the microprocessor made the powerful small computer possible, a lot of folks found out early efforts in the marketplace were selling the sizzle a lot more than the steak. After an initial investment of several hundred dollars, you ended up with some nice parts, but no memory of any kind, no I/O devices or interfaces, no display, printout or software.

The Sol plan ends all that. Processor Technology takes the position that it's far better to be right than first. So let's get down to the Sol no tricks plan.

For $\$ 995$ in kit form, the first complete small computer

Standard is a basic word at Processor Technology. The Sol-20 has more standard features than any other small computer we know of. Here's what you get.

8080 microprocessor* 1024 character video display circuitry* 1024 words of static low-power RAM* 1024 words of preprogrammed PROM* a custom, almost sensual 85-key solid-state keyboard* audio cassette interface capable of controlling two recorders at 1200 baud* both parallel and serial standardized interface connectors* a complete power supply* a beautiful case with solid walnut sides* software which includes a preprogrammed Prom personality module and a cassette with Basic-5 language plus two sophisticated computer video games** the ability to work with all S-100 bus (Altair $8800 / \mathrm{IMSAI} / \mathrm{PTC}$) products.

There are no surprises. Everything you need to make it work is here. In kit form, nominal assembly time from our fully documented instructions is four to seven evenings.

Or start with the Sol-PC for just $\$ 475$

You can begin your Sol system with the all on one board Sol-PC kit. It has all the
memory and interface electronics including video display, keyboard interface, audio cassette interface, all necessary software and the ability to accept the full Processor Technology line of memory and interface modules. Use the Sol-PC as the basis of a microcomputer, low cost CRT terminal or editing terminal

And these specs are standard

Display: 16 lines of 64 characters per line. Character set: 96 printable ASCII upper and lower case characters plus 32 selectable control characters.
Display position: Continuously adjustable horizontally and vertically.
Cursor: Selectable blinking. Solid video inversion. Programmable positioning standard. Serial interface: RS-232 and $20-\mathrm{mA}$ current loop, 75 to 9600 baud, asynchronous. Parallel interface: Eight data bits for input and output; output bus is tristate for bidirectional interfaces; levels are standard TTL. Keyboard interface: Seven-level ASCII encoded, TTL levels.
Microprocessor: 8080, 8080A, or 9080A. On-card memory: 1024 bytes PROM (expandable to 2048 bytes), 2048 bytes RAM. External Memory: Expandable to 65,536 bytes total ROM, PROM, and RAM. Video signal output: 1.0 to 2.5 volts peak-to-peak. Nominal bandwidth is 7 MHz . Power required ($\pm 5 \%$): +5 volts at 2.5 amperes, +12 volts at 150 mA , and -12 volts at 200 mA .

The Sol plan, completely expandable.

By filling the basic main frame with tailor made Processor Technology plug-in PC boards, you can really expand the computing power and flexibility of your Sol-20 Personal Computer.

New items are being announced frequently, but right now, here are some of the
things you can add to your Sol-20. The ALS-8 Firmware module is an assembly language operating system to give you the power to develop and run programs. Use it to quickly write, edit, assemble, de-bug and run your own programs. Some say it's the most useful software development on the market today, but modesty prohibits.

And when it comes to add-on memory boards, you've come to the right place. We've probably got more than anyone else. Choose from 2 K ROM or 4,8 or 16 K RAM (read all about the 16KRA board on the last page of this ad). The PT 2 KRO will accept up to eight 1702A or 5203Q erasable, reprogrammable memories (EPROM's) with the ability to store in a non-volatile fashion up to 2048 eight-bit words.

Our read/write memories are the industry standards for high reliability. We know, because we have literally scores of customer letters saying "Your memory modules work and keep on working."

To help you solve additional interfacing problems, add the $3 \mathrm{P}+\mathrm{S} / / \mathrm{O}$ module. Here's a board with two 8 -bit parallel I/O ports with full handshaking logic and a serial data rate that can be set anywhere between 35 and 9600 baud. Set up control conditions for both parallel and serial ports. Data and error flags can be polled.

A full line of Sol-20 tailored peripherals

No computer can do the full job without the right set of peripheral gear. PT has sought out the best manufacturers of peripheral equipment and worked with them to give you a choice of quality so you can get the most out of your Sol-20. Choose from line and serial printers, perforated tape readers and punches, floppy disk memories, black and white or color graphics displays, A/D, D/A converters and more.

Software, the Computer Power Essential

A big part of making the first complete small computer is providing you with a wide range of easy to use, easy to obtain, low cost software. For the Sol-20, we've developed a whole group of offerings. And more are on their way.

TREK 80

Based on the NBC television series STARTREK, this 8 K assembly language program uses the VDM graphics capability for real time war with the Klingons. No holds
barred, they're out to get you from each of the 100 quadrants. TREK 80 resides and runs in 8 K of memory and requires the PTC Sol or VDM-1.

New PT 8K Basic

Processor Technology has the fast new BASIC you've needed for so long. Using our superior BCD math, the speed of the new language is double that of our own fast BASIC-5. To multiple program capability, we've added strings, multidimensional arrays and multi-line, multi-variable, user functions. This is the BASIC for full capability systems. Look at the BUSINESS ANALYSIS program example in the manual to find out how PT 8 K BASIC gives you more while using less memory for the working program.

Five reasons why it's so good

1. Strings are not limited to a length of 256 characters and can extend to the bounds of memory.
2. Renumbering of lines with full gosub, etc. updating. Also EXAM and FILL allow for direct memory operations while IN and OUT provide direct I/O capability.
3. Every statement is fully implemented. RESTORE, for instance, restores the data pointer as usual. BUT, with PT 8 K BASIC, RESTORE 100 will set the pointer to the data located at line 100.
4. Fully implemented string and math functions include all of the standards - VAL, STR, ASC EXP and LOGI and LOG. Also, the more advanced statements such as ONGOTO and IF THEN ELSE along with a loop EXIT are provided.
5. PT 8K BASIC has a 'perfect' implementation of PRINT USING which saves program memory space while still providing more capability than the usual PRINT USING.

The new PT 8K BASIC is similar to the version we're developing for ROM. You use it here before buying the more expensive ROM.

You'll find your PT 8K BASIC also includes both a built-in VDM driver and special editor. The cassette version also includes named program SAVE and LOAD for the CUTS Cassette interface or Sol.
New 8080 FOCAL ${ }^{\text {m dec }}$
8080 FOCAL has been updated to include operator precedence and all other standard FOCAL conventions. It also has a driver for VDM-1 display and PT Cassette program SAVE and LOAD This version is available only on CUTS Cassette and resides in 8 K of memory.

GAMEPAC 1 to entertain family and friends
Show off your VDM-1 and computer with this lineup of video games. Each is included on the cassette or paper tape.

TARGET keeps track of your hits and misses while you blast away at the moving target. You and your family can get together for whole evenings at a time with this one.

ZING. Learn hexidecimal arithmetic fast with this VDM game as two players keep the five balls in the air. If both of you get too good... ZING, of course, will make it harder.

LIFE. The Sol or VDM makes a good display for the game of life and this version allows two modes of operation. The universe can be flat or wrapped around on itself. The real meaning of life we'll leave to you but it's fun to watch.

PATTERN. We haven't figured this one out ourselves but it's sure nice to have your computer doing it. You choose the geometric design and how rapidly it changes.

Sol Systems Price List
 (prices are net, effective Dec. 1, 1976)

SOFTWARE ITEM with manual	Source	$\begin{gathered} \text { cuts } \\ \text { cassette } \end{gathered}$	Paper tape
BASIC 5 soffware \#2	yes	**	\$19.50
8K BASIC	no	\$29.00	\$37.00
New 8080 Focal	no	\$14.50	N/A
TREK 80 video game	no	\$ 9.50	\$14.50
GAMEPAC 1 video games	no	\$ 9.50	\$14.50
MATHPACK video calculator	yes	\$14.50	\$19.50
ASSEMBLER software \#1	yes	\$14.50	\$19.50
ALS 8	no	\$35.00	\$45.00

**CUTS cassette of BASIC 5 is included FREE with all orders for Sol units or CUTS cassette interfaces. Additional cassettes available for $\$ 14.50$.

Sol system owners be sure to note Sol system on your order. These special versions use less code and provide easier loading along with more convenient operation. SOLOS, SOLED and CONSOL all have provision for the special versions.

All Processor Technology software is distributed on an individual sale basis for personal use. No license to copy, duplicate or sell is granted with this sale. Each software package has been copyrighted by Processor Technology and all rights therein are reserved.

Sol Terminal Computers
Kit Prise
SOL-PC SINGLE BOARD TERMINAL COMPUTER ${ }^{\text {M }}$
\$475.*
SOL-10 TERMINAL COMPUTER ${ }^{\text {M }}$ Sol-PC with case, power supply and 70 key solid state keyboard.
\$795.*
SOL-20 TERMINAL COMPUTER ${ }^{\text {TM }}$ all features of Sol-10 with larger power supply, 85 key solid state keyboard, fan, and five slot expansion backplane.
\$995.*
*Sol prices include CONSOL
Personality Module. If SOLED Intelligent Editing Terminal Module or SOLOS Standalone Operating System Module is desired instead, add $\$ 100$. If ordered separately, personality modules are $\$ 150$ each.

Memory Modules

Kit Asmbld.
ALS-8 PROM Resident Assembly
Language Operating System - $\$ 425$
SIM-1 Interpretive Simulator
add-on option for ALS-8
TXT-2 Text Editing add-on option for ALS-8

- \$95

2 KRO Erasable PROM module $\$ 65$ \$89
4KRA 4096-word Low Power Static RAM
\$159 \$195
8KRA 8192-word Low Power Static RAM
\$295 \$375
16KRA 16384-word Dynamic RAM

- \$529

Interface modules
$3 P+5$ Parallel, Serial I/O module
\$149 \$199
CUTS Computer Users Tape System cassette interface
\$ 87 \$119
VDM-1 Video Display Module $\$ 199 \quad \$ 295$

Mass Storage Systems

Helios II Disk System ${ }^{\text {™ }}$ includes dual PerSci 270 floppy disk drive, cabinet, fan, S-100 bus compatible controller, power supply, system diskette with complete PTDOS software
\$1895 \$2295
Misc.
EXB Extender Board $\$ 35$ \$ 45
WWB Wire Wrap Board \$ 40
Prices, specifications and delivery subject to change without notice. Please allow up to two weeks for clearance of personal checks. Mastercharge accepted. All orders amounting to less than $\$ 30$ must include $\$ 3$ for handling.

More bits per buck than ever before on a fully burned in and tested board unconditionally guaranteed for one year.

Processor Technology made the first 4 K static RAM modules for the home computer market. Now in a price performance breakthrough we offer you a 16,384 byte dynamic memory module assembled, tested and burned in. Not a kit-and at \$529 who'd want to build it from scratch?

Processor Technology gives you the features to make 4 K dynamic RAMS work for you.

- Invisible refresh, no waiting while CPU is running.
- High speed 400 nsec access time worst case Z-80 and 8080 compatible.
- Versatile addressing, each 4096 byte segment is individually addressed to any of the sixteen available 4 K segments.
- Low power - typically 5 watts when running - the same as most 4 K memory modules.
- BATTERY BACKUP capability built-in fór standby operation.
- IMPORTANT NOTICE - No 16K memory module available is fully, truly static. 4200/4402 type "static" RAM's have high level, high current clocks with high transient power levels. Any RAM with 12 volt 30 mA clock pulses should not be called "STATIC" just because each memory cell is a flip-flop.

Specifications

Access Time	400 nsec max
Cycle Time	500 nsec max
Rams Used	Intel 2104 or Mostek 4096
types	
Capacity	16384 -bit bytes
Memory	
Protect	standard on card
Addressing	each 4096 byte page
	addressable
Operating +7.5 to 10 VDC at 0.4 A typical Power +15 to +18 V at 100 mA typical -15 to -18 VDC at 20 mA max	

See your nearest dealer listed below or contact us directly. Address Processor Technology, 6200 Hollis Street, Emeryville CA 94608, Phone 415/652-8080.

Processor Technology Dealers

CALIFORNIA
The Byte Shop 1514 University Ave. Berkeley CA 94703
The Byte Shop 2559 South Bascom Ave. Campbell CA 95008
The Computer Mart 624 West Katella \#10 Orange CA 92667 The Byte Shop 2227 El Camino Real Palo Alto CA 94306
The Computer Center 8205 Ronson Road San Diego CA 92111
The Computer Store of San Francisco 1093 Mission Street San Francisco CA 94103

The Byte Shop 509 Francisco Blvd San Rafael CA 94901

The Byte Shop 3400 El Camino Real Santa Clara CA 95051
The Byte Shop 2989 North Main St. Walnut Creek CA 94596

FLORIDA
Microcomputer
Systems inc
144 So. Dale Mabry Hy. Tampa FL 33609

GEORGIA
Arlanto Computer Mars 5091-B Buford Hwy. Atlanta GA 30340

The Numbers Racket 518 East Green Street Champaign IL 61820
inty bitty
machine co., inc.
1316 Chicago Ave Evanstan IL 60201
The Chicago
Computer Store
517 tolcott Road Park Ridge IL, 60068

INDIANA

The Data Domain 111 South College Ave. Bloomington IN 47401
MICHIGAN
The Computer Store of Ann Arbor
310 East Washington Ann Arbor M1 48104

NEW JERSEY
The Computer Mar ${ }^{\dagger}$
of New Jersey
151 Kline Boulevard
Colonia NJ 07067
Hoboken Computer Works
56 Second Street Hoboken NJ 07030 NEW YORK
Audio Design Electronics 487 Broadway, Ste. 512 New York NY 10013
The Computer Corner 200 Hamilton Ave. White Plains NY 10601 The Computer Mart of Long island 2072 Front Street East Meodow, L.I. NY 11554

The Computer Mart of New York
314 Fifth Ave.
New York NY 10001
Synchro Sound Enterprises
193-25 Jamaica Ave.
Hollis NY 11423
OREGON
The Real Oregon
Computer Co.
205 West loth Ave Eugene OR 97401

RHODE ISLAND
Computer Power, Inc.
M24 Airport Mall
1800 Posi Road
Warwick RI 02886

TEXAS

The Micro Store
634 South Central
Expressway
Richardson TX 75080

WASHINGTON
The Retail Computer Store
410 N.E. 72 nd
Seattle WA 98115
WISCONSIN
The Milwaukee Computer Store 6919 W. North Ave.
Milwaukee WI 53213

CANADA

The Computer Place
186 Queen St. West
Toronto, Ontario M5V 1 ZI
Trintronics
160 Elgin St .
Ottowa, Ontario

SAVE THE COMPUTERS FOUNDATION?

As a regular reader of the articles in BYTE magazinc 1 have noticed the absence of any columns on computer nostalgia and antique computers. Antique computer interest appears to be growing because it is perceived in perspective 10 and in contrast with microprocessors. Nostalgia discussions would compare old computers with microcomputers in the area of first cost, computing power, logical organization, speed, electricity consumption, size, weight, reliability, etc.

Antique computers include the desk size drum and vacuum tube machines of the 50 s, early magnetic coreminis of the 60 s, and the first W ang and HP desk top calculators of the late 60s. The oldest antique computers include the RoyalMeBee L_GP-30, Bendix G-15, Burroughs El01, IBM 650, Elcon 125, Alwac, Monrobot VI, Univac I and II, and the IBM 700 and 7000 series.

Since only a few of these machines were ever built, and many have already disppeared, there is a real danger they may become extinct. We can help preserve our computer heritage by publishing interesting articles on computer nostalgid and antique computers.

Don Nyre

305 Lajolla Dr
Newport Beach CA 92663
Only problem: You can only look al 'em, becuuse the power bills will be sky high, and who has used vacuum tubes for spare parts? Interested readers are urged to contast Don, or write up commentary on their favorite anliques so we can occusionally publish some history. l'ho'll write an wecount of Babbage's enaine?

ARE WE SCHIZOPHRENIC PLUGGED-IN EXPERIMENTALISTS?

I just scanned issue No. 14 and am well pleased! BYTE seems to give the same schizophrenic, plugged-in, experimentalist joy of ham radio's old davs before commercial (yawn) availability of 2000 watt PEP linear amplifiers. This is the impetus, battered and bruised by a nasty electrical engineering curriculum, jaded by very large scale integration, which has largely failed me these days.

Before I go back to working on my
business and law school applications, let me give you a reason for joy: money! Please note the gift subscription form and the address label upon this sleeve. l'd like to buy a year's subscription for my friend and three years for myself.

Jeffrey S Wilson
POB 30113
Parma Heights OH 44130
The above letter was writlen on a batlered BYTE wrupper.

I DON'T LIKE YOUR PRODUCT

Please do not send me any more issues of BYTE. I got the first two issues and did not like it. I got the impression the magazine was intended for computer hobbyists. Instead, it seems to me more dreary and boring than any textbook or
trade journal today. I have been a computer professional for fifteen years, and your publication is by far the dullest l've seen. Let me know if your format or content changes in the future. Meanwhile, no more issues please.

Ray Lawrence
120 Roseland La
East Patchogue NY 11772

Congratulations, Ray. You've just exercised your right to vote your preferances in a free market, by what you buy and what you don't buy. We'll collect our votes from the remaining 73,000 or so people (circa January 1977 issue) who don't seem to feel the way you do.

TELE SELECTRIC CONVERSIONS?

Recenlly I have a project in mind to build an intelligent teleprinter. The system will consist of a converted electric typewriter which will be controlled by a 8080A microprocessor, 8 K memory and 3 programmable 10 ports which includes RS232 interface. The advantage of this teleprinter is that it can be used as a stand alone computer or as a computer terminal.

The typewriter I intend to use is the
Continued on page 76

WHY WRITE ONE!

YOUR LIBRARY IS WAITING

The much requested Volumes III and IV are ready. If you already have Volumes I and II you'll want to add these to your set. With the addition of Volume IV there is no reason why anyone who even THINKS of using a computer can't own their own SOFTWARE LIBRARY. You can start yours for less than $\$ 10$ plus postage and handling. These programs are IMMEDIATELY executable in ANY computer with at least 4 k . The entire Library is 1000 pages long, chocked Full of program source code, instructions, conversions, memory requirements, examples and much more. ALL are written in compatible BASIC executable in 4 k MITS, SPHERE, IMS, SWTPC, PDP, etc. BASIC compilers available for $8080 \& 6800$ under $\$ 10$ elsewhere.

```
WHILE THEY LAST
```

$\begin{array}{ll}\text { VOLUME I \& II } & -\$ 24.95 \text { each } \\ \text { VOLUME III } & -\$ 39.95 \text { each } \\ \text { VOLUME IV } & -\$ 9.95 \text { each }\end{array}$
add $\$ 1.50$ per volume for postage and handling. 10% discounts on purchases of any three (3) volumes.
volume discounts are available to qualified users \& dealers
volume three
Adv. Bus.
Billing
Inventory
Payroll
Risk
Schedule
Schedule 2
Shipping
Shipping
Stocks
Switch
VOLUME FOUR
General Purpose
Bingo
Bonds
Bull
Enterprise
Football
Funds 1
Funds 2
Go-Moku
Jack
Life
Loans
Mazes
Poker
Popul
Profits
Profits
Qubic
Rates
Rates
Retire
Retire
Savings
SBA
Tic-Tac

How come the master of this machine has to be relegated to such a menial task as remembering to enter line numbers?

Sweet Auto Line

Original SYS8

READ:	LXIH,IBUF:	READ:	LXIH,IBUF
	SHLD ADDS		JMP PATCH
NEXT:	MVIE,2	CALL IN8	BACKIN:
MVIE,	NEXT:	CALL IN8	

Willard I Nico
DELTA t
11020 Old Katy Rd, Suite 204
Houston TX 77043

1 was writing a program the other day, using the editor and assembler provisions of the SYS 8 self-contained operating system. For the N to the ith time, I forgot to type in a new line number before entering the instruction code and got the familiar WHAT? response from the monitor program. If there was a market for WHAT?, I'd be rich!

Anyway, the thought hit me like a brick, "How come the master of this machine has to be relegated to such a menial task as remembering to enter line numbers?" After all, my IMSAI is supposed to be the kind of a servant who doesn't mind that type of work. I should be free to think creatively. That's when I decided to put SAL on the payroll: my Sweet Auto Line automatic line numbering program.

In any problem, the first step is to decide what the problem is. . .

Listing 1: Change that must be made to the SYS 8 monitor input logic in order to determine whether or not the auto line indexing feature is wanted.

SAL Patch

ONOFF,
a switch location with address of AUTOL if SAL is on, address of BACKIN if SAL is off
thus if SAL is on the code is

PATCH: | SHLD | ADDS |
| :--- | :--- |
| JMP | AUTOL |

thus if SAL is off the code is

```
PATCH: SHLD ADDS
```

 JMP BACKIN

Job Description

The first step was to decide exactly what was required, and I came up with the following list:

1. Automatically generate a four digit number at the beginning of each data file line.
2. Allow for selection of the increment of increase between line numbers.
3. Permit manual entry of out of sequence line numbers to allow program correction.
4. Allow the automatic feature to be turned on and off as desired.
5. Provide for selection of the beginning line number.
6. Automatically disable the feature when an executive command is entered.
After fiddling with the ideas and writing the program, I now have Sweet Auto Line working for me and I don't forget to enter line numbers any more. In fact, I don't even think about them; SAL and IMSAI do it for me.

The starting point for writing the Sweet Auto Line program was to define exactly how SYS 8 handles data input from the keyboard. Figure 1 is a flowchart detailing the procedure used in this 8080 monitor and where my Sweet Auto Line routines are patched into it. The flowchart shows that the program does not carry out any processing of the input information until the entire line has been entered. Each character typed in is stored in sequential locations of the IBUF input buffer until the carriage return code (ASCII hexadecimal OD) is detected. This code signals the monitor that input of data for the current line is complete.

The monitor then examines the first character in IBUF to determine if it is a numeral. Lines beginning with one of the numbers 0 through 9 are flagged as program lines for the current file. If the first character in IBUF is other than a number, the program branches to the executive area.

Sweet Auto Line depends on a SYS 8 convention for proper operation: At least one space character must be entered after a

Original SYS8

SYS8:	LXI	SP,AREA+18
	CALL	READ
	INX	H
	MOV	A,M
	CPI	$9^{\prime}+1$
	JC	LINE
	CALL	VALC
EOR:	CALL	COMM
	CALL	CRLF
	JMP	SYS8

Modified SYS8

SYS8:	LXI	SP,AREA+18
	CALL	READ
	INX	H
	MOV	A,M
	CPI	$g^{\prime}+1$
	JC	LINE
	CALL	VALC
EOR:	JMP	UNAUTO
	CALL	CRLF
	JMP	SYS8

SAL Patch

UNAUTO:

LXI	H,BACKIN
SHLD	ONOFF
CALL	COMM
JMP	EOR

Listing 2: Change in the original SYS 8 system that allows the SAL patch to be turned off again.
line number and executive commands do not allow a space as the first character.

After automatically generating the new line number on the console output device such as a CRT, Teletype or other device, SAL waits for the first character to be typed. If that character is a space, the new line number is entered into the SYS 8 IBUF plus the space character that was typed. If any other character is detected, four back-

Listing 3: Complete listing of the Sweet Auto Line program for the IMSAI version of SYS 8. Assembly was started at hexadecimal memory location E200. The addresses of monitor routines given in the Equate Table are for the IMSAI version of the SYS 8 program. Addresses of the output routine and keyboard input routine should be changed to the addresses appropriate for your system. Be sure to check the code given for BKSPA and change it if necessary to the proper code to back up your display. The standard SYS 8 code for this function with the Processor Technology Video Display Module CRT Driver software is hexadecimal $5 F$ for underline.

space commands are output to the console to wipe out the line number and the typed character is entered as the first one in IBUF. After each line number is entered in IBUF, it is increased by the operator selected increment and saved for use in the next program line.

Turning on SAL

The initial line number is established by using a SETL executive command with parameter passing. The technique for adding your own executive commands, such as SETL, was described in the January 1977

Figure 2: Flowchart of the SETL routine that will determine at what number the line numbers should begin and what the increment between line numbers will be. Addresses in this figure refer to listing 3.

768/03X
MICROPROGRAMMABLE COMPUTER ARCHITECTURES by A. B. Salisbury

Pub. price, $\$ 13.50$ Club price, $\$ 11.40$

767/017
COMPUTER INTERFACING AND ON-LINE OPERATION by J. C. Cluley
Pub. price, $\$ 14.50$ Club price, $\$ 12.35$

767/009
DIGITAL SIGNAL
PROCESSING
by A.V.
Oppenheim and
R.W. Schafer

Pub, price, $\$ 22.95$ Club price, $\$ 18.95$

767/262 $\begin{array}{ll} & \\ & \end{array}$ by R.M. Glorioso
Pub. price, $\$ 16.95$ Club price, $\$ 12.95$

768/307
CONTENT
ADDRESSABLE
PARALLEL
PROCESSORS
by C. C. Fōster
Pub. price, $\$ 11.95$
Club price, $\$ 9.95$
768/870
GERT MODELING
AND
SIMULATION:
Fundamentals and Applications by L. J. Moore
E. R. Clayton

Pub. price, $\$ 15.95$
Club price, $\$ 13.25$

> Introductory ofter to new members of the COMPUTER PROFESSIONALS' BOOK CLUB

Special $\$ 1.00$ bonus book comes to you with your first club selection

770/271 BUCHSBAUM'S COMPLETE HANDBOOK OF PRACTICAL ELECTRONIC REFERENCE DATA
by W. H.
Buchsbaum
Pub. price $\$ 17.95$ Club price, $\$ 13.50$

767/092
DATA
PROCESSING DOCUMENTA-
TION: Standards, Procedures, and Applications by W. L. Harper

Pub. price, $\$ 22.95$
Glub price, $\$ 17.95$

767/661 INTERACTIVE COMPUTER GRAPHICS by B. S. Walker, G. R. Grund, \&

Pub. price, $\$ 14.50$ Club price, $\$ 12.30$

768/803
DATA
COMPRESSION
by L.D. Davisson \& R.M. Gray
Pub, price, $\$ 25.00$
Club price, $\$ 17.95$
766/754
HANDBOOK OF COMPUTER MAINTENANCE \& TROUBLE. SHOOTING by B.W. Maguire
Pub. price, $\$ 18.00$
Club price, \$13.95

767/521
SYSTEMS
SIMULATION
The Art and
Science
by R.E. Shannon
Pub. price, $\$ 14.95$ Club price, $\$ 12.50$

768/714 APPL.YING DATA STRUCTURES
by T. G. Lewis and M. Z. Smith

Pub. price, $\$ 15.95$
Club price, $\$ 12.25$

767/815
GAMES AND
PROGRAMS:
Mathematics
for Modeling
by R. R. \& W. Tyndall

Pub, price, $\$ 13.00$ Club price, $\$ 10.75$
save time and money by joining McGraw-Hill's new

COMPUTER PROFESSIONALS' BOOK CLUB

THIS new professional club is designed to meet your day-to-day on-the-job 1 needs by providing practical books in your field on a regular basis at below publisher prices. If you're missing out on important technical literature-if today's high cost of reading curbs the growth of your library-here's the solution to your problem.

The Computer Professionals' Book Club was organized for you, to provide an economical reading program that cannot fail to be of value. Administered by the McGraw-Hill Book Company, all books are chosen by qualified editors and consultants. Their understanding of the standards and values of the literature in your field guarantees the appropriateness of the selections.

How the Club operates: Every month you receive free of charge The Computer Professionals' Book Club Bulletin. This announces and describes the Club's featured book of the month as well as alternate selections available at special members' prices. If you want to examine the Club's feature of the month, you do nothing. If you prefer one of the alternate selections-or if you want no book at all-you notify the Club by returning the card enclosed with each Bulletin.

As a Club Member, you agree only to the purchase of four books (including your first selection) over a two-year period. Considering the many books published annually, there will surely be at least four you would want to own anyway. By joining the club, you save both money and the trouble of searching for the best books.

MAIL THIS COUPON TODAY

COMPUTER PROFESSIONALS/Book Club

P.O. Box 582 Princeton Road, Hightstown, New Jersey 08520

Please enroll me as a member and send me the two boaks indicaled. I am to recelve the bonus book at the introductory price of 51.00 plus my first selection, plus tax, postage and handling. If not completely satisfied, 1 may relurn ine book the books, I agree to take a minimum of three additional books during the next two years at special club prices (guaranteed 15% discount, often more). I wilf receive the Club Bulletin 12 times a year. If I want to examin the featured selection, I need take no ation. It will be shipped automatically. if, however, I want an alternate selection-or no book at all-1 simply notity a minimum of ten days in which to return the card and you will credit my account fully. including postace, if this is not the case. Membership in the club is continuous but canceliable by me at any time after the four-book purchass requirement has been filled. This order subiect to acceptance by McGraw-Hill. Orders from oulside the continental U.s. must be prepoid. All prices subject to change winour nolice. Ofrer good for new members only.
Write Code \# of $\$ 1.00$ bonus
book selection here
Write Code \# of
first selection here

NAME
ADDRESS \qquad
CITY
STATE \qquad ZIP
EXTRA SAVINGS: Remit in full with your order, plus any local and state tax, and McGraw-Hill will pay all postage and handling charges. P39184

Listing 3，continued：

E2AA EGOF E2AC C630 E2AE 77
F2AF 47 E2HO CIIOOEO E2H3 23

E2B5 227410
E2FB 23
E2HB
E2B9
E7O
E289 0700

E2BR 21C700 E2BB 21C700 E2C：CD5E01 E2CA C3BAOO

E270	CD
E273	21
E276	
E277	FEOO
E279	CAD
E27C	

E27F 2100E2 E2日2 22 $29 E 2$ E2BS C3RAOO

i i i i i $5 W$

；THIS FIORIION OF THE PROGRAM CHANGES
－IHE DESTINATION DF THE JUMF INSTKUCTIDN
；IN THE PATCH TO ACTIUATE THE AUTTMMATIC
；LINE NUMEERING FEATURE

LXI	In，AESUF	；SET TO ASCIT EUFFER
CALL	FACK	－PACK ECEI DITITS
L． XI ．	H．INCR	；SET TO INCREMENT STORAGE
LLIAX	$[$	－GET FIRST UALUE FROM ARUF
CFII	0	；ChECK If Increment entereil
JZ	SWITCH	－USE DEFAlJLT YALIJE［FF NOT
CALL	РАСК	；PACK INCFEMENT UAL．UES

SWITCH

THE FOLLOWING SUBRDUTINE FACKS
；Four ascil diggits into tiso
；EIGHT－EIT EINARY EYTE
E298 CDBBE2
E28日 CLIPCE2
E28E 07
E28F 07
$\begin{array}{ll}E 290 & 07 \\ E 291 & 07\end{array}$
E292 47
$\begin{array}{ll}\mathrm{E} 293 \\ \mathrm{E} 294 & \mathrm{CDO} \\ \mathrm{CDE}\end{array}$
E297 80
E298 77
E299 13
E29A 23
E29E CF

E29C IA
E290 FE30
E2GF DAASOA
E2A2 FEBA
E3A7 EAOF
E2A9

E2C7
 E2C9 E2CA
 E2CE E000
 E000 0008
 0008 1806 $107 E$
 015 A 1074

JMF EOR ：RETURN TD MONITOR
THIS IS THE AREA WHERE THE PROFER ADDRESSES
ARE STDRED FOR THE UARIOUS LOCATIONS
；

END

ABCRT	E24E	AEUF	107E	Adis	1074	AUTOL	E200
EKSF＇A	0008	COMM	015E	CONUT	E209	CRTOU	E000
IIONE	E25日	EOR	00BA	INCR	Eece	KHLIN	11806
I．INE	E2c7	LOOP 1	E23E	LDOE＇2	E22C	LOOP4	E250
NEXT	00c8	NUMEF	E2CA	ONDFF	E2F9	PACK	E280
FATCH	E285	Save	E2C9	SETI．	E261	SWITC	E27F
TEST	E29C	TWICE	E28B	UNAUT	E2RE	IJNFAC	E2AA
VCHK	0333	WHAT	O4AS				

；STASH FOR CURRENT LINE NUMEER
；Storage for keyboaril input
－STASH FOR ASCII LINE ND．
STASH FOR INCREMENT VALUE
STASH FOR INCREMENT
－BACKSFACE CODE OF UIDEO DRIUER
ADRFESS KEYHAARZ INFUT ROUTINE
ADDRESS KEYHOARD INFUT
ASCII BUFFER ADDRESS
：UCHK ROUTINE IN MONITOR
；MONITOR INITIALIZATION
－MONITOR REENTRY PDINT
ERROR MESSAGE
MDNITOF COMMAND SEARCH
monitor storage location
issue of BYTE under the title＂SYS 81／2．． ．Your Own Executive Commands，＂page 66.

The command format is：SETL 010010
In this example，the first program line number will be 0100 ，the second 0110 ，and so on with each line number being 10 higher than the preceeding one．The SETL sub－ routine accepts input of the initial line number you wish SAL to generate，plus the increment by which each succeeding line number is to increase．The program checks

Figure 3：Flowchart of the AUTOL routine that increments the line numbers and deter－ mines if an executive command has been entered．If an executive command is input the automatic line numbering will cease． Addresses in this figure refer to listing 3.

Microcomputers are highly complicated devices. When you
buy one you want to make sure the manufacturer has a solid reputation for reliability and support. You want to make sure he'll be in your corner a year or two down the road.
The Altairim8800 from MITS was the first general-purpose microcomputer. Today, there are more Altair computers up and running than all the other general-purpose microcomputers combined. Today, Altairs are successfully used for literally hundreds of personal, business, scientific, and industrial applications.

Because we are so popular, many people have tried to copy us. The pages of microcomputer magazines are full of advertisements for Altair compatible devices and Altair imitation computers.

Because we are NUMBER ONE, we offer a much broader range of products and services than any of our competitors. One manufacturer might be able to copy one of our computers. Another might be able to produce a working memory card. But no one can copy the overall Altair concept.

The Altair concept is a system concept aimed at practical, cost effective applications. That's why we offer three mainframes including the Altair 680b, Altair 8800a, and Altair 8800b; ten peripherals including a multi-disk system; and over 20 plug compatible modules including our new, low power 16 K static memory board. That's why we are the only microcomputer manufacturer to go to the extra expense of providing our customers with quality, higher language software.

When you buy an Altair, you're not just buying a piece of equipment. You're buying years of reliable, low-cost computing. You're buying the support of the NUMBER ONE manufacturer in the microcomputer field.

2450 Alamo SE/Albuquerque, NM 87106/505-243-7821
to make sure you entered the starting number by using the VCHK routine in SYS 8. If you forgot to enter the number, you get another WHAT? for your collection. If an increment value is not entered, the default value of 5 is used. Sweet Auto Line is activated when the SETL command is issued and deactivated by the use of any other executive command.

Employer Provided Tools

To get SAL working productively, you need to provide the proper working environment. What your new employee needs are two small changes to the SYS 8 program and, of course, the Sweet Auto Line program itself.

The first change to SYS 8, shown in listing 1, diverts program flow to a patch in Sweet Auto Line that determines if the automatic feature is on or off. The patch contains the line of code which was replaced in the monitor plus a JMP instruction. The second and third bytes of the JMP instruction are changed by SETL so that the destination of the jump is AUTOL, the start of the line numbering program. This turns SAL on.

The second change to SYS 8, shown in figure 3, is similar except that program flow is diverted to the UNAUTO routine in SAL. UNAUTO changes bytes two and three of the JMP instruction in the patch so that the program goes right back where it came from without going through the line numbering procedure. This turns SAL off.

Method to Madness Dept

Here's why the particular locations for changes to the monitor were chosen.

Each new line of data input begins at READ call in the monitor. First, we allow the HL register pair to be set to the start of the input buffer by the LXI H , IBUF instruction. Our JMP to the patch replaces the SHLD ADDS instruction. If SAL is off, the program flow jumps back to the MVIE, 2 instruction and everything works as though there had been no changes at all.

However, if SAL is on, the line number will be automatically placed in IBUF, the character counter, register E , will be set to the correct value, and the first keyboard input character will be in resister A. The return will be to the CPI 24 instruction.

The jump to UNAUTO replaces the CALL to COMM which is duplicated in the UNAUTO routine. If a line of input data does not start with a number, the program flows through UNAUTO to turn SAL off before checking for a legal executive command.

Put SAL to Work

When using SAL, an executive command is used to set the beginning line number, optionally select the increment of increase for each succeeding line, and turn SAL on. This command and the address of the SETL routine should be added to your executive command table. The command is:

```
SETL beginning-line [increment]
(square brackets denote options)
Examples:
```

	First Line No.	Increase
SETL 1000 20	1000	20
SETL 15	0001	5
SETL 20	0020	5
SETL A100 10	WHAT?	

To turn SAL off, use any executive command, even one that is not in CTAB. Of course, you can't use SETL!

To correct a previous line, simply follow the standard procedure and type in the line number you wish to correct. When finished, SAL will repeat the line number she has saved as next. If you forget to type a space after SAL delivers the line number, use the key you would normally use to back up, usually the underline. When you have backed up to the beginning of the line, type a carriage return and SAL will repeat the next line number.

Note that the maximum line number that SYS 8 can handle is 9999. SAL makes no test that this number has been exceeded. The next number after 9999 is 0000 and if you are not careful you may write over some of your program lines. The line increment value may range from 0 to 9999 . If you use 0 , you will set the same line number over and over. If you use 9999, well, would you believe a two line program?

How Does She Do It?

SAL uses four locations to store various data. These are:

LINE 2 bytes for the next line number in packed binary format
SAVE 1 byte for the keyboard input character
NUMBR 4 bytes for the next line number in ASCII format
INCR 2 bytes for the increase increment in packed binary format

The first program activity occurs when the beginning line number and increment are set and SAL is turned on. Those functions are handled by the SETL routine as shown in the flowchart in figure 2. In the event no increment is specified, the default value of 5

Listing 4: Equate Table with monitor routine addresses for using the Sweel Auto Line program with the Processor Technology version of the SYS 8 program. This assembly was started at hexadecimal memory location 5000.

is used. This value is loaded into the HL register pair and stored at INCR at the start of SETL. If a later test shows that a different value is desired, INCR is changed accordingly.

Next, the monitor's VCHK routine is used to determine if a beginning line number was specified. VCHK exits to the WHAT? error routine if it finds no line number was chosen. If a line number is found, the HL resister pair is set to the LINE storage area and the DE register pair is loaded with the address of the monitor's ASCII buffer, ABUF. The lirst four ASCII digits in ABUF are converted to simpie binary values and then packed two to a byte by the PACK routine. Each digit is tested to make sure it is a valid number by TEST. The two bytes are then stored at LINE.

SETL then checks the next ABUF entry for an increment valuc. If none is present, the 5 initially stored is used. If an entry is found, the next four ABUF characters are packed into two bytes as before and stored in INCR.

The SWITCH routine fetches the starting address of the AUTOL routine and stores it as the second and third bytes of the jump instruction in PATCH, thus turning SAL on. Each time the monitor enters its READ routine, the program is diverted to SAL's PATCH. If SAL is on, the program goes through AUTOL to generate a line number.

As the flowchart of figure 3 shows, AUTOL saves the data in the HL register pair on the stack so that those registers are available for use. They are then set to the address of the NUMBR storage area. Register pair DE is set to the LINE memory address and the next line number is retrieved from
that area and unpacked into four ASCII digits. The UNPACK routine stores the ASCII digits in the NUMBR stash and, as each digit is stored, it is also displayed on the console device.

After displaying the line number, the program waits for an input from the keyboard which it stores in the SAVE memory bytc. This input is tested for a space and if it is any other character, a jump to the ABORT routine cancels the entry of the line number into the monitor's input buffer. If a space is detected, the ASCII digits in the NUMBR stash are entered into the monitor's input buffer, IBUF. The value stored in INCR is then added to the line number in LINE and the new value restored in LINE for use the next time through.

The E register is used by the monitor to point to the place in IBUF just after the last valid character. Since we have added a four digit line number plus a keyboard entry character, we set register E to 6 so that the monitor knows what we have done. Lastly, the keyboard character is retrieved from SAVE and carried back to the monitor for input of the rest of the line.

In the ABORT portion of the program, four rubout commands are generated to wipe out the line number printed on the control console. Since the number had not been entered into IBUF or increased by the increment value when the nonspace keyboard entry was detected, no further processing of the line number is necessary. The E pointer register is set 102 to indicate that one character is in IBUF, the SAVEd character retrieved and the monitor reentered. The PACK routine extracts the binary equivalents of ASCII numbers and combines two of them into one byte. This packing facilitates adding the increment value to the line number by allowing use of the DAA, Decimal Adjust Accumulator instruction. PATCH, SWITCH and UNAUTO have already been explained in sufficient detail.

A program listing of the Sweel Auto Line is shown in listing 3. The addresses of the monitor routines given in the Equate Table are for the IMSAI version of the SYS 8 program. If you are using the Processor Technology version of this program the appropriate addresses can be found in listing 4.

Well, there you have it! Sweet Auto Line is an example of sane, moderately intricate computer programming which goes to work and makes life easier for you. You will find it convenient to use, and after a short while, you'll wonder how you ever got along without SAL on the payroll.

Now if she could just type . . .

Turn us on.

And the Digital Group will get you going.

One of the first things you'll discover when you get started with microprocessors is that there's a lot more involved than the hardware. That's why you should consider a system's software, too.

With a Digital group system, you can get going fast....and you don't have to be a programming genius to make your computer do something for you. Turn us on, and your system really does what you want it to do-easily and quickly. Because the Digital Group firmly believes that a computer without usable software is useless.

Every system the Digital Group delivers has several operating programs included with it. As soon as you turn it on it's doing something! In addition, we make available an ever-growing number of software packages for Digital Group systems at all levels of support. (They're listed below.)

But first, how do you get started?

With Tiny Basic Extended.
For only \$5, you get the "beginning" and for an additional $\$ 5$ you can get a cassette full of game programs that work with it. Both are on audio cassette that your Digital Group system can understand. You can list the programs on the TV screen of your Digital Group system and see exactly how they work step by step.

Now the real fun begins.

Change the program. See what happens. Make it work better. Try other variations. The best way to learn how to program your computer is by studying an easy-to-understand operating program and changing it to see what happens. Bit by bit, understanding will come. (And it's nice to know that in the meantime, your system can be working while you're learning.)

When you're ready for more, so are we.
Here are a few programs we have for you:
TINY BASIC EXTENDED
$\$ 5.00$
TINY BASIC GAMES:
Volume 1—Chomp, Checkers, Tic-tac-toe,
Digiguess and Brainteaser $\$ 5.00$
Volume 2—Artillery, Dr. Therapy, Reverse,
Biorythm and Golf $\mathbf{\$ 5 . 0 0}$
Volume 3-Taxman, Snark, Trap, Number,
Square-Root and Clock $\$ 5.00$
Volume 4-Hamurabi, Stars, 23-Matches,20-Questions, Blackjack, Factor and Batum . . \$5.00
Volume 5-Bomber, Lunar Lander, Spacebattle, Matador and Dice $\$ 5.00$
Volume 6-Chief, Mr. Quizzer, Addition, Subtraction and Multiplication $\$ 5.00$
"GALAXY"
1976, SCELBI Computer Consulting, Inc $\$ 7.50$
ALSO:
Z-80 Educator $\$ 10.00$
Z-80 Assembler $\$ 15.00$
Z-80 Dis-Assembler $\$ 10.00$
Z-80 Text/Editor $\$ 7.50$
And many more.

Here's how to get going.

First, take a look at our hardware (we've pictured it here in our new line of cabinets). Then just fill in the coupon below for all the details on our systemshardware and software-so you can turn us on.

P.O. Box 6528

Denver, Colorado 80206
(303) 777-7133

OK, Get me going. I want all the details.

Name \qquad
Address \qquad
City/State/Zip

whole kit \&

(
 the kaboodle $\$ 99$

The kaboodle is our popular SC/MP Kit microcomputer package: SC/MP microprocessor, ROM, RAM, timing crystal, PC Board, and all necessary drive logic. All for just $\$ 99$.

The kit is our new, low-cost terminal kit: keyboard display, and special ROM with debug keyboard/display scanning program. All for just $\$ 95$.

You don't need a $\$ 500$ development system.
You don't need a $\$ 1,000$ teletype.
You buy our kit and kaboodle, and you're in business. In microprocessors, video games, home control systems, whatever. For training, for learning, for development.

If you'd like complete information, we'll send it to you for nothing.

Or, if youd prefer the actual microcomputer and terminal kit, that'll be just $\$ 194$ extra.

National Semiconductor
2900 Semiconductor Drive. Santa Clara, CA 95051
Gentlemen:
__Please send me more information.
. Please send me a real live SC/MP Kit (ISP-8K/200) $\$ 99$.
_. Please send me a real live Keyboard Kit (ISP-8K/400) \$95. Here's my check. (California residents add 6% sales tax.) Also available at your local distributor.

"行National Semiconductor

The

Digital Cassette

Ira Rampil 917 Engineering Research Bldg University of Wisconsin
 Madison WI 53706

Jack Breimeir
The Economy Co
1901 N Walnut POB 25308
Oklahoma City OK 73125

Subsystem:

When people first acquire a small computer of traditional design, they are usually content for some time with using the console lights and switches for IO. If the proud new owner has any software aspirations, he or she will soon begin to crave some sort of device to raise the level of intelligence of the man-machine interface. For many, an ASR 33 Teletype or its equivalent makes an ideal first peripheral for a computer system; it gives one a keyboard, a hard copy printer, and paper tape bulk storage for program libraries. There comes a time, however, when the incessant clatter of a 10 character per second paper tape reader is no longer music to one's ears. The fact of the matter seems to be that as the ambition of a programmer grows, so does that programmer's restlessness and impatience to see things being done. There is something irksome about sitting and watching one's 10 machine take longer to read a program than it took to code it. The obvious answer is a high speed random access store, like a disk or drum. However, no matter how elegant it might be, not everyone has $\$ 5 \mathrm{~K}$ for a cartridge disk. Floppy disks are not yet the answer in terms of cost, reliability and media life. Perhaps the best answer for today's amateur may lie with the ubiquitous Philips cassette. There are many alternatives when dealing with cassettes from which to make design choices. Therefore, this article is meant as a reference for ideas, rather than as a construction article.

The theme of this article refers to the use of high performance digital cassettes, so let's define terms. High performance is intended
to mean better than the amateur's common forms of automatic program loading, namely Teletypes and low speed audio cassettes. One important performance factor that is easy to improve upon is speed. A Teletype clatters along at 110 bits per second, and an audio cassette at up to 2400 depending on whose system you use, but a digital cassette system begins hitting mechanical limits at 32,000 bits per second (for NRZ1 $=1600$ bpi $\times 20 \mathrm{ips}=32 \mathrm{kbs})$. A conservatively and therefore more reliably designed system will loaf along at 7,000 to 8,000 bits per second. That's about one thousand characters per second, or 100 times the speed of a Teletype. Imagine a 4 kilobyte program being loaded into main memory in less than 5 seconds. Another, perhaps more important feature possible in an electronically controlled cassette system is a concept known as block replaceability. This means that a block of data on the tape can be erased and overwritten with different data, without disturbing any other preexisting data on the tape. This technique obviously requires very accurate computer control and synchronization of tape motion. Block replaceability is not an easy goal to achieve in the design of a cassette system. In fact, most cassette peripheral system manufacturers do not offer it, and audio cassette drives never have it. Amateurs, however, can do things that professional designers cannot or will not do because amateurs are not as concerned with markets, cost and reliability optimization. Block replaceability is a worthy goal of amateur experimenters in spite of additional hardware requirements because, in conjunction with the proper

Figure 1: The magnetization curve of the typical magnetic tape medium. The applied magnetic field, H, results in a residual magnet of strength B after the tape has passed the head. The linear regions A to A^{\prime} and B to B^{\prime} are used by audio recorders via the trick of using a bias signal which rapidly switches through the A to B region and allows reconstruction of the analog signal intensity based solely on the linear segments. A digital recorder, in contrast, drives the head to suturation (and beyond) at C and D, giving the maximum magnetization possible in either direction.

Part 1, Digital Recording Background

 and Head Interface Electronicssoftware device handler, a cassette memory system can simulate a random access device like a disk or DECtape. Although obviously much slower, such a cassette system would enable indigent personal computer users to run the equivalent of a disk operating system, with all of its attendant advantages and fealures.

Magnelic lape systems of one form or another have been a mainstay of commercially designed computer systems for several decades. As such, there is a fairly large body of information in the engineering literature on the theory and practice of digital magnetic recording. Until now, analog magnetic recording with audio cassettes has been used in the majority of amateur computer applications. A brief look at the physics of analog and digital magnetic recording should convince the reader of the vast superiority of digital techniques.

The fundamental difference between audio and digital recording is in the method and degree of magnetizing the tape. For audio recording, low distortion is a primary requirement. Looking at the B versus H curve (magnetic intensity versus magnetizing force) for tape, figure 1, we see that the curve is mostly nonlinear. Only the linear portions of the curve can be utilized if low distortion is of importance. There are two linear regions from A to A^{\prime} and from B to B^{\prime} in figure 1. The high frequency bias typical of audio recording is used to insure operation in the two linear regions for the full range of the audio signal level. However, for digital recording as in almost all digital systems, we are interested in only two
states: 0 or 1, on or off, true or false or whatever names are convenient for distinguishing two separate states. Two such states are readily available for digital recording, these being points C and D on the B versus H curve of figure 1. Each of these two points is in the saturation region of the curve where a further variation in the magnetizing force results in a negligible variation of magnetic intensity in the tape and both points are in regions of opposite polarity. These then are the two states used for saturated digital recording.

There are several advantages to operating in the saturation regions of the magnetic media which we shall examine now. During readback of magnetic tape, the signal in the magnetic data transfer head is proportional to the rate of change of the flux or

$$
e_{R}=N \frac{d \Phi}{d t}
$$

$$
\text { where } \begin{aligned}
\mathrm{e}_{\mathrm{R}} & =\text { instantaneous read head } \\
\mathrm{N} & =\begin{array}{l}
\text { voltage } \\
\text { number of windings } \\
\text { around head core }
\end{array} \\
\frac{\mathrm{d} \Phi}{\mathrm{dt}} & =\begin{array}{l}
\text { change of magnetic flux } \\
\text { per unit time }
\end{array}
\end{aligned}
$$

For a given magnetic head and a given tape speed, the maximum readback voltage is obtained by recording a transition of the
signal from point C to D or D to C of figure I. In other words, use the maximum possible change of flux in order to take advantage of the full amplitude capability of the magnetic media. This results in the maximum readback signal which in turn gives the highest signal to noise ratio. Secondly, since the tape is being saturated there are no critical bias levels or record current levels to maintain. All that is required is that the current through the record head be of sufficient value to operate at or above the knee of the B versus H curve. Most digital systems operate at record head current levels of 125% tape saturation or above. Because this level is well above saturation, the exact value is not critical and, therefore, no adjustments are required in the recording electronics during manufacture or during maintenance.

As previously mentioned, the manner in which the signal is used to designate ones and zeros for digital systems is different from the techniques used for audio. In audio the high frequency bias switches between the two linear regions of the tape while the audio is superimposed on the bias for recording the information. When audio recording techniques such as frequency shilt keying (FSK) are used for storing digital information, typically 4 to 8 cycles of all dudio tone are recorded in combination with the 50 to 100 kHz high frequency bias. During readback, the audio tones are recovered and converted back to digital information.

Figure 2: Timing and tape positioning in a digital recording. At (u) is shown an example of a square wave applied to some tape head, alternating between two saturation current levels arbitrurily called +1 and -1 . The result is a pattern of magnetized regions on the lape, with boundaries at each transition point. The passage of the magnets over the head during a read operation induces a current pulse proportional to the rate of change of the magnetic field's direction. Here we've arbitrarily given NS as the designalion for a +1 current state, and $S N$ as the designation of the -1 current state at write time. The trace at (c) shows the voltage integral of currents due to the field transitions of (b) when the tape is read. The key to recording digital data is the creation of a time format for the trunsitions of the fields (which don't have to have the regular pattern shown here).

Saturated digital recording systems require no such complication. Each excursion from one saturation polarity to the opposite is of significance. These magnetic polarity reversals are called flux transitions or flux reversals and, generally, less than one to a maximum of two are required per bit of digital information.

Let us now take a closer look at what the saturated digital signal looks like on tape. The head drive current is switched between the saturation currents as shown by the square wave in figure 2 a . The result is that cells of magnetization are recorded on the tape as shown in figure $2 b$. The magnetic cells alternate in polarity corresponding to the direction of the recording current. When the tape is read back, the read head will have a voltage induced only at the cell boundaries where there is a large change of flux. The resulting input head waveform is shown in figure 2c. Notice that the head has an output only at the locations where the flux changes occur and no output between flux changes where the remanence magnetism is constant. The magnetic head output when reading is obviously much different than the recorded current waveform. This situation is quite the opposite of the requirements for audio systems where the playback voltage must be a faithful reproduction of the record current.

Another difference between audio and digital recording worth noting is in the method of erasing tape. Audio tape must be erased with a high frequency signal to replace the recorded signal with a completely random jumble of magnetic cells, or domains, that produce no signal. If this prior erasing is not done, then the new audio signal is simply added to the previously recorded signal, achieving a "sound on sound" effect. Saturated digital recording eliminates the need for an erase head, and a scparate erase process. Since saturated recording forces the tape to comply completely with the new data, the previous state of tape is irrelevant. Digital recording erases

Figure 3: A typical head drive circuit for suturation recording. The 709 operalional amplifier here is used to drive the magnelic tape head to saturation in either direction by applying a 10 V signal with respect to ground. A magnetic recording head winding resistance of typically 100 ohms in the digital cassette case results in a current of 10/3400=0.003 A (3 mA).
the old data automatically with every write. Some digital recorders do have an erase head, usually called a tunnel crase head. These erase heads are only used to insure compatibility between different decks. Because different decks have different mechanical head to tape relationships, the tunnel crase heads erase a track much wider than the head records on. This wide swath of erasure insures data recorded on a different machine can be erased completely, in spite of a slight head misalignment. The convention when purposefully recording a blank piece of digital tape is to simply saturate the head in one direction for the entire blank section.

In digital systems, the data or information is determined by these flux transitions rather than by any continuously varying analog signal. There are many different combinations in which the transitions can be used to designate a 1 or 0 . The polarity, position, or relative spacing of the transitions are all possibilities. The process of assigning information to the flux transitions and recovering it is termed encoding and decoding. The more popular methods of encoding and decoding are covered later in this article.

Recording or writing flux transitions onto tape is relatively straightforward. Digital cassette magnetic heads typically require 4 to 10 mA peak to peak current for saturdtion of the tape. This amount of current drive is easily available from a general purpose operational amplifier. Figure 3 is a circuit diagram of a typical write amplifier
that delivers plus and minus 3 mA current drive to the magnetic head. The circuit consists of a 709 operational amplifier with back to back zener diodes providing bipolar limiting. TTL logic level inputs are applied to the write data input, inverted and then supplied to the inverting input of the op amp. The noninverting input of the op amp is referenced at 1.4 V positive, thus the output will switch polarities when the input changes from one TTL level to the opposite.

Figure 4: Merging of transitions. When two transitions come close together on the tape, the response curves (see figure 2c) upon reading the data can overlap significantly. This crowding of flux changes tends to cause interference such that the amplitude of the signal is reduced, and the time coordinate of the peak of the curves will shift slightly.

Figure 5: Block diagram of typical magnetic tape heud read electronics for digital recording. The preamplifier and amplifier sections merely turn the very weak signal actually generated in the head during a read data transfer into a strong enough signal to analyze. The peak detector marks the time at which the peak negative or positive amplitude is achieved, and the positive or negative threshold detectors merely gate the direction in which the signal was detected. The result is a pair of lines, one having a pulse for each + transition, one having a pulse for each transition.

The output is clipped at plus and minus 10 V by the negative feedback through the zener diodes. Since the inputs to the op amp are offset 1.4 V above ground, the zener diodes are 8.2 and 11.0 V units to provide a symmetrical $\pm 10 \mathrm{~V}$ output. The resistance of a cassette digital magnetic head is typically less than 100 ohms, thus, a 3.3 k resistor in series with the output of the op amp provides the $\pm 3 \mathrm{~mA}$ drive to the magnetic head.

As previously shown in figure 2, when the recorded magnetic pattern is read back, the voltage induced in the read head is a series of positive and negative pulses occurring when

Figure 6: Time relationships of the voltage waveform from the head (a), the positive threshold detector output (b), and the negative threshold detector output (c). The threshold outputs serve as a gate for the peak detector. (Refer to figure 5 for the system block diagram.)
the flux transitions cross the head gap. The flux transitions have been shown widely spaced with no interaction. In order to achieve maximum storage density and highest data transfer rates, the flux transitions are normally written close together. When this is done, the interaction between transitions must be taken into account. Because of the physics of the magnetic tape to tape head system, flux transitions recorded on tape are not infinitely narrow. The resulting induced readback voltage is a pulse shaped somewhat like half a sine wave. When two closely spaced transitions are read, the results are as illustrated in figure $4 . I_{5}$ is the recorded saturation current; e_{1} and e_{2} are the induced read voltages which would occur if the transitions were widely spaced; and e_{R} is the actual resultant read voltage due to the close spacing of the transitions. The trailing and leading edges of one pulse overlap into the areas occupied by adjacent pulses. The result is a reduction in amplitude of each pulse. This phenomenon is called pulse crowding. A close look also reveals a shift in the position of the peak of the pulse. This is known as peak shift.

Another consideration in magnetic tape is the amount of dropout allowed. Dropout is a momentary decrease or loss of signal amplitude during readback, due to minor imperfections in the tape magnetic material
or tape to head interface. Digital grade cassettes are certified to have no more than 50% loss of amplitude of a signal recorded at 1600 flux reversals per inch (FRPI). Audio grade cassettes generally are not certified and it is up to the manufacturer's discretion as to the amount of dropout permitted in his product.

What the preceding two paragraphs mean in terms of digital tape signals is that, instead of constant amplitude readback signal, there will always be random amplitude variations in the signal and shifting of the pulse peaks depending on the flux transition pattern written. The pulse crowding peak shift and dropout rate limit the maximum flux density that can be utilized for digital lape if error free data storage is a requirement. The maximum flux density for cassette lape is normally 1600 FRPI. In addition, the design of the read amplifier is a key element in minimizing the effects of the above tape chatacteristics.

Figure 5 is a block diagram of a typical read amplifier. The signal from the magnetic head is amplified in iwo stages by a low noise preamplifier and amplifier. The analog signal at the output of this block is about 4 V peak to peak. The signal is then applied to the peak detector and plus and minus thereshold detector. The threshold detectors accept analog signals as inputs and have logic revel outputs. When the input signal is below a preset reference level, the output of the positive threshold detector is a logic low. When the analog signal at the input exceeds the positive reference or threshold value, the output is a logic high. The negative threshold detector operates in the same manner except that it detects negative pulses. These signal relationships are illustrated in figure 6. The threshold detectors effectively isolate the low level noise and the amplitude variations from the read signal while supplying logic level pulses as an output for further processing.

Even though the threshold detectors remove amplitude variations from the read signal, there will be time jitter in the outputs due to these variations as illustrated in figure 7. This effect can be eliminated by detecting the peak of the analog read signal, then combining the result with the threshold information. This is the function of the peak detector block in figure 5. The sequence of events and resulting outputs is shown in figure 8. Note that we now have logic level information that accurately locates the center of the flux transition at a logic signal edge with no timing or amplitude variations due to amplitude fluctuations in the read signal.

Figure 7: A superimposition of a strong signal and a weak signal (a) shows how there can be considerable jiller in the threshold delector outputs. At (b), the strong signal quickly reaches the threshold when it is rising, and remains above the threshold for a longer time, thus resulting in a wider pulse than at (c) where the lower amplilude signal is read. In the normal operution of the tape, crowding effects such as seen in figure 4 and the dropout effect logether require that the imput circuitry be tolerant of amplitude variations.

Figure 8: Decoding begins using a peak detector, which changes its logic state at the time the derivative of the voltage with respect to time changes sign. The peak detector output is then gated with the threshold detectors resulting in a pulse which has a negative transition at the peak, and a width dependent upon the amplitude of the signal. The negative edge of the flux transition lines is the derived clock reference used for input operations.

Figure 9: Details of a digital recording read head signal processor. This circuit is drawn from the schematic used by the Economy Company's PhiDeck product. Parts designations and jack designations refer to the PhiDeck product.

Let's take a look at some of the detail circuitry of a read amplifier. Figure 9 is a schematic diagram of a read amplifier corresponding to the block diagram of figure 5 . The preamplifier and amplifier consist of a MC 1303 dual, low noise audio amplifier. The amplifier circuits are a standard op amp configuration with negative feedback controlling gain and frequency response. The feedback elements for the first stage consist of R45, R46 and C24. Midband gain is set by R45 and R46. The high frequency 3 db corner frequency is determined by R45 and C24. R51 is an offset adjustment to provide for zero offset voltage and R39 is a gain adjustment for the signal level. The second stage is similar to the first with the addition of low frequency rolloff determined by R56 and C36. The two stages combined have an overall gain of approximately 1000 with 12 db per octave rolloff above the upper cutoff frequency and 6 db per octave below the lower cutoff frequency. Different encoding and decoding methods have different read amplifier bandpass requirements. The read amplifier gain and bandpass requirements are also dependent upon the tape speed. The read amplifier bandpass should be tailored to pass only the frequencies required by the system; thus, the highest signal to noise ratio is obtained.

The threshold detectors consist of LM311 comparators, IC4 for positive pulses and IC5 for negative pulses. One input of each of the comparators is connected to an adjustable reference voltage. The reference voltages can be varied to select the level or threshold value at which a pulse is considered a valid flux transition. Resistors R15 and R19 supply negative feedback to give a small amount of hysteresis. This prevents the comparator outputs from oscillating during switching. By grounding pin 1 of the comparator and returning the output to +5 V through a pullup resistor, the outputs are TTL logic levels.

The peak detector consists of an amplifier stage, IC10; a passive differentiator, C16 and R28; and a zero crossing detector, IC11. The amplifier provides gain to compensate for the attenuation of the differentiator network. The output of the differentiator will be a positive or negative voltage corresponding to whether the analog signal has a positive or negative slope. The differentiator output is supplied to the zero crossing detector, IC11. The output of IC11 will be a high or low logic level changing states only when the differentiator output changes polarity, thus locating the peak of the readback pulse. -

Next month cassette decks, encoding schemes, and applications will be discussed.

COMPLETE FLOPPY DISK SYSTEM FOR YOUR ALTAIR/IMSAI \$599

That's right, complete.
The North Star MICRO-DISK SYSTEM uses the Shugart mini floppy ${ }^{\text {TM }}$ disk drive. The controller is an Altair compatible PC board with on-board PROM for bootstrap load. It can control up to three drives, either with or without interrupts.

No system is complete without software: we provide the PROM bootstrap, a file-oriented disk operating system, and our powerful extended BASIC with sequential and random disk file accessing.

Each 5" diameter diskette has 90 k data byte capacity. BASIC loads in less than 2 seconds. The drive itself can be mounted inside your computer (with specified cutout), and use your existing power supply (.5 amp at 5 V and .9 amp at 12 V typ). Or, if you prefer, we offer a power supply and enclosure.

Sound unbelievable? See the North Star MICRO-DISK SYSTEM at your local computer store. For a high-performance BASIC computing system, all you need is an 8080 or Z 80 computer, 16k of memory, a terminal, and the North Star MICRO-DISK SYSTEM. For additional performance, obtain up to a factor of ten in BASIC execution speed by also ordering the North Star hardware Floating Point Board (FPB-A). Use of the FPB-A also saves about 1 k of memory by eliminating software arithmetic routines.

Included: North Star controller kit (highest quality PC board and components, sockets for all IC's, and power regulation for one drive), SA-400 drive, cabling and connectors, 2 diskettes (one containing file DOS and BASIC), complete hardware and software documentation, and shipping.

MICRO-DISK SYSTEM (ASSEMBLED) ...	$\$ 699$	To place order, send check, money order or
ADDITIONAL DRIVĖS	\$425 ea.	BA card \# with exp. date
DISKETTES.	\$4.50 ea.	checks require 6 weeks
FPB-A	\$359	processing. California resi-
(ASSEMBLED)	\$499	dents add sales tax.

NORTH STAR COMPUTERS, INC.
2465 Fourth Street Berkeley, CA 94710

Some letters to BYTE are technical in nature and are best served by some form of response. We will try to answer as many such letters as possible. If you have a puzzle concerning some aspect of the personal computing field write down a clear statement of your question and send it to:

Ask BYTE
Byte Publications Inc
70 Main St
Peterborough NH 03458.
We will publish names and addresses of individuals making inquiries unless you specifically request us to omit the reference.

Ask BYTE

Got my first issue of BYTE yesterday and was much impressed by content and format. I was especially interested by Dr Suding's article on a TV interface / August 1976, paye 66/ since I'd like a demand terminal to our

/Note: This letter was received from a person who signed it "Steve" with no return address; as sometimes happens, the envelope was discurded before the discovery that there was no return address or other identification on the letter itself. This problem of identification is the reason for requesting our authors to record their names redundantly in packages sent to BYTE.]

U1 108 computer. It needs 80 char/line, so his bandwidth comments grabbed my attention to say the least.

In the hope that I didn't really understand what he said, could we review? With 8 bits/char (7 in the matrix +1 space) and 32 chars/line it looks like you have 256 bits/ line. At standard deflection rates, yielding $53.34 \mu \mathrm{~s}$ trace time, that works out to about 4.8 Mbits/second. Since the worst case pattern is alternate ones and zeros, it looks like bandwidth for the fundamental frequency must be at least 2.4 MHz . Did I miscalculate or do you really need to pass the third harmonic?

Steve

First, note that with a 256 bil pattern of alternating light and dark, the worst case for bandwidth purposes, the actual frequency of the video data is found by dividing 128 (a two segment pattern is involved) into $53.34 \mu \mathrm{~s}$, not 256. Thus the frequency of the fundamental in the 256 element display is 2.4 MHz worst case (417 ns per 2 bits). In order to make a passable (first) square ware appoximation, Fourier analysis from an elementary mathematics course shows that the first two terms are the fundamental and the third harmonic, in a ratio of 1 to $1 / 3 \mathrm{in}$ amplitude. Thus the amplifiers for a first order representation of a digital signal on the scan line should be able to pass $2.4 * 3=$ 7.2 MHz if no distortion of the first order approximation is to occur; in fuct somewhat less than a flat response will still allow an image to be seen and understood, as is demonstrated by the fact that TV displays on standard sets work at all. The results of low bandwidth are a smearing logether of the picture elements.

The same considerations apply when thinking about the typical commercial display monitor with its nominal (flat) response bundwidth extending in the 15 to 25 MHz range. Take the example of an 80 character display with 8 picture elements per churucter. The number of picture elements per scan line is then 640; and keeping the same scan time, this gives 83.33 ns per picture element. In the worst case alternate state display, two elements, or 166.7 ns , are required for each cycle, giving a frequency of 5.99 MHz . The third harmonic of this frequency is 17.97 MHz . Thus on a monitor with 15 MHz nominal bandwidth there might be some smearing or loss of definition due to less than unity gain for the third harmonic, and on monitors with higher bundwidth, a sharper picture would be obtained. For reference, accompanying this note is a picture of the third harmonic approximation to a square wave and the first and third harmonic terms in isolation. -

Why pay ${ }^{\$ 4} 49$ for a complete book on a new higher level language when it's worth more?

SCELBAL. A Higher Level Language for 8008/8080 Systems. An unequalled book of solid documentation with room to grow.

Yrou've heard about it. Now, it's available to everyone. SCELBAL. SCientific ELementary BAsic Language. A new high level microcomputer language for 8008/8080 systems that's simpler than machine language. This complete 368 page, profusely illustrated book is so comprehensive you might not be able to use all its information for years. But as you and your system mature, this book will stay forever young with refreshing ideas and extensions of your own parameters.
A Total Language, including Source Listings

Here's everything you need. A gold mine of routines, techniques, source listings, flow charts and lots more. It took $21 / 2$ years to compile, evolve and write. Now it's yours for years to come. Look at all you get!
5 Commands: SCR, LIST, RUN, SAVE, LOAD. 14 Statements: REM, LET, IF . . THE, GOTO, FOR with STEP, END, INPUT, PRINT, NEXT, GOSUB, RETURN and optional DIM. 7 Functions: INT, SGN, ABS, SQR, RND, CHR, TAB. And, it runs in 8 K and more.
Contains Overall Logic Description Program

The first eleven chapters, over 160 pages, describe the statement interpretation logic of the program, using flow charts, commented symbolic assembly language code and verbal descriptions. The book also details SCELBAL 8008/8080 assembly,
providing absolute code for the program in octal, beginning at origin 01/000 for either version. Plus, you'll find painstaking operating instructions and even suggestions for tinkerers and innovators.

Software is Our Onty Business

We know there's no one program for every potential user. So, particular care has been taken to provide a good, sound, fundamental selection of syntax statements and functions in this language. You get all the information necessary to get started ... and to grow and expand with ease as you and your system capability evolve. The language is easily custom-implemented in virtually any 8008/8080/Z-80 based computer!

Free Bonus "SCElBAL UPDATE" Included!

Every copy of SCELBAL may be registered with the publisher. Registration assures that you'll receive the first 6 issues of "SCELBAL UPDATE" absolutely free. These exciting supportive improvements and suggestions are combined with user's unique findings and ideas. "SCELBAL UPDATE" is a LIVING concept. As you and your system grow, you can update at will. We've only scratched the surface. There's more excitement to come!
Introducing 2 New SCELBAL Supplements!

ΔI CELBAL has taken off so fast, two special supplements had to be printed. First, there's

Extended Math Functions: SIN, COS, LOG (BASE E), EXP (BASE E) and ATN . . . only $\$ 5.00$ ppd. The second supplement, String Handling Capabilities, includes the numeric functions LEN and ASC. It sells for only $\$ 10$ ppd.

Don't delay. Order SCELBAL today!

Yrou can own this invaluable book for only $\$ 49$ ppd. You'll have all the data you need to custom-tailor a high level language for your system. The revealed secrets of its operation are virtually priceless. "SCELBAL — A Higher Level Language for 8008/8080 Systems". Only $\$ 49$ ppd. And, it includes six (6) Free "SCELBAL UPDATES" too. Order today!

Here are typical comments about SCELBAL...
"SCELBAL looks fantastic! My system isn't even on-line yet, but l'm eagerly looking forward to activation day."
"Your section on statement interpretation taught me to understand how a high level language operates. I never thought I could do that before!"
" 1 've tailored SCELBAL software to my own insurance business. Now I offer new, expanded computerized service to my customers, using my own 8008."

SCEMBI COMPUIER

 CONSUIIING INC.1322 Boston Post Road Rear Milford, CT 06460/(203) 874-1573

Prices shown for North American customers. Master Charge, Postal and Bank Money Orders preferred. Personal checks delay shipping up to 4 weeks. Pricing, specifications and avallability sublect to change without notice.

Build This Economy

Floppy Disk Interface

Dr Kenneth B Welles
General Electric, Nela Park
2623 Fenwick Rd
University Heights OH 44118

The floppy disk drive offers the advanced computer hobbyist tremendous potential for a high performance computer system. With one or more floppy disk drives, an interface, and the proper operating software, the hobbyist can store hundreds of different programs on a single disk. Each of the programs can be given a name such as STARTREK, BASIC or EDIT, and a program can be run simply by typing its name, for instance "RUN EDIT". With this interface, the program can be brought into the computer at speeds of up to 31,250 bytes per second (for programs less than 5000 bytes long in the proper format). Each disk will store over 300,000 bytes of programs, computer music, Dazzler graphics, ASCII text, synthesized speech thesaurus or data of any form, and any data on the disk can be accessed in at most one second, typically in less than one quarter second. In fact, the draft of this article was written and edited
using mass storage on a disk drive in my personal home computer system. The entire article takes up less than seven percent of one floppy disk, and the time saved in the retyping of successive revisions of the article was tremendous. /Groan! Do I wish I had a floppy disk, CRT display, HYPERTEXT software and input scanners in my office ... $\mathrm{CH}]$

Floppy disks also allow the quick assembly of large programs, without having to start, stop and rewind cassette players. Proper software allows a single floppy disk drive to merge several data files into one ordered file (for the updating of mailing lists or financial records), an operation which would take several cassette recorders on a cassette based operating system.

All of the features mentioned are the potentials of a floppy disk computer system. For a personal computing user to realize these potentials, he or she needs both

Photo 1: The author's disk drive and interface board shown removed from the system. The Innovex drive is at left, with a diskette partially inserted in the front door and the electronics board for the drive shown in an "open" position. The interface board is at the end of a multiconductor twisted pair cable, and a separate cable is used for drive power.

Abstract

About the Author Dr Welles is an enthusiastic personal computing user, with a faltily well developed system. At the time he wrote the current article, his system included an Altair processor, 14 K programmable memory, 5 K of 2708 ROM, and 2 Innovex floppy drives interfaced to the system. Miscellaneous peripherals include homebrew versions of a paper tape reader, television display, a modified office Selectric typewriter output, vector graphics, television camera input, and TV dazzler outputs among others. His main interests are image processing, pattern recognition, computer graphics and robotics. The entire text of his draft was typed and edited on his system, with hard copy output printed on the Selectric as the draft text submitted to BYTE. [At some yet to be determined future date, we'll eliminate the paper step and have authors such as Dr Welles simply send an appropriate machine readable representation of their articles . . . CH]

hardware and software. This article covers a hardware interface for floppy disk drive units.

Until recently, only the well financed hobbyist could afford a floppy disk drive for a personal system. In addition to the $\$ 650$ to $\$ 1000$ cost of the drive unit, one was also forced to spend from $\$ 300$ to $\$ 1500$ for a floppy disk drive controller. The high price of the controller buys a very intelligent electronic device, however. A single command from the computer causes the controller to seek a particular track on one of up to four disk drive units, load the head, find the desired sector, format and read or write the data, calculate the CRC (Cyclic Redundancy Check), determine if the transfer had been successful, and retry the transfer in the event of a read or write error. The design of such an intelligent controller is based on the old school, IBM/360 approach that processor time is too valuable to waste doing the housekeeping for a peripheral device. A personal computing user, on the other hand, has lots of processor time, limited funds, and consequently a different philosophy. One of the original reasons for the development of microprocessors was to perform in software all of those functions that would normally (and expensively) have to be designed in hardware. In this vein, in collaboration with W R Hemsath of Cornell University, I have designed and built a floppy disk drive interface which incorporates minimal hardware, and yet does not sacrifice the flexibility needed to read and write various data formats. This interface consists of only 17 integrated circuits, only one of which is a special purpose chip. The total cost of the chips is less than $\$ 25$. The design shown here will interface up to eight floppy disk drives to an 8080 processor. In
order to properly describe the design and function of the interface, let us first review briefly what steps are required to transfer data to or from a floppy disk.

Disk Drive Operation

In operation, a disk is inserted into the drive and the access door is closed. The act of closing the door engages the disk onto the spindle, and the disk is then rotated at 360 RPM. A stepper motor drives the magnetic data transfer head radially in and out to 77 discrete positions, the outermost called track 0 and the one nearest the center of the disk called track 76. Normally, the head does not touch the spinning disk, but is positioned a small distance away from it. When data is to be read or written, a modified relay is energized allowing a spring loaded pressure pad to press the flexible disk into contact with the head. Timing holes punched in the floppy disk pass by a photo detector and generate a series of pulses. These "sector pulses" are used to determine which one of 32 segments or sectors of the disk is currently passing the head. Use of such holes to define sectors is called "hard sectoring" in disk drive jargon. The pulses are used to signal the approximate starting point of each sector. Data is read from and written to the disk in a manner quite similar to the reading and writing of data on magnetic cassettes. In normal operation, each of these 32 sectors will store slightly over 1024 data bits, or 128 bytes. To write data onto a particular track and sector of the disk, the following operations must take place:

1. The head is moved in or out to the desired track.
2. The pressure pad is loaded, pressing the disk against the head.

Figure 7: This diagram, redrawn from the Innovex Series 200-M Maintenance Manual, shows all of the TTL level signal lines that must be passed between the disk drive and the controlling interface.

The signals sent to the drive from the interface are:

Device Select: When this line is high, all commands from the interface are ignored by the drive, and all signals from this drive unit are put into a high impedance state. If several drives are used, all of the input and output signals may be tied together on a common bus with the exception of the device select lines. By pulling only one of the several device select lines low, the interface selects that particular disk drive to send commands to and receive data from.

Step: A low going pulse on this line causes the head positioning motor to move the data transfer head in or out one track.

Direction: During a step pulse, if this line is high then the head moves out one track (towards
track $\mathbf{0}$). If this line is low, then the head will move in one track.

Head Load: When this line is low, the pressure pad brings the spinning disk in contact with the data transfer head.

Write Current Select: Because the surface velocity of the disk relative to the head varies from the outermost to the innermost track, the density of the data on the disk will also vary. To compensate for this variation, the write current select line varies the amount of current used to write data as a function of the track being written. This line must be low when writing data onto tracks 0 to 43, and high for tracks 44 to 76.

Write Gate: Pulling this line low enables the data on the write data line to be sent to the head and recorded onto the disk.

Write Data: Data to be written on the disk must be serialized and sent out on the write data line as a series of low going clock pulses (one pulse every $4 \mu \mathrm{~s}$) separating the presence (a 1 data bit) or absence (a 0 data bit) of a low going data pulse. Figure 2 shows the write data signal used to send the data bit string 10100 .

File Unsafe Reset: This line is pulsed low just before a write operation is to take place. The pulse resets the file unsafe status to a safe (write enabled) condition, thereby allowing the write operation to be performed.

The signals sent to the interface by the disk drive are:

File Unsafe: A low signal on this line indicates that an error condition existed when a write operation was attempted. When file unsafe goes law, no writing can be done on the disk, preventing the loss of previously written data due to some error condition.

Track Zero: When the data transfer head is positioned at track 0 , this line goes low, enabling the computer to calibrate the head position. When the head is at tracks 1 to 76 , this line is high.

Index: A $500 \mu \mathrm{~s}$ low going pulse appears on this line to signify that the index hole has just come into position under the photodetector. This pulse is used by the computer to determine which sector is sector 0 .

Sector: A 500μ s low going pulse appears on this line each time a sector hole (not an index hote) passes under the photodetector. 32 pulses occur every revolution, and these pulses are used to determine the approximate starting positions of the various data sectors.

Ready: When AC and logic power are present at the disk drive and a disk is loaded, the ready line goes lów.

Separated Clock: When previously written data is being read from the disk, the clock is recovered from the data stream, and is presented on this line as a series of 200 ns low going pulses. The recovered clock pulses come approximately every $4 \mu \mathrm{~s}$ with variations due to the changes in drive motor speed.

Separated Data: The serial data coming from the disk during a read is indicated by the presence (a 1 data bit) or absence (a 0 data bit) of a 200 ns low going pulse on the separated data line, between adjacent separated clock pulses.

Write Protect is an optional signal that is not used in this interface. On a disk drive with this option added, the user can write protect the data on a disk by punching out or uncovering a write protect hole in the disk jacket. A write protected disk cannot be written onto.
3. Sufficient settling time is allowed for the head movement and pressure pad loading to fully stabilize.
4. Delay until the start of the sector pulse which corresponds to the desired sector.
5. Turn on the WRITE GATE of the disk drive to allow data to be written.
6. Write 640 bits (16 bytes of 0).
7. Write a single synchronizing byte (sync byte).
8. Write the desired data bytes.
9. Write 640 bits.
10. Turn off the WRITE GATE to prevent any more data from being written.
11. Unload the pressure pad.

Because the disk drive records data serially, steps 7 and 8 require that each byte being written must be sent out as a series of 8 bits, with one bit being sent out every $4 \mu \mathrm{~s}$, and with no skipped bits between bytes.

Reading data from the disk requires a similar series of operations:

1. The head is moved to the desired track.
2. The pressure pad is loaded.
3. Settling time is allowed for movement and loading.
4. Wait for the start of the sector pulse corresponding to the desired sector.
5. Search for the first occurrence of the sync byte.
6. Read in the desired data.
7. Unload the pressure pad.

Searching for the sync byte entails shifting the incoming serial data into a 8 bit byte and comparing the result of each shift with what the sync byte should be, every time that a new bit is read (every $4 \mu \mathrm{~s}$). When a match is found, then the data bit stream that follows is broken into bytes on every eighth bit, using the sync byte boundary to define the data byte boundaries that come after the sync byte.

From the procceding lists of read and write procedures, two things become apparent: First, the speed required for shifting data in and out (1 bit every $4 \mu \mathrm{~s}$) is too fast for most microprocessors to handle under software control (and searching for the sync byte is more time consuming still!). Second, all of the other operations (stepping the head from track to track, loading the head, searching for the proper sector pulse and turning the write gate on and off) are easily within the capabilities of microprocessor software control. Therefore a minimum hardware interface should control all of the functions which are not time-critical, through software and a simple input and

Figure 2: The timing of data cells on the disk. Each bit cell is frumed by a clock pulse on either side. If the data is 1 , a pulse appears in the middle of the $4 \mu \mathrm{~s}$ cell width; if the data is 0 , no pulse appears in the middle of the cell. The waveform in this example has 5 cells with the puttern of data needed for the string 10100 .
latched output port. The remaining functions then determine the major portion of the design.

The disk drive we used for this interface is an Innovex 220 hard sectored flexible disk drive, and the signal lines required to operate the drive are typical of most floppy disk drives. There are 15 standard TTL level signals required to operate the model 220 drive, 8 from the interface to the drive, and 7 from the drive to the interface. The signal names and functions for the interface are summarized in figure 1.

Figures 3 and 4 show the circuitry of the floppy disk interface. The circuit has 6 major sections: processor 10 instruction decode, instruction latch to disk drive, status load from disk drive, head load-unload, USRT transmit, and USRT receive.

Table 1: Semantics of the OUT 243 instruction. This table lists each accumulator bit, along with its meaning when used to transfer data to the disk interface in the OUT 243 instruction of an 8080 . (In a different wiring of the $1 O$ instruction decoder, or in a different computer, the same format could be used for the actual data transfer.)

OUT 243 INSTRUCTION

Bit	Signal Name	Polarity in Accumulator
0	Write Current Select	1 for tracks 0 to 43,0 for track 44 to 76
1	File Unsafe Reset	0 to 1 to 0 transition causes reset
2	Direction	1 for step in, 0 for step out
3	Write Gate	1 enables the drive to write
4	Step Track	0 to 1 to 0 transition steps one track
$5,6,7$	Drive Select	000 selects drive 0,111 for drive 7

Table 2: Semantics of the IN 241 instruction. This table lists the status bits read by the IN 241 instruction of an 8080 using this interface.

IN 241 INSTRUCTION

Bit	Signal Name	Polarity in Accumulator
0	Track Zero	0 means the head is at track 0
1	File Unsafe	0 means file unsafe condition exists
2	Ready	0 means disk drive is ready
3	Sector Hole	1 to 0 transition marks start of each sector
4	Index Hole	0 means that the next sector is sector 0
5	Head Loaded	1 means that the head is still loaded
6,7	Unused	Always 1

Figure 3: This diagram shows the major portion of the disk drive interface, IC1 and IC2 form the output command decoder. IC3 and IC4 form the input command decoder. IC70 sets up the data from the disk into a format acceptable to the USRT. IC7I and IC12 put the data from the USRT into the proper format for the disk drive. A list of all integrated circuits with power connections is found in table 3.

Photo 2: The author's system. The processor is an Altair, and other peripherals include a homebrew Selectric typewriter interface....

Processor IO Instruction Decode

IC1 and IC2 decode output instructions to the interface. Executing the 8080 instructions OUT 240, OUT 241, ... OUT 247 (240 to 247 decimal) cause 500 ns low pulses on the output lines 0 to 7 of IC2. These pulses can be used to latch data from the output data bus lines DO0 to DO7 into

Table 3: Integrated circuit power wiring list. This table lists each integrated circuit in the floppy disk interface, along with its power wiring pins.

Number	Type	+5 V	GND
IC1	74 L30	14	7
IC2	74 L42	16	8
IC3	74 L30	14	7
IC4	74 L42	14	7
IC5	74 LS175	16	8
IC6	74 LS175	16	8
IC7	7442	16	8
IC8	8097	16	8
IC9	74123	16	8
IC10	74123	16	8
IC11	74193	16	8
IC12	7442	16	8
IC13	74123	16	8
IC14	7438	14	7
IC15	7400	14	7
IC16	$74 L 04$	14	7
IC17	S2350	2	1

Note: 74LXX and 74LSXX types may be replaced by 74 XX ; 8097 may be replaced by 8 T97.
various registers, or to trigger specific functions (as will be shown later).

IC3 and IC4 form the input instruction decoder for the instructions IN 240 to IN 247 in a similar manner to the output decoder. The pulses on the output lines of IC4 are used to gate data onto the input data bus lines DIO to DI7 and into the accumulator. Again, the pulses may be used to trigger specific functions that are not data input operations. /In adapting this design to a non 8080 based computer, this decoding logic would have to be modified CH]

Instruction Latch to Disk Drive

Execution of an OUT 243 causes the contents of the 8080 's accumulator to be loaded into IC5 and IC6. The 5 least significant bits are used to send the low speed control signals to the disk drive. Table 1 shows the allocation and the polarity of these bits as they appear in the accumulator. The three most significant bits are used by IC7 to select one of up to eight different drives which may be attached to each interface.

Status Load from Disk Drive

Execution of an IN 241 instruction enables IC8 to load the current status of the selected disk drive onto processor input data
lines DIO to D15. Table 2 shows the allocation and polarity of these bits as they are loaded in the accumulator. The two most significant bits are unused, and will always show 1 s .

Head Load-Unload

IC9 is a retriggerable one shot with a 2
second pulse width. Executing an OUT 245 instruction initiates this pulse and loads the disk drive head, regardless of the contents of the accumulator. If another OUT 245 instruction is executed within 2 seconds of the first OUT 245, then the head will remain loaded for a further 2 seconds. The head will unload 2 seconds after the last OUT 245

Figure 4: This diagram shows the circuitry used to perform all of the low speed functions of the disk drive. IC8 is a 6 bit input port, and IC5 and IC6 are an 8 bit latched output port. IC7 selects one of up to 8 disk drives on the system, and IC9 controls the loading of the disk's data transfer head for a read or write operation.

(load head) instruction. This 2 second pause allows the head to stay loaded during successive reads and writes to the disk, but will automatically unload the head after 2 seconds without any disk activity. Alternatively, an OUT 246 instruction will cause the head to be unloaded immediately if and when that is desired. This automatic head unload feature minimizes wear on the floppy disk. If it were not present in some hardware or software form, the head would be continuously in contact, wearing out disks quite quickly if your machine ran 24 hours a day.

TDS Transmit Data Strobe

An OUT 240 instruction of this interface puts a pulse on the TDS line which loads the accumulator into the USRT transmitter buffer through processor data output lines TDO to TD7. The USRT then shifts this data byte out onto TSO (Transmit Serial Out). One bit is shifted onto TSO for each pulse on TCP (Transmit Clock Pulse).

TBMT Transmit Buffer Empty

Whenever the transmitter buffer is ready to receive another byte (from an OUT 240 instruction), the TBMT line goes high.

TFS Transmit Fill Strobe

An OUT 241 puts a pulse on the TFS line which loads the accumulator into the USRT fill buffer. If new data is not sent to the transmit data buffer by an OUT 240 soon after a TBMT signal, then the USRT has no data to send out on the TSO line. In this case, data from the transmit fill buffer is sent out in place of the missing data.

RSS Receiver Sync Byte Strobe

An OUT 242 pulses the RSS line which loads the accumulator into the USRT sync byte buffer, for use at the beginning of a data read operation.

RR Receiver Reset

An IN 243 causes the receiver section of the USRT to be reset into the "Search for Sync Byte" mode. The received serial data stream enters on RSI (Receive Serial Input), and is clocked into the received data buffer by the RCP (Receive Clock Pulse) line. When the data byte in the received data buffer matches the byte in the sync byte buffer, the RDA (Received Data Available) line goes high. After this happens, a new byte is put into the received data buffer after every eight clock pulses on RCP.

RDE Received Data Enable

An IN 240 instruction pulses the RDE line. This puts the data in the USRT received data buffer onto data lines RDO to RD7, and it is loaded into the accumulator. In this manner, the 8080 brings in the data read from the disk.

SWE Status Word Enable

An IN 242 pulses the SWE line which loads the USRT status word into the accumulator to examine for data ready, or to find possible errors.

The USRT

The abbreviation USRT stands for Universal Synchronous Receiver Transmitter; this chip really is quite universal. Although it was originally developed for data transmission over phone link, wire link, and some types of tape drive, the S2350 USRT performs all of the needed high speed data transfers to and from the disk with almost no modification. Before discussing the operation of the USRT transmit and receive sections of the interface as a whole, take a look at the functions of the USRT itself, as

Figure 5: This is a block diagram of the USRT integrated circuit, the AMI S2350. The information here is redrawn from the original contained in AMI's data sheet on the device. The USRT integrated circuit is the heart of this inexpensive floppy disk interface, performing all of the high speed data manipulations needed to read and write data from and to the disk drive. The USRT was not intended to be used as a floppy disk interface when it was originally designed. But as demonstrated by this article, a little ingenuity can often come up with surprisingly versatile applications of standard integrated circuits for use in high speed data communications.

A printed circuit board is available for the advanced hobbyist to construct his or her own interface. The printed circuit board fits into a single Altair (or generic equivalent) slot, and supports the circuit described in this article with two additions:

1. Eight head load circuits allow multiple drives to load heads simultaneously.
2. Space is provided for a 1702 type PROM, to allow the user to load the operating system from the disk without toggling in any data.

The printed circuit and documentation only (no ICs or sockets) are available for $\$ 35$ from K B Welles, 2623 Fenwick Rd, University Heights OH 44118.
denoted by the various signal lines. Figure 5 shows a block diagram of the S2350, along with captions detailing these lines and their relation to the interface as a whole.

USRT Transmit

After the disk drive head has been loaded and the desired track and sector found, the write gate is turned on and data from the processor may be sent to the transmit section of the USRT through an OUT 240 instruction. 1 C 11 divides the Altair 2 MHz clock by 8 to give the 250 kHz clock required by the disk drive. This clock is fed into TCP, and IC12 combines the data from the transmitter serial output line and another clock phase into the proper write data format required by the disk drive as seen in figure 2.

USRT Receive

IC10 is simply used as a pulse stretcher for the separated data and separated clock from the disk drive. The data pulse is expanded to overlap the falling edge of the clock pulse. This overlap allows the data to be read properly by the USRT. When a byte of data has been received (as denoted by the receiver data available line), an IN 240 instruction will load the received data into the accumulator.

Software Timing

The article to this point has shown how data can be transferred between the processor and the disk drive in the correct format, but nothing has been said about the ability of the 8080 to send or receive data at the proper rate. A 250 kHz bit rate is one byte of data in or out every $32 \mu \mathrm{~s}$ under ideal conditions. If the drive motor speed variations are taken into account, this figure can be as low as 30μ s per byte on a read operation. Since 8080 instructions take from 2 to $7 \mu \mathrm{~s}$ to execute (assuming a 2 MHz clock and fast memory), this restricts the read loop to very few instructions. If it is desired to transfer more than 256 bytes in or out at any one time, the read loop might look like:

Symbolic Instruction

LOOPA: IN STATUS ANI DATAREADY JZ LOOPA IN DATA MOV M,A INX H DCXB

Execution Time
$5.0 \mu \mathrm{~s}$ $3.5 \mu \mathrm{~s}$
$5.0 \mu \mathrm{~s}$
$5.0 \mu \mathrm{~s}$
$3.5 \mu \mathrm{~s}$
$2.5 \mu \mathrm{~s}$

MOV A,B	$2.5 \mu \mathrm{~s}$
ORA C	$2.0 \mu \mathrm{~s}$
JNZ LOOPA	$5.0 \mu \mathrm{~s}$
	$36.5 \mu \mathrm{~s}$

In the above example the $H L$ register is used to point to the data buffer, and the BC register is the number of bytes to be read. The total time of the loop, $36.5 \mu \mathrm{~s}$, is $6.5 \mu \mathrm{~s}$ too long for the worst case data read. Obviously this program will not read data in properly.

By eliminating two lines of code the loop is reduced to a total time of $28 \mu \mathrm{~s}$ as shown in the following example. This is quite ample for the interface and allows additional leeway for the possibility of dynamic memory's introducing a wait state during the loop.

Symbolic Instruction	Execution Time
LOOPB: IN DATAWAIT	
(IN 244)	

Obviously this version of the routine will not work without some special "trick." In this case, the trick is that the first three lines of LOOPA have been replaced with the first line of LOOPB and some special hardware. The first three lines of LOOPA prevented the IN DATA statement from reading data before data was available. In LOOPB, the IN DATAWAIT is an IN 244 instruction. This triggers IC13b, a one shot, which puts the 8080 into a slow memory wait state by pulling the Altair's PRDY line low. When data is ready for input, the RDA line of the USRT resets IC13b and allows the LOOPB routine to continue. During normal execution of a read operation, the 8080 does a $4 \mu \mathrm{~s}$ wait between lines 1 and 2 of LOOPB. This wait state serves to synchronize the reading of the disk data with its availability. Any amount of data from a partial segment to an entire track may be input with this routine.

If some hardware failure should occur, and data stops coming into the USRT, then RDA will never go high. If no data arrives after 3 ms , then IC13b completes the one shot cycle and releases the 8080 wait state. This feature prevents a hardware failure in the disk drive or interface from hanging the
processor up in an endless wait state. Whether a read operation is successful or not, the end of the loop is reached when the BC register pair's count is decremented to zero and the JNZ condition no longer pertains.

In order to write data, a software output loop similar to LOOPB is employed:

Symbolic Instruction	Execution Time
LOOPC: OUT DATAWAIT	
(OUT 244)	$5.0 \mu \mathrm{~s}$
MOV A,M	$3.5 \mu \mathrm{~s}$
OUT DATA	$5.0 \mu \mathrm{~s}$
(OUT 240)	$2.5 \mu \mathrm{~s}$
INX H	$2.5 \mu \mathrm{~s}$
DCX B	$2.5 \mu \mathrm{~s}$
MOV A,B	$2.0 \mu \mathrm{~s}$
ORA C	$5.0 \mu \mathrm{~s}$
JNZ LOOPC	$28.0 \mu \mathrm{~s}$

With this output loop, the 8080 can maintain the data rate required to transmit data to the disk properly. A similar hardware synchronization trick is also used in this case.

Final Hardware Notes

The circuit shown in figures 3 and 4 was developed for use with an Innovex 220 drive. The 220 has multiple options which can be sclected by jumpers on the circuit board. The options required for use with this interface are:

1. Radial Interrupt Disabled (Link E installed)
2. Radial Rotation Sensing Disabled (Two Link Es installed)
3. Read Data Option Disabled (Link A installed)
4. Writc Protect Option Disabled (Link H installed)
5. Stepper Power Option (Link E installed)
6. Radial Head Load Disabled (Link E installed)
The selected options allow multiple drives to be used with the interface. While up to cight disk drives can be connected in parallel (with the exception of the device select lines), the shorting clip on the P07 line must be removed from all but the last disk drive on the bus (P07 connects the bus termination resistors to +5 V). In addition, the user must provide power supplies for the following voltages and currents:
[^0]
Conclusion

The small number of ICs in this circuit (17) and their low cost and easy availability puts the construction of this circuit within the abilities of many intermediate and advanced computer hobbyists and experimenters. The addition of a disk drive to the average home system will increase the overall system usefulness many times. By reducing the time required for software generation to a fraction of that on a cassette or paper tape system, software throughput and sophistication of the typical personal computing user (and professional) will typically double or triple.

I currently have two drives running on an Altair system, and a complete disk operating system existing in 2 K of PROM that allows operating with up to 240 different named files on each disk. Loading BASIC takes only 6 seconds, and loading STARTREK using CLOAD takes only 3 more seconds. The disk drive and operating system has increased software generation at least fourfold, and made the system much more enjoyable to use.

BABY! I MICROCOMPUTER

ARE YOU BUYING A SYSTEM?
BEFORE YOU DO
SEND FOR OUR LITERATURE. COMPARE OUR SPECIFICATIONS WITH OUR COMPETITORS' KITS AND ASSEMBLED SYSTEMS!

YOU WILL SEE
THE BABY! I SYSTEM IS NOT A BABY WHEN IT COMES TO HARDWARE AND PERFORMANCE
BUT IT IS WHEN IT COMES TO

PRICE!
COMPARE TODAY
THEN BUY A
BABY! I MICROCOMPUTER

STM SYSTEMS, INC.
P.O. BOX 248

MONT VERNON, N.H. 03057
603-673-2581

Color Displays on Black and White

Television Sets

Steve Bain
Technagraphic POB 5014 Arlington TX 76011

Figure 1: The Benham Disk. When rolated clockwise at 5 to 10 revolutions per second, the black arcs nearest the center appear to be red, the middle ars appear to be green, and the oulter arcs uppear to be blue. If the direction of rotation is reversed, so is the order in which the colors appear.

Add Subjective Color to Your Video Interface

Interest has been growing in the idea of using standard color television receivers as microcomputer output devices. At least one color television interface is already commercially available and more are on the way. In addition, many homebrew projects are ongoing.

There are, however, problems with using home color televisions as output devices for microcomputers. Most hobbyists' color televisons are dedicated to pastimes such as Walter Cronkite and "The Waltons." The family may not enjoy relinquishing its viewing rights while that new program is being debugged.

More serious are the technical problems involved. National Television System Committee standards were designed to compact the maximum amount of useful color information into the minimum bandwidth. The standards accomplish this goal well, but they require that the color information in the video signal be highly encoded. Hence the hobbyist must either encode his color data or extensively modify his set. Also there are the traditional color television bugaboos of convergence and excessive X-ray exposure to consider, since the average viewer to screen distance for most computer IO applications is likely to be less than the viewer to screen distance for conventional viewing.

One can also brood over the inherent resolution limitations of National Television

System Committee color television. The National Television System Committee, as you may recall, was the engineering group which developed US color television specifications. If high speed memory prices continue their expected decline, the cost of storing a high resolution picture will become insignificant when compared with other system costs. The personal computing experimenter may find that the resolution of his computer graphics is limited only by the construction of his CRT and the bandwidth of its driving circuitry. For standard color televisions the chrominance bandwidth is much less than the luminance bandwidth and thus the color change resolution is rather limited. Even if the color picture tube were to be driven by high bandwidth circuitry, color change and intensity change resolution would still be limited to about $500 \times 500=250,000$ points by the shadow mask inherent in the tubc. Of course, it is possible to build a higher resolution shadow mask tube, but one must remember that color picture tubes are affordable only because they are mass produced. There is currently little demand for high resolution color tubes.

The preceding discussion is not an attempt to quench the reader's desire to have his microcomputer spew data in living color. A look at the impressive outputs from the Cromemco or Intecolor devices would rekindle this desire anyway. The discussion is intended only as an effort to legitimize the search for an alternative. Is there a viable alternative to standardized shadow mask

SYNEHRO-SUUND ENTERPRISES

*** NEW ***
ADM-3A KIT

PRESENTS
IMSAI 8080 MICROPROCESSOR

24 line X 80 column VIDEO TERMINAL KIT

IMSAI ALSO AVAILABLE WITH Z-80

WINTER SPECIALS ADM-3A KIT $\$ 895.00$ ADM-3K $\$ 849.95$ LSI-11 $\$ 840.00 \quad$ IMSAI 8080 DISCOUNT

FEATURING THE FOLLOWING PRODUCTS

LEAR SIEGLER
IMS ASSOCIATES, INC.
CROMEMCO
SOUTHWES'T TECHNICAL PRODUCTS
TECHNICAL DESIGN LABS (Z-80)

DIGITAL EQUIPMENT CORPORATION
DEC WRITERS
PROCESSOR TECHNOLOGY
APPLE COMPU'ER
OLIVER AUDIO ENGINEERING

WORKING MODELS ON DISPLAY AT OUR NEW SHOWROOM

CALL OR WRITE FOR	STORE HOURS 9-5
DISCOUNT PRICE LIST	TUESDAY - SATURDAY
PHONE ORDERS	SYNCHRO-SOUND ENTERPRISES
(212) $468-7067$	$193-25$ JAMAICA AV
All IMSAI products in stock for immediate delivery.	HOLLIS NY 11423

Figure 2: A suggested geometry of illumination for viewing the Benham disk.
color for real time computer output in color? The surprising answer is yes!

Subjective Color . . .

There is a long known but little discussed method of making black and white images which are properly modulated appear in color. This method employs an optical illusion known as the Prevost-Fechner-Benham effect. The colors which result are called Fechner's colors or subjective colors.

One can modify most video display interfaces or television typewriters to produce subjective color output on a standard black and white television. The modifications are entirely electronic and do not involve moving filters, special glasses, or Rube Goldberg mechanical contraptions. Most viewers agree that the colors which are produced, although not competitive with NTSC colors in saturation and brilliance, are impressive.

Subjective color television does have its limitations, however. It works best in producing sensations of the primary colors: red, green and blue. Other colors can be produced, but only at some loss in saturation. Subjective color can be made to appear only in relatively small areas of the screen which lie against a white background, but this is not a significant problem in most computer IO applications. For instance, one cannot cause the entire screen of a black and white TV to appear in a subjective red. However, one can cause red, green or blue dots, lines or letters to appear against a white surround. Finally, due to the nature of the modulation which produces the illusion of color, subjective color images have a noticeable flicker.

. . . And Its Origin

The Prevost-Fechner-Benham effect is named after its discoverers and developers. Benedict Prevost was a French monk who in 1826 discovered that a black and white
object which was moved through a beam of light in a darkened room could produce a variety of colors. G T Fechner, a German physicist, developed a disk in 1838, with black and white areas which produced subjective colors when rotated. Subjective color was not heard from again until 1894 and 1895 when C E Benham published papers on "The Artificial Spectrum Top" in the journal, Nature. Benham developed a disk that is particularly efficient in producing subjective colors and it is reproduced in figure 1.

Just as there is a small percentage of the population which is colorblind, some people do not see subjective color. These two groups of people do not coincide. Some otherwise colorblind people see the entire spectrum of subjective colors. To find out if you can see subjective colors, draw your own Benham disk or make a photo copy of figure 1 and mount it on a piece of cardboard. The large black area will likely not photo copy well, so darken it with a black felt tip marker. You may also need to go over the black arcs with a ballpoint pen. High contrast between the black and the white areas of the disk will produce the best subjective color. Stick a straight pin through the center of the disk and cement the head of the pin to the topside. Then go into a room that is lit by incandescent lamps and rotate the disk between your thumb and forefinger at approximately five to ten revolutions per second. Experiment with slightly different speeds until you see the colors listed in the caption to figure 1. I have found that the geometry shown in figure 2 is one of the best for viewing the disk if a single source is used for illumination. Notice that the light as well as the disk is within the field of vision.

It must be emphasized that subjective colors do not result from any change in the wavelength distribution of the light which is reflected from the disk. If a one second time exposure were to be made of a spinning Benham disk on color film, the result would be a light grey disk with dark grey circles. The colors result from a temporal optical illusion. Television makes use of another temporal optical illusion: The flicker fusion which causes single frames shown in rapid succession gives the appearance of continuous movement on the screen. The explanation of subjective color is probably partly psychological, due to the mental interpretation of black and white areas of contrast, and partly physiological, due to the differing response and decay times of various color receptors. However, the precise reason for the effect remains unknown.

How To Make Your Computer Even More Boring...

Interface it with a Midwest Scientific Instruments FD-8 Floppy Disk Memory System... with all your disk software on our PROM/RAM Board.

With our FD-8 system and FDOS firmware, your computer is always ready to go. With the disk operating routines on PROMS, all you have to do is load your desired program from disk and start running. Of course you may Fe. have to walt 5 or 10 seconds for your program to load if you have lots of memory.

The FD-8 interfaces to any microcomputer system via a single PIA chip... and all of our available software is included at no additional charge.

MSI FDOS operating system software has many outstanding features...

- Automatic program loading and linkage
- Auto error recovery
- Dynamic space allocation and file extension
- Utillities for file listing, copying, deleting, or renaming
The FD-8 is complete, including cabinet, all power supplies, and cables.

Prices:

FD-8 Floppy Disk System
KIt $\$ 950.00$
FD-8 System Wired and Tested \$1,195.00
PROM/RAM KIt (SwTPC 6800 or 8080) $\$ 95.00$ PROM/RAM Wired \& Tested, with FDOS Firmware (specify 6800 or 8800 System). . . . $\$ 345.00$

PR-1 Programmer \& Verification Module

Designed to program 1702A PROMS, the MSI PR-1 interfaces with any microcomputer systern via a single PIA chip.

A complete software package is furnished with the system at no additional charge. This gives you the ability to transfer any area of memory to a PROM chip. . . read the contents of a PROM into memory.. . .calculate checksums for ROMS... and duplicate ROMS. Following PROM programming, the software reads the PROM back into memory and compares each step with the memory content from which it was programmed for verification.

The PR-1 is complete, including cabinet and power supplies.
PR-1 . $\$ 325.00$

220 West Cedar Olathe, Kansas 66061
913/764-3273
TWX 9107496403 (MSI OLAT)

The Color Code . . .

Just how does one go about adding subjective color to a video display? Unfortunately, the large number of varying video display interfaces and television typewriters which are now available make it impossible to give a single cookbook approach. Thus, it will be explained rather precisely what the effects of the modifications must be and then some general suggestions will be given as to how to implement these effects. The rest is up to the reader. Suggestions will only be directed toward the goal of implementing the primary colors. Nonprimary colors can be produced, but the results are less impressive and the price is a considerable increase in the complexity of the necessary modifications.

American computer hobbyists are fortunate in that the 30 frames per second NTSC standard supports subjective color almost optimally. The European standard of 25 frames per second is much less attractive.

The code which produces subjective color can be read from a Benham disk. Think of the television display in terms of subjective color cycles. Each such cycle lasts for one fifth of a second and comprises six complete video frames, each lasting one thirtieth of a second. One cycle corresponds to one revolution of a Benham disk. For the first three frames of each subjective color cycle, the entire CRT display must be black. During the fourth frame only those portions of the display that you want to appear as red should be black. The rest of the display must

be white. During the fifth frame, those areas of the screen that you want to appear as green should be black and the surrounding display should be white, including the areas that were black during the fourth frame. During the sixth frame those areas that you want to appear as blue should be black. The rest of the display should be white. A new cycle should then begin with the start of the very next frame.

There is one exception to the code given above. Those portions of the display that you want to appear as black should be black during all three of frames four, five, and six of each cycle.

. . And Its Implementation

Now for some suggestions as to how to implement the subjective color. Comments will be directed toward some idealized reader who is familiar with television terminology and who has a video interface which produces typical television display functions. That is, it produces dot matrix characters on a conventional black and white television from ASCII coded input. However, many of the suggestions will be useful in graphics oriented applications as well.

It is possible that some currently available or soon to be available video interface is so versatile that subjective color can be implemented using software alone. Our discussion will be directed toward its implementation with hardware.

Most video interfaces are set up to provide white dot matrix characters against a black surround. Subjective color requires black characters against a white surround. This requirement suggests that interfaces which support interlacing are to be preferred for this application over those that do not. Unfortunately, the popular low cost interfaces such as Southwest Tech's TVT II and Processor Technology's VDM-1 do not interlace since doing so would greatly complicate their timing circuits. Luckily, a lack of interlacing is not a serious problem in the creation of subjective color for typical viewer to screen distances. Use of a small monitor minimizes the effect of dark spaces between lines.

VDM-1 can provide a black on white image under software control. With other interfaces, providing this feature may be as simple as inverting the output of the character generator's shift register. However, it is conceivable that doing so could affect the generation of the vertical and horizontal sync pulses so check the circuit diagram of

Figure 3: Subjective color timing pulses.

Experience the excitement of owning the finest personal computer IMSAI 8080

Waiting for you - all the incredible performance and power of the IMSAI 8080. And at a price you would normally pay for a home music system: \$699 in kit; \$931 assembled.

WORLD OF USES

The IMSAI 8080 is a superbly engineered, quality computer. It is versatile, expandable and powerful, putting literally hundreds of
applications and uses at your fingertips. Imagine sitting at your desk and enjoying interaction with your IMSAI 8080! Press the on switch and you're ready for game playing, research, education, business applications, or for laboratory instrument control. It has all the power you need, and more, to make your application ideas come alive.

GROWS WITH YOU

The IMSAI 8080 is designed for many years of pleasure. With its open-chassis engineering you can expand your system by adding peripherals and interfaces. The 22 slots and 28 amp power supply mean that you can plug-in today's, plus tomorrow's modules.

Right now you can add a module for displaying color graphics and characters on TV; a ready-to-use keyboard; small and large printers, and a single interface that lets you attach multiple devices including a cassette tape recorder. Expect the latest, exciting equipment from IMSAI. We are committed to leadership in this expanding technology.

EASY TO PROGRAM

With our BASIC language you can operate the IMSAI 8080 quickly and easily. Technically knowledgeable? Use our assembly language to develop sophistrated and unique software

Send for free four-color brochure or $\$ 1$ for catalog. Call or, write for name of nearest dealer.

IMSAI
IMSAI Manutacturing Corporation
14860 Wicks Bwd
San Leandro, CA 94577
(415) 483-2093

TWX 910-3667287
European Distributor
Harper Industry Products, Ltd,
6079 Sprendlingen 2
West Germany

Serial Storage Media: An Introduction and Glossary

Brian D Murphy
72 Circuit Dr
Riverside RI 02915

Brian Murphy has been professionally involved in the computer business for more than eight years, at all levels of programming and usage. His experiences range from scientific and simulation software on large machines to the world of personal microcomputers: He is currently employed by the US Navy.

This is an introduction to the use of a cassette type recorder for mass storage of information. Once the initial novelty of the small computer system has worn away, a junction occurs at which the computer freak either matures or puts his (or her) system on the market and moves on to something else like stamp collecting. If a person has a valid interest in the uses of computer technology, however, he or she soon finds self in a bind as regards the permanent or semipermanent storage of programs or data on something more easy to transfer into his/her computer than paper. If a hobbyist is limited by funds (or by spouse), he or she soon learns that the only media suitable for his/her storage is magnetic tape utilizing a cassette recorder. He/she now has available a primitive serial access device. The word "serial" has the same root as "series," which means (in a very loose definition) one thing following on the tail of another. If you walk down a corridor to a particular room you are

Characteristic	Vocal Access Time	Digital ID	Position Amount of Manual
Interaction (Play, Rewind Pushing) Tape Utilization (Minimum Wasted Tape)	Worst	Worst	Best

Table 1: Comparisons of Manually Controlled Cassette Information Management Techniques. A rudimentary file storage system is possible with manually controlled cassettes, essentially variations of what people used to do with paper tape file systems. A file system is a way of locating logically grouped records in the mass storage medium. For manual recorders this can be done by listening for voice identifications through a loud speaker, by running the tape and matching against a desired block identification recorded with the records, or by looking at the tape position counter.
applying serial access to the problem of locating the room you want to enter: Each door is passed in turn. Thus serial access is quite different from random access (such as in your computer's memory), where you arrive immediately at your destination (similar to teleporting yourself directly to the room you wish to enter). One goal of this article is to familiarize the novice reader with the computer industry concepts and terminology. To this end, we include a glossary that will hopefully define those terms with which you may not be familiar. Also included is a book list for your bedtime reading pleasure.

A cassette type recording medium is the most economically attractive alternative for the small system at this time. The cassette recorder as it comes off the dealer's shelf, however, is awkward to use in a computer system. There are three general methods, appealing because they are inexpensive, available for using such a device. The three general filing system methods for using a manually controlled cassette device for mass storage are detailed below:

- Identify each recording by prefacing it with a vocal recording (vocal id). Simply record your verbal description of a block before beginning the mark tone which precedes data.
- Use software to sense for a recorded digital code while searching the tape (digital id). This allows automatic search at normal data rates, but can take a long time.
- Buy a more expensive audio recorder with a mechanical position readout and maintain a written record of tape usage (position id). Here the manual cuing controls of the recorder get you to a desired block very quickly.
The cassette used in one of these fashions is essentially a replacement for paper tape and like paper tape requires manual (or at most,
automatic motor control) operation. Each of these techniques has its own advantages and disadvantages as shown in table 1.

As the personal computing user becomes more sophisticated, he or she will soon find a need to have an electronically controlled recorder available for his/her use along with software of a more sophisticated file system. Such a software controlled recorder can automatically search the tape for a requested recording, going forward or backward as required, and loading in the desired data. The file system is a neat software utility that can operate separately or, for the more advanced, as part of an operating system. The remainder of this article will acquaint the novice with some of the characteristics of automatically controlled serial storage and the tradeoffs and physical considerations inherent in its nature. No attempt is made to go into the much larger subject of file systems.

As was mentioned previously, searching for a particular item in serial storage requires looking (humanly or via software) at identifying material that accompanies the desired recording. For tape media, the looking proceeds in a serial fashion until the desired record is located. A record is a group of bytes or words representing the data stored. The time that it takes to locate the desired record is called access time, and in measuring the efficiency of the device in general, average access time. A serial device has an access time of $T^{*}(N-1)$ to find the N th record, if all records are the same length and the time to get to the second record is T. If the records are of variable length, the access time will be the sum of all the times to pass by each preceeding record. The average access time would be the time it takes to search half the recorded tape. The software must have a way to tell one record from another, or in fact when one record ends and another begins. In a simple record file system, each record is preceeded by a tape mark which signals the start of a record. Tape marks are distinctive in nature and are composed, for example, of a number of special characters of predetermined count (the ASCII SYN character is sometimes used). Following the tape mark is identifying material, and the record itself followed by a checksum (see the glossary). A sample lay-
out of a typical tape (or format) is shown in figure 1. Associated with each recording are inter-record gaps. The gaps are areas on tape that contain no meaningful data. They exist due to the physical limitations of the recorder and represent the time the motor takes to start or stop. These "gap waste" and may consume a considerable amount of the tape of an unwary user.

To appreciate the impact of gap waste it is necessary to understand the physical aspects of the recorder and tape medium. The amount of information that can be recorded or read during a given time is determined by the transfer rate of the recorder. Transfer rate is measured in bits per second (bps) and is a function of recording density, tape speed, and the recorder electronics. The recording density is the number of bits that are stored on one inch of the tape, measured in bits per inch (bpi). Now we can relate inter-record gap to a physical situation. Suppose we have a recorder with a transfer rate of 2400 bits per second and a motor start or stop time of 0.5 seconds, with a linear speed change during that interval. This is a model which demonstrates the problem of gaps; in actual systems the start time might differ from the stop time, and the curve would probably not be linear. Using this simplified model, since the stopped rate is 0 inches per second, and the "started" rate is the full tape speed, the linear speed change implies an average speed of the tape during the interval change which is exactly half of the full speed. Thus, during the transition interval, exactly half of the tape which would have gone by at full speed

Figure 1: Format of a Typical Magnetic Tape Record. This diagram can be viewed as a timing diagram (from left to right), or as its equivalent, a physical map of a tape which is moved past a fixed head from left to right. In this conception, a record is preceded by an inter-record gap, followed by a software (or hardware) coordinated tape mark for synchronization, then (if a file system is employed) some software identification information and finally the data of the record. A trailer of a checksum is often used for error detection, after which an inter-record gap precedes the next item on the tape.
is wasted in the gap. At full speed, with a 2400 bps transfer rate, 0.5 seconds would have recorded 1200 bits, so the tape which is lost to the gap during speed changes corresponds to 600 bits in this case, or 75 bytes. Since each record is surrounded by a startup leader and a slowdown trailer, the total gap is the sum of these components, or the length of tape which would have stored $75+75=150$ bytes in this particular model. This should be a clue as to why small physical records are wasters of tape. Con-

Figure 2: A Blocked Magnetic Tape Format. Instead of immediately ending the recording operation, the physical record can be formatted to contain multiple logical records, so that the number of gaps required is reduced. Blocking is a very common software practice whenever computers get large enough to allow several thousand bytes to be used for IO buffers in which the blocked records can be built and decoded by software.

GLOSSARY

Access time: The time required to locate a particular record on the storage medium.

Average access time: The amount of time required, on the average, to locate an item on the storage medium. On tape the average time is the time it takes to search half the recorded tape.

Blocking: A method for collecting logical records into a single physical record on the storage medium, thus minimizing inter-record gaps.

Checksum: A value calculated from the data which is used to help determine if data transferred from one medium to another is correct. If a record is read from tape and a temporary electronic error occurs that alters the data being sent, the checksum may signal an error. A simple checksum is generated by treating each byte or word recorded as a number, adding each such byte or word into a total as it is recorded. Overflow is ignored, and the final total is recorded on the tape with the record. This particular method, while simple, is not foolproof. Many more elaborate techniques exist which even allow for correction of an error. The same procedure is followed on subsequent reading of the record, and the final total is compared against the recorded checksum. If the two values do not match, an error has occurred.

Format: The manner in which data is grouped to allow organized access and handling of the data.

Gap waste: The amount of storage space wasted by inter-record gaps.

Inter-record gaps: That portion of unused tape
sider a logical print line record of 72 characters (fixed length) which is to be stored on tape for later use with a Teletype or its equivalent. If I were to store 72 bytes per physical record, making the logical and physical record equivalent, then each record would occupy the space on tape which could

Type		
Characteristic	Blocked	Unblocked
Tape Utilization	Higher*	Lower
Access Time	Faster*	Slower
Software Complexity	Higher	Lower*
Computer Memory Needed to Process	More	Less*
Computer Time Needed to Process	Longer	Shorter*

Table 2: A Comparison of Blocked versus Unblocked Record Formats. This table identifies general qualitative characteristics of the two forms. The asterisks identify qualities which are often desirable.
surrounding the beginning and end of a recorded section of tape. The gap exists due to the nonzero startup and stop time of the recorder's motor.

Logical record: A contiguous recording of a block of bytes or words that has a separate identity. An example of a logical record is the recording of one program.

Physical record: Also a block, this term refers to a continuous collection of logical records grouped together without gaps. The purpose of the physical record is to conserve storage medium. One physical record might conceivably have multiple logical records, or only a portion of a logical record.

Record: A record is a string (or block) of data recorded on the medium that is separated from other records by inter-record gaps.

Recording density: The number of bits stored on one inch of tape. The units of measurement are bits per inch (bpi).

SYN: The "synchronization" character. It has the ASCII hexadecimal value 16.

Tape mark: A distinctive recording at the beginning of a tape record signaling the beginning of a record. It must be distinguishable from data to avoid confusion.

Transfer rate: The number of bits per second (bpi) a given device can transmit. In commercial drives, this rate varies from design to design, even given identical recording density and format. For audio recording of data, it is largely a function of the interface modulator and demodulator and for the most part is independent of the tape recorder.
store $72+150=222$ bytes if the gap were not present. The utilization of the tape is thus $72 / 222$ or about 32%. If, instead of a 72 byte physical record, we use some 10 software and a blocking factor of (for example) 25 logical records per physical record, physical space on the tape for each record is $1800+150$ or the equivalent of 1950 bytes, which has a utilization of $1800 / 1950=92 \%$. Thus the answer to maximizing the use of tape space is to be found in the practice of blocking and the use of file systems with moderately large buffer areas in memory.

Blocking is this practice of grouping multiple logical records into each physical record. Suppose you have a number of small records to save and want to eliminate gap waste as much as possible. By creating a "block," which is a contiguous group of records, you can treat the block as a large physical record which is in reality composed of a number of smaller logical records, as in figure 2. Each logical record is one of the individual records that you originally wished to store. Now there will be gap waste only around the physical records (blocks), and thus the wasted tape will be greatly reduced. The problem now becomes one of finding the correct block and locating the proper logical record within it via software. The mechanism which allows you to do this and other neat things like calling records by alphanumeric string names is the file system. However, blocking is not without disadvantages, not the least of which is memory requirements. In big systems, block sizes often range into the thousands of bytes, and various "multiple buffering" techniques require alternating regions. In a large IBM/370 program (say 100 K to 200 K bytes) it is not uncommon to find 30 K to 50 K bytes used only for buffers: Some of the pros and cons of record blocking are shown in table 2.

Armed with the information in this short tutorial and glossary, the novice reader, it is hoped, will have a better appreciation of the concepts of information storage adapted for inexpensive computers.

SUGGESTED READING

These books are contemporary texts, which should be available at most good technical libraries and college book stores.

Operating Systems: a pragmatic approach, Harry Katzan Jr, Van Nostrand Reinhold Co.
Systems Programming, John J Dovovan, McGrawHill.
Computer Organization and Programming, William C Gear, McGraw-Hill.

Now .. unlimited

 viceo versatility for St100 bus systemsat anaftoreable price!Wenlintired because the VBi video Intorface ETord is the flrst comptete sontware oriented Video system avaliable. Vou get hands-on control without being bored in by the hardware. Plus, the VB1 offers both video reverse and graphics with the convenience of no internal hardiware adjustments.

There's more:

- On board dip switch selection of 32 or 64 characters per line with 16 display lines.
- Upper and lower case and greek alphabet-other interchangeable fonts available.
- 2×3 matrix graphics.
- Parallel and composite video outputs to video monitor or TV set.

The VB1 software package is a hobbyist's dream. It's designed for flexibility and expansion plus it gives you exceptional control over the cursor, character and graphics selection, home up, end-of-line and a lot more.

$\$ 179.95$ in easy-to-assemble kit form including complete assembly instructions, documentation and software manuals. $\$ 249.95$ assembled.

The VB1 is available through your local computer store-or direct-along with our other S-100 bus compatible products including memory, I/O mother and extender boards. 2102A. Walsh Avenue. Santa Clara, CA 95050 (408) 246-2707

See us at the First West Coast Computer Faire in San Francisco April 16th \& 17th Booths 323 \& 325
We're the blue boards.

Audible Interrupts for Humans

Dr Charles F Douds
 381 Poplar St Winnetka IL 60093

One of the great virtues of computers is that their flexibility allows them to do all kinds of things to make our lives easier or better.

Unfortunately, systems analysts and programmers working on big systems sometimes tend to forget this. Microprocessors can make things easier and more fun for us, too. But we sometimes forget the basic principle of human engineering: People should not be forced to fit the system; the system should fit the people.

I almost forgot this when I was developing my hardwired process control system. The design philosophy behind the whole system was that it was to take over certain jobs that the human operators were not interested in doing, while other more interesting jobs remained the operators' responsibility. There was no intention to make it a fully automatic system. This fits principles of good human engineering, but in the details I overlooked something.

An output from the original system presented a visual display to the operator. One state indicated that he could proceed as he wished; the other state indicated that he must come to a stop. A clearly visible display was provided. The display consisted of a set of three vertical LEDs for go, and three horizontal ones for stop. The only trouble was that when people began using the system, they were often going when they should be stopping.

What I had overlooked was that the operator would be, quite properly, watching the equipment he was running. Only when the LED display happened to be within his
line of sight would he respond to them.
To remedy this situation I could have hollered at the operators until they learned to watch the display as well as their equipment; or I could have used another one of their sensory inputs. The first choice does use a sensory input other than vision. Why not just automate my hollering? That is what I did; only the end result sounds a lot better. Not only that, it provides additional information as well. It also indicates when the signal has cleared.

What I did was to build an audio annunciator that is triggered by the same line that drives the display. When the line goes high, the device emits a one second beep. When it goes low, a boop sounds. Beep for stop; boop for go. It worked out quite well.

The Circuit

The audio burst is generated by two 555 s or one 556 timing IC. IC2 is wired as a oneshot to determine the tone duration. The time is set by C4 and R11. A negative going pulse on input pin 2 triggers the oneshot on. If your circuit creates a pulse, rather than a level change, the input should be connected here.

The tone is generated by IC3. Its frequency is set by C5, R13 and R14. The ratio of R13 to R14 determines the pulse width. Diode D3 helps to provide more nearly a square wave. If pin 4 is connected directly to VCC temporarily, you can pick the resistor combination that gives the most pleasing tone. Connecting R15 from the output of the oneshot into pin 4 allows the free running oscillator to be turned on for the duration

INTRODUCING

THE

THE NEW 1977 IC MASTER

the format explained:

- FIVE MASTER SELECTION GUIDES - 84 companies' IC's organized by type, function, key parameters
- OVER 1,000 Pages OF TECHNICAL INFORMATION - Provided directly by manufacturers covering 17,000 IC's
- ALTERNATE SOURCE DIRECTORY - The only industry-wide, pin-for-pin version available
- MILITARY PARTS INDEX AND CROSS REFERENCE CHART - Identifies all IC's with JAN qualification
- MILItary device testing table - List companies that screen to Mil. Std. 883
- MILITARY PARTS INDEX - The first functional guide to JAN qualified parts
- PART NUMBER INDEX - Parts from 84 manufacturers, in numerical sequence
- APPLICATION NOTE DIRECTORY - Digest of currently active application note material
- PRODUCT INDEX - Provides alphanumeric listing of 84 manufacturers' lines
- PART NUMBER GUIDE - Instantly decodes each company's part numbering system
- manufacturers and distributors directory

Virtually every IC device manufactured in the United States is listed in the 1977 IC MASTER. The format has been improved, simplified and made even more complete.
The IC MASTER is the easy and sensible means of narrowing down your IC choices quickly, accurately and systematically. All information is cross-referenced and indexed for rapid problem solving and device selection. And, additionally, the MASTER is updated three times yearly by accumulative supplements.
The 1977 IC MASTER is unique. It is the only compendium of its kind in existence at this time. Others may follow, but why wait? Your IC problems won't!

Mail Coupon To:
PATTI FOLEY
IC MASTER
645 Stewart Ave.
Garden City, NY 11530

Microcomputer pro

 with the lasis_Co

The fact is that right now microcomputer programming is a bear. Microprocessors are loaded with subtleties which make software development a long, arduous process. That's why we developed the ia 7301 Computer in a Book:' It's a fully operational microcomputer system and a 250 page programming course all contained in a 3 -ring binder. This is not a kit or a toy but a powerful, microcomputer system (based on the industry standard, the 8080) and a practical programming course specifically designed to quickly bring you up to a high level of understanding and proficiency in programming 8080 based microcomputer systems.

The Computer in a Book comes to you completely assembled and tested. All you need is an inexpensive dual voltage ($+12 \mathrm{~V} \& 5 \mathrm{~V}$) power supply. The 5 V is generated internally in the computer. There is nothing else to buy.

A super programming course

The programming course text is easy to follow and begins with a one instruction program to determine if a switch is open or closed. This is built upon and expanded, instruction by instruction, until 250 pages later, you become adept at programming complex problems like multi-byte arithmetic and games of skill like Pong! ${ }^{\text {m }}$ Only with the lasis Computer in a Book can you have the advantages of a handy programming text together with an operational computer to load and test programs each step of the way and thereby learn the intricacies of microcomputer programming at a comfortable pace.

And since this microcomputer has a special built in monitor program which allows you to look into the operational parts of the system you'll never get bogged down in debugging or editing. The ia 7301 Computer in a Book is the fastest way to learn everything about microcomputer programming.

*U.S. Patent Pending

Pong is a trademark of Atari, Inc.

Some great mierocomputer features, too

The microcomputer system features a 24 pad keyboard, 8 seven segment LED readouts that display information in hexadecimal code which is far more versatile and advanced than binary or octal coded systems, and an onboard cassette tape interface for saving programs. The hexadecimal keyboard also contains 6 special mode keys which allow you to call up and change any data or instructions in the 8080 registers or in the system's RAM memory. Likewise programs can be executed instantly or they can be stepped through one instruction at a time using the appropriate mode key, so that you learn your way around the inner workings of an entire microcomputer system.

Also the write tape and read tape mode keys have been carefully designed for accurate and convenient operation with any home cassette tape recorder that has an earphone and remote microphone jack. Two LED indicator lamps tell how long it takes to dump or reload programs from the systern's memory onto tape and back again. But in the reloading cycle, if any errors have occurred such as a lost piece of data, or the volume knob is too low, the readout displays will indicate errors. This little feature prevents untold problems in debugging a reloaded program.

Upwards expandability from the start

We designed the Computer in a Book to be upwards expandable and not become a kluge in the process. The microcomputer contains 1K bytes of RAM memory, 1K bytes of PROM memory (containing the monitor program), and 2 I/O ports. The Computer in a Book is expandable to virtually any level you want, i.e. up to 65 K bytes of memory and $256 \mathrm{I} / \mathrm{O}$ ports.

Optional expander boards are available and attach to the ia7301 computer at the top edge connector. A wide variety of standard interface boards can be plugged into the system to give add on memory, TV and teletype interface, and much more. Thus an educational system is easily upgraded into a full computer system.

Figure 1: One way of producing audible tones on command. The input is shown as a switch, S7, at the left but could just as well be a signal derived from a single bit computer output.
of the desired tone burst. The high frequency bypasses, C11 and C12, keep the circuit from being triggered or modulated by RF noise that is present on VCC and ground.

The up and down trigger is formed from two operational amplifiers: IC1a connected as an inverting amplifier and IC1b connected as a noninverting one. Their outputs are differentiated by C2 and R8 or C3 and R9 to form a negative going spike when the input level goes up and again when it goes down. These spikes are ORed by D1 and D2 into the oneshot's trigger input.

This gives us a circuit that emits a tone whenever the input changes state. The two different tones are achieved by changing the input voltage to pin 5 of the tone generator. Connecting R12 between one of the operational amplifier's output and this pin causes the tone to shift.

The circuit worked well on 5 V . However, the volume from the speaker was less than I wanted. I had a poorly regulated 12 V available, so I filtered it with R1 and C1. You may not need them. The small loudspeaker can be connected in many ways. I had a small, inexpensive Radio Shack audio output transformer that I used with a current limiting resistor in series connected directly to pin 3 of the tone generator. Volume can be increased by putting a $10-100 \mu \mathrm{~F}$ electroly tic capacitor across R24.

Almost any operational amplifier can be used. I used a quad LM3900, so I had two sections left over. On the breadboard version I wired these together as a mixer, then fed in an audio signal from a microphone and an interesting sounding audio frequency signal from the system controller. These
were eliminated in the final version, but you might have a use for similar ideas. The total cost of the complete circuit including the speaker was under $\$ 5$.

But what is this system that I built? It is a complicated one compared to the 16 toggle switches it now replaces in a model railroad layout. In its final version, the system will replace approximately 600 toggle switches. More importantly, it saves many months of learning on the part of eight or ten people as they attempt to coordinate their actions in running trains on a schedule at a large model railroad club. Toggle switches are ordinarily used to direct the electrical power from each engineer's throttle to the section of track in which his train is running. The logic system takes over this job. Even after people learn which toggle switches to turn on, and when, they still forget to turn some of them off. Sooner or later this fouls everything up, sometimes in the most mysterious ways. The hardwired logic system breadboard has been working for about two years, but we are about to change over to a microprocessor system for installation in the G-C Model Railroad Club in Chicago.

Take a look at your system design. How could it be better designed for people? Is there an action required by the operator at random times? Could you use an audible interrupt? Perhaps you have a long program on a cassette and you could use an audible signal when the 10 minute loading is complete. Or perhaps you have a data link that requires attention. There are many possible uses for an audio signal to provide good human engineering.

VECTOR 1

VECTOR 1 is based on the 8080A Microprocessor and S-100 Bus. EASY TO ASSEMBLE, EASY TO ACCESSORIZE, EASY TO BUY AND VERY EASY TO OPERATE.

717 LAKEFIELD ROAD, SUITE F
WESTLAKE VILLAGE, CA 91361

Cub 54,

What is Omega?

The Omega navigation system is a radio based method which was originally designed as an ocean locating system for shipping. It was not intended for use over the world land masses. However, the signals are free to the user no matter where he/she is located and in a sense represent another worldwide resource particularly for those who have no other radio navigation aid available. In continental USA urban areas, we have many VHF-UHF and microwave navigation aids for aircraft, so there is not much need for Omega except in remote mountain areas
where line of sight propagation is restricted and the VLF-Omega is not disturbed. Omega in other parts of the world is often the only radio navigation aid available for planes and boats. Omega and other VLF systems are often used by offshore oil drilling and marine exploration crews as a means of locating their rigs or vessels particularly while in transit to and from.

The choice of frequencies and the time slot spacing is a historic matter based in part on the analog and servo mechanisms used 30 years ago. Nowadays, we have digital processing methods but some analog semiconductor receivers are still in use. Most notable

Figure 1: The worldwide Omega transmission network. The Omega system uses a set of eight transmission points scattered wround the globe, emitting a pattern of bursts of radio frequencies on a 10 second cycle as shown in the table. Each possible pair of transmitters sets up a pattern of "lines of position" consisting of a series of hyperbolas one can find on an appropriate map. To find a position, phase differences between the various transmitters define a location on the Omega grid. The microprocessor control of Mini-O enables the experimenter to take advantage of Omega for shipboard or aerial navigation.

The only good microcomputer handbook in a world of bad ones. $\$ 7.95$

Are you tired of microcomputer literature being too techinical, confusing or vague? Then you should find the lasis Microcomputer Applications Handbook a welcome relief to both your intelligence and your wallet.

It was expressly written for the reader who wants to learn everything about the world of microcomputers, especially 8080 based systems. It explores the advantages and applications of microcomputers in 144 pages of clear, easy reading text which is profusely illustrated with diagrams, schematics and charts. You'll be guided through all important decisions in designing a system to fit your needs. And you'll be apprised of the tradefalls and common pitfalls along the way.

The lasis Microcomputer Applications Handbook tackles the roles of development and OEM systems from a practical, functional standpoint. Also one whole chapter is devoted to a comprehensive hardware design casebook for you hardware application buffs.

We're certain you'll like the step-by-step attention paid to writing monitor programs, text editors, and assembler programs.

And there's plenty more information on 8080 system architecture and instruction sets.

That's a lot of good news for $\$ 7.95$. We think it's been overdue for some time.

815 W. Maude Ave., Sunnyvale, CA 94086. Telephone: (408) 732-5700. TWX: 910-339-9311.

Dealer inquiries invited.

Whots New?

It's Here at Last

It usually takes some time between the announcement of a new processor chip and the availability of a product which uses it. Well, for the first time, there is a product on the market at a low

price which uses the Texas Instruments 9900 processor. The product is made by Technico Inc, Columbia MD, and is a single board computer measuring 7 by 16 inches (18 cm by 41 cm) and containing the following logical characteristics:

TMS-9900 processor
monitor with 13 commands implemented
on board programmer for 2708 UV erasable PROMs
125 page manual on the system plus wall chart schematic
The product is a processor board only, so the user will have to provide $n 8$ bit bytes of memory (organized as 16 bit words) where n is up to the capacity of the TMS -9900 address space, 64 K bytes. The price for this processor board, $\$ 269$ unassembled or $\$ 369$, is probably one of the lowest priced ways of starting a 16 bit homebrew system.

According to the news release, Technico (which is located at 9130 Red Branch Rd, Columbia MD 21045) is a fully franchised Texas Instruments distributor. The engineering and design work for the TMS-9900 "Super Starter System" was done by Rosse Corp, Vienna VA. Information can be obtained by dialing toll free 1-800-638-2893. Dealer prices and OEM prices are available.■

What to Do with an
Oliver Audio Reader . . .
notes by Carl Helmers
Oliver Audio makes the OP-80A paper tape reader, probably the least expensive way short of a homebrew project to obtain a paper tape reading facility. BYTE purchased one of these readers in order to be able to decode occasional strange letters to the editor

that come on long sheets of very narrow paper with holes. Well, after loading in one program (Tom Pittman's Tiny BASIC for the 6800) and thereby debug. ging this form of input, I came to the conclusion that the box by itself lacks a certain degree of "solidness." It proved a bit difficult to hold the box, and for yellow paper tape the light levels proved to be critical, due to the translucent nature of the paper. So to provide a solid mounting, and a fixed but adjustable support for a lamp, I went to the woodshop, got out my saber saw, sliced up a random piece of 1 by 4 pine, used two 8 pound nails to attach a random piece of 2 by 4 vertically, then clamped the whole assembly to my bench. This photo, taken by Ed Crabtree at his studio, shows the result, using a sample of tape from a program submitted to BYTE. (Observant readers with an OP-80A and a critical eye will note one flaw in the photograph as shown here ...)

The OP-80A was mounted on the pine board by punching two holes in its back plate with a Roper-Whitney 5J punch (a hand tool available from industrial supply sources). Two screws were then used to hold it to the board, tightening to a point where the plate was still loose with a clearance to the board slightly under the thickness of the case's interlocking groove edge. Then, when the main part of the case is slid onto the plate, the bottom of the case is tightly held against the board. The final assembly step of securing the front side of the case with screws can then be performed..

DEALERS

EAST COAST
Computer Mart of New York, Inc.
314 Fifth Avenue
New York, New York 10001
212-279-1048
Computer Mart of Long Island
2072 Front Street
East Meadow, New York, New York 11554 516-794-0510

The Computer Mart of New Jersey
501 Route 27
Iselin, New Jersey
201-283-0600
The Computer Mart
1097 Lexington
Waltham, Massachusetts 02154
617-899-4540

WEST COAST

Byte Shop of Westminster
14300 Beach Blvd.
Westminster, Ca. 92683
714-894-9131
Byte Shop
18424 Ventura Blvo.
Tarzana, Ca. 91356
213-343-3919
Byte Shop
Palm Plaza
Thousand Oaks, Ca. 91360
805-497-9595
Byte Shop
2559 S. Bascom Ave.
Campbell, Calif. 95008
Kentucky Fried Computers
2465 Fourth Street
Berkeley, Ca. 94710
415-549-0858
MIDWEST
DATA DOMAIN-the Personal Computer Stores

INDIANA

(Home office)
406 S. College Ave
Bloomington 47401
812-334-3607
7027 Michigan Rd.
Indianapolis 46268
317-251-3139
219 Columbia
West Lafayette 47905
(Opening early December)

ILLINOIS

(itty bitty machine co., inc.)
1316 Chicago Ave.
Evanston 6020
312-328-6800
42 W. Roosevelt
Lombard 60148

KENTUCKY

$5061 / 2$ Euclid Avenue
Lexington
606-233-3346
3028 Hunsinger Lane
Louisville 40220
502-456-5242

WISCONSIN

2221 E. Capito
Shorewood 53211
414-961-2430

TEXAS

The Micro Store
634 S. Central Expressway
Richardson, Texas

Where Are You?

(Or How to Navigate Using Mini-O)

is the classic TRACOR Model 599 Omega receiver which has precision analog sample and hold phase locked loops with a 100 kHz reference clock. A few of these have even appeared on the surplus market.

Prof J A Pierce of the Harvard University Crufts Laboratory is the inventor of Omega. He chose frequencies and spacings based on simple number ratios. For example, 10.2, 11.33, and 13.6 are in the numerical ratios of $30-36-40$, and can all be generated by integer division from a common 408 kHz clock frequency - thus $408 / 40=10.2$, $408 / 36=11.33$, and $408 / 30=13.6$. These gear ratios and decade multiples were important considerations in Pierce's ideas because of the widespread use of mechanical servomechanisms at the time.

In the presently implemented version of Omega navigation, eight radio transmitters operate in the very low frequency (VLF) range of 10 to 14 kHz . Each station transmits a very stable frequency in such a way that a phase measurement of one station with respect to another can be made in a receiver which uses a suitable reference clock oscillator. Figure 1 shows the locations of the several Omega network stations currently in operation around the world. By measuring the phase difference between two or more pairs of stations, so-called "lines of position" may be generated. The intersection of two lines of position can be used to estimate the receiver position. The lines of position are hyperbolas which look like a skewed coordinate grid when plotted on a local area map such as in figure 2. Computed tables, charts, and diurnal (day-night) corrections are published on a worldwide basis by the US Defense Mapping Agency. The grid is very stable when the proper corrections are applied. The lowest frequency of 10.2 kHz results in a "lane" spacing of the lines of position of about 8 miles when measured on the great circle baseline connecting the two stations. Longer spacings are found, as

Figure 2: The intersection of "lines of position" from two Omega station pairs is depicted in this map section near the author's location in Athens OH . The picture is drawn with north at the top. The lines of position from the Hawaii (C) and Trinidad (G) station pair run from the southwest corner to the northeast corner of this local map. The lines of position from the Hawail (C) and North Dakota (D) station pair run from the northwest to southeast in this local map. Together, these sets of lines form a local Omega coordinate grid, which can be used while navigating a planned air trip from Albany Airport OH to Henderson WV as shown by the dashed line. To use Omega, maps or tables supplied by the US Coast Guard are a virtual necessity.
would be expected, for the extreme edges of the hyperbolic contours.

In practice the usual Omega receiver works by measuring the phase between each station and a local clock reference. Phase differences are then obtained by subtracting these readings for selected station pairs. The phase differences convert directly to relative position and distance readings on a map. In Omega jargon, a cemicycle is $1 / 100$ th of a cycle and directly convertible to $1 / 100$ th of a lane, called a centidane. Onc lane represents a 360° phase difference or equivalent to a one cycle change in the phase as used in this hyperbolic mode of navigation. Thus a navigator in a boat or dircrillt can plot his or her course on a map relative to the Omega lines of position grid, and observe the crossings of these lines, called lane changes, as he proceeds to move along this course as in figure 2. The lime it lahes la cross a lane can be converted with simple arithmetic and trigonometry into a direct estimate of the aircraft or boat velocity. The prosition of the vehicle with respect to the Omeg. grid can be estimated by measuring the lane crossing points for two or more lines of position. A continuous measure of relative velocily and position between lanes can be obtained by eye, sampled every 10 seconds, by observing a strip chat record ol two station pairs chosen for the best grid geometry relative to the receiver's current position.

The Omega system has eight stations throughout the world. Signals may be received up to 8000 natutical miles (about $14,800 \mathrm{~km}$). In theory at least three of the Omega stations can be received any place on earth. The system is synchronized with atomic clocks de each sation. In 1976, the time for the start of the 10 second sequence of figure I was set so that station \wedge in Norway will start its cycle dbout 5 seconds before the least significant digit of universal time is zero, or station D will start its sequence when the least significant digit of universal time is ecro. (Universal time is the current version of whal used to be called Greenwich Mean Time, an international time standard, formerly derived from astronomical observation, now derived from atomic clocks.) For an observer in any of the standard time zones, where local time is " n " hours removed from universal time, whenever the local time is $x x: x x: x 5$ he or she would find the beginning of the sequence for station A , with a burst of 10.2 kHz lasting 1.0 seconds. Incidentally, an Omega receiver can also operate as a lime reference source for checking clocks since a single Omega station "iicks" at a 10 second rate, when measured on a single frequency such as
10.2 kHz . In the most elementary Omega monitor receiver the amplitude of the "tick" can become a direct check on time. However, because of the atmospheric noise and the rise time limitations of both the transmitter and receiver, it is not possible to obtain precise timing by measuring signal amplitudes. What is possible is the measurement of the phase of the Omega carrier with respect to a local reference oscillator, after the station turns on. Stations are transmitling for 0.9 to 1.2 second intervals with a gap of 0.2 seconds between each transmission. The gap insures that there is absolutely no overlap regardless of how far away the observer is from a particular transmitter.

An "Omega Users Handbook" is being prepared by the US Coast Guard Omega Navigation System Operations Detail (USCG ONSOD), and will be available shortly. Write US Coust Guard Headquarters, (G-ONSOD/43), 2/00 Second St SW, Washington DC 20590./ ONSOD also supplies a daily Omega status report on a taped messege which can be heard by dialing the phone numbers (202) 245-0298, Washington DC, or (808) 235-2181, Hawaii. The National Burcau of Standards station WWV broadeasts an Omega status message at 16 minutes past the hour within a 42 second time slot, on the shortwave frequencies of $2.5,5,10,15$, and 20 MHz .

Omega has been in experimental development for 30 years and has just recently become operational. Most receivers in present use are expensive, in the $\$ 5 \mathrm{k}$ to $\$ 50 \mathrm{k}$ class. As yet there is a lack of worldwide demand for lowcost sets, mainly because hardly anyone has heard about Omega. It is possible to receive Omega signals with relatively simple hardware involving a parts cost of $\$ 100$ or so, including a reference clock uscillator, sequence timer, and interface for phase measurements with a microprocessor system. A complete hardwired digital sensor processor can be built for under $\$ 500$ in parts including data display on a strip chart recorder.

The advent of lowcost microprocessors and all the digital interfacing hardware alternatives is an obvious choice for Omega receiver systems. Commercial Omega receivers are starting to use these methods although they still command a high price $(\$ 11,000)$ because of the low volume of production. I wrote this article in the intercst of reducing this cost and complexity problem to the bare essentials for the do-ityourself electronics buff. There are many possible methods to consider. At our lab we have chosen what we believe to be the simplest methods, not necessarily the best. Meet the osy
Cheinger
$\sqrt{\text { man an a }}$ Meet the osy
Cheinger
$\sqrt{\text { man an a }}$

It offers more. ly costs less.

No system is more complete. None is less expensive. OSI system boards and full documentation start at $\$ 29$. Fully assembled systems at $\$ 439$. Only you govern where they end. And OSI offers more features than ever. Full multiprocessing capabilities. An innovative full color graphics and alphanumeric video system. New options for even greater system expansion. New software. And two of the best-priced floppy disk options you'll ever see. See it all in the OSI catalog. Available now at your computer store or direct from OSI.Send me the free brochure on OSI kits and fully assembled computers.Send me the full line OSI catalog. $\$ 1.00$ is enclosed.

Ohio Scientific Instruments
Dept. B

As others become aware of Omega, it is very likely that further improvements and simplifications can be achieved.

VLF (Very Low Frequencies)

Frequencies in the 10 kHz to 20 kHz region propagate in a mode where the earth and its ionosphere form a cavity which acts as a spherically symmetric waveguide. At the low end of the range the ionosphere is only about 2 wavelengths (60 km) high and single mode transmissions may be received over very long ranges.

For the simplest Omega propagation monitor or computcrized do-it-yourself navigation aid, the single channel frequency of 10.2 kHz is desirable. The higher frequency of 13.6 kHz will give so mewhat more signal strength but more problems are created due to multimode transmissions. The ideal VLF frequencies which minimize diurnal changes in the received phase would be about 11.9 kHz for daytime paths and 12.2 kHz for nighttime. It is interesting to note here that the USSR has an "Omega like" navigation system which uses 11.905 kHz , 12.649 kHz and 14.881 kHz . The reason that these VLF methods use several different frequencies is to resolve the lane ambiguity to much greater than 8 nautical miles for the 10.2 kHz casc. Thus a difference frequency like 3.4 kHz can be generated from $13.6-$ 10.2 with a suitable complex receiver and processor system. For Omega, the 3.4 kHz would result in a 24 mile lane. However, a single frequency receiver can be used to provide correction on position when good dead-reckoning data is available from the navigator who keeps track of his/her course direction and independently estimates velocity (or guesses it from wind drift, pitometer readings, air speed-temperature corrections, etc). Thus a single Omega frequency used completely without reference to anything else can only resolve position-velocity to within one Omega lines of position grid "square," and the problem is to decide which of many possible grid locations (separated by 8 mile intervals at 10.2 kHz) is the correct one. Of course the navigator should know from where he started and his destination, so that at least the initial conditions for navigation are available. Then the Omega receiver along with dead-reckoning data can be combined to give a better estimate of the true position after starting along a known course line. In effect the Omega recciver can give an independent estimate of the vehicle velocity and the microprocessor or even the pocket calculator can help in manipulating the numbers involved in the computations.

Because of atmospheric noise and other
uncertainties in the propagation caused by sunspots or polar cap absorption, the typical Omega receiver resolves position to something like ± 1 nautical mile (1.8 km) when the diurnal correction tables are applied. For local area users, starting from a known point, a single frequency receiver should be able to resolve Omega positions to within $\pm 1 / 4$ mile (0.3 km) in the absence of gross interference to the reccived signals, over a short duration mission (one hour or so) that is not near sunrise or sunset.

Another technique for improving the precision of Omega is to compare the navigator's received phase with a known ground station's received phase over a 100 mile radius for differential corrections. The local ground monitor has to transmit an almost continuous data stream of its Omega readings to insure that some short duration propagation anomalies did not cause a "lane jump" or some other error. The ground data is transmitted to the remote user via another radio link. Differential corrected monitor systems have been used to determine the position of weather balloons by having the Omega signals modulate a UHF carrier frequency retransmitting the data to ground stations where the data is processed.

As with most radio communications systems, Omega suffers from the usual signal-to-noise problems for the ultimate resolution. The general atmospheric noise level caused by thundershowers on a worldwide basis creates field strengths of 10 to $100 \mu \mathrm{~V}$ per meter in a 30 Hz bandwidth at the Omega receiver antenna. The lowest detectable Omega signals may be only $10 \mu \mathrm{~V}$, often buried in $100 \mu \mathrm{~V}$ of noise. Local thundershowers and $60 \mathrm{H}<$ harmonic interference also plague Omega users. Wire antennas are best for picking up strongest signals, but also respond just as well to all the noise. A loop antenna can discriminate against some noise due to directional nulls but suffers from the problem that the phase of the Omega station signal reverses when the loop is rotated through 180°. A much more complex receiver system is required when using a loop antenna system.

Some Fine Points on the Omega System

The suggested range for usable reception of Omega signals is 600 to 6000 nautical miles (1,000 to $10,000 \mathrm{~km}$) from the transmitter. When a receiver is close to a station the phase measurement to that station will be in error because of multiple mode propagation. Another problem near a transmitter is that the receiver may need to reject the unwanted signal from the local transmitter in order to receive a desired signal of some

Cybersystems has put it all together, For You.

Why go through the tedious, time consuming do-it-yourself "Kit Krazies" only to find what you've created only does half of what you expected it to do?

There is an easier way. The Microcyber 1000 microcomputer from Cybersystems, Inc. This is not a kit but a fully assembled, tested and warranteed microcomputer. Many outstanding features include keyboard and display, ROM and RAM memory, programmable timer, fully bussed, programmable I/O - audio cassette interface, TTY and RS232C interface, operating system, fully documented (hardware and software), powerful instruction set, internal power supply, 1/O and memory expansion.

The audio cassette feature permits programs and data to be bulk stored
on regular cassette tape players. Entire software libraries can be stored and maintained on standard cassette tape. Standard programs are also available from Cybersystems.

This low cost, high performance unit is fully warranteed by the company and is an ideal tool for education, experimentation, or for the hobbist.

For more information write or call Cybersystems and let them put it all together for you. Master Charge and Bank Americard welcome.
The Microcyber 1000, only $\$ 525$. CYBERSYSTEMS, INC.

The Microcyber 1000
Microcomputer

CYBERSUSTEMS, INL, $\sqrt{4}$

Figure 3: Block diagram of the Mini-O system. The system is shown here in outline; details of the hardware are found in part 2 of this article. The microprocessor is a key element in the processing of Omega information, making it possible to save thousands of dollars relative to the least expensive commercial equipment.
charged rain or snow particles hit the antenna in sufficient quantity to obliterate the signals. Loop antennas tend to reject this type of interference and are found in many commercial or military airborne receivers.

The choice of the spacings between channels and length of transmissions, varying from 0.9 to 1.2 seconds in 0.1 second increments, was made so that an observer might use the station on times to uniquely determine which combinations of stations are being received. This is a nonredundant sequence of time intervals. Nowadays we can also do this with an automatic synchronization software routine which first has to monitor a hundred or so seconds of Omega frames and decide where the usable signals are, before starting up a sequence generator at some point in the frame. However, a much simpler synchronization method may be used when a strong station signal is available.

For North American users (Mexico, USA and Canada) the D channel at North Dakota will usually provide a positive identification based on signal amplitude only without any fancy software required. This saves us a lot of trouble, particularly in the early stages of experimenting with Omega sensor systems. Observers in other parts of the world, for example in Europe, might use the A station at Norway for an easy way of identifying where the Omega system is synchronized to the local reference. Similarly the African nations can use Liberia or LaReunion Island, South America can use Argentina, and the Northern Pacific Ocean area can use either Japan or Hawaii. Temporarily, G channel is assigned to Trinidad, but this will be moved to the South Pacific area at some future time.

A few words about the concept of frequency offset are needed to help in understanding Omega systems. We discuss the offset of one clock with respect to another in terms of how many cycles they are apart. Thus two 1 MHz oscillators turned one Hertz apart in frequency might be said to be offset from each other by 1×10^{-6} which means that one clock will "beat" with the other at a rate of 1 cycle every million cycles with respect to whichever one we call the standard. We can talk about an Omega clock which appears to be changing (drifting) 1 lane (1 cycle) in, say, 60 seconds. The offset here would be expressed as the time of one Omega cycle divided by the time taken to change one cycle or: $1 / 10200 / 60$ seconds $=$ $9.8 \times 10^{-5} / 6 \times 10^{1}=1.63 \times 10^{-6}$. Here the clock itself appears to be giving a one lane change every 60 seconds. However if we use this clock with respect to Omega stations C

HMETHTN The INTELLIGENT Video Interface

THE MERLIN MAGIC
DMA - The Fastest Display Technique
Free Format Display (Saves Money)
160×100 Graphics Display (320×200 Optional)
Parallel and Serial I/O for KYBD and Cassette
Software Programmable (24 Bit Program Register)
Optional On-Board Expandable ROM Software

- Expandable by transfers through 256×8 RAM
- Includes Monitor / Editor / Graphics / I/O Control
- Turns your S100 BUS Computer into an 8080/Z80 development system

Figure 4: Signal envelope from the Mini-O receiver at 10.2 kHz . This is a photo reproduction of a strip chart recording made from data taken at 8:00 AM EST on April 111976.
and D which are only about 1 second apart, and, we subtract the two readings (D vs clock from C vs clock), then only about 1 second elapsed between the measurements. The error in the measurement is thus about $1 / 60$ th of a lane which is negligible. Furthermore, this is a constant error which does not change appreciably with time or from station to station.

Still another factor involved here is the fact that the vehicle may be moving with respect to the fixed positions of the Omega stations. This is, of course, what we are trying to measure; that is, how fast are we moving with respect to a particular station pair? The Omega receiver output gives a reading or plot on a strip chart recorder which is the line of position desired. The rate at which this reading changes or moves across the chart with a repeat at every "lane change" in a sawtooth fashion, is the basic data of the Omega system. Two such records specify where the receiver is located provided we knew from where we started and did not loose count of the number of lane changes (sawteeth lane count) made. Many marine navigators like to use the filtered Omega lines of position phase differences in this manner because it gives them a rapid idea of where they have been and how fast they are going in a graphical display as opposed to reading out numbers on a digital display. Thus most digital Omega processors can also provide digital to analog conversion outputs which can be programmed for lines of position data, or with more sophistication, even plot a course with a "bug" on an $X-Y$ moving map display. But a boat is by nature slow.

In contrast, the general aviation pilot doesn't have time to watch these interesting displays and is usually supplied with data in the form of a computed miles to go to some waypoint and a heading error indicator which is obtained from some kind of digital data processor. Simplified software for this is in the development stage at the present time. Most of the software for the filtered lines of position display has been worked out and will be detailed as part of this series of articles on Mini-O.

There are a great many problems for a microprocessor experimenter to study. In particular, the output of data in coordinate systems like latitude and longitude instead of Omega lines of position; the correction of lines of position estimates with diurnal lookup tables or ionosphere models; and the use of multiple frequency Omega channels, are fruitful areas for some simplified software data reduction methods.

An area of interest using microprocessor software techniques is that of providing velocity aiding loops which estimate the rate of change of the received phase and increment the memory ahead or predict where the phase should be for the next time slot. In a moving vehicle using only three stations, we can directly track at general aviation velocities (<150 knots or 277 kph). However, at jet velocities a more sophisticated mathematical technique called a second order loop is of some value. A second order loop also improves the signal-to-noise because it tends to correct for clock error although the clock drift is not easily determined independent of the vehicle motion when using only three stations on a single frequency. With four or more stations being reccived or when using more than one frequency in several different receiver front ends, the clock error may be estimated and the system used in the direct ranging mode. This doubles the lane distances to 16 miles measured as concentric circles surrounding each transmitter instead of the hyperbolic station pair difference mode. These methods require more software, and about double the complexity of the receiver front end.

In the longer range future we might contemplate that BYTE readers could exchange information on " $D X$ " reception of Omega signals at very long ranges such as from Japan or LaReunion Island for USA observers, using super software tracking loops able to dig signals out of a lot of interfering noise. Software methods of improving the reception for weak signals would be of value for the future utility of Omega.

Hardware areas also need some improve-

MODEL 3M3 - Uses the 3M Data Cartridge, model DC300. This cartridge contains 300 feet of .250 tape in a sealed container. Records and plays at 9600 baud NRZ, 4800 baud P.E. Nominal speed 8" per second. Max. recommended flux density 1200 fcpi. Using four tracks, you can store nearly 2 megabytes of data on a cartridge. Cartridge measures 4 " by $6^{\prime \prime}$. Turns counter indicates tape position. Inter-record gap light gives more accurate position. 2SIO(R) is not required for use, but is highly recommended for 8080 and 280 systems.
COMMON SPECIFICATIONS: FULL SOFTWARE CONTROL of record, play, fast forward and rewind. LED indicates inter-record gaps. EOT and BOT are sensed and automatically shut down recorder. Can also be manually operated using the switches on top which parallel the software control signals when not under software control. Signal feedback makes it possible to software search for inter-racord gaps at high speed. $117 \mathrm{~V}-60 \mathrm{~Hz}-5$ watts.
TWO I/O PORT CONTROLLER WITH ROM - Controls your terminal and one or two cassettes or cartridge units. On board ROM (For 8080 and Z80) has terminal and cassette software for turn on and go operation. NO MORE BOOTSTRAPPING. Plug in compatible with Altair and IMSAI. Loads and Dumps memory in Hex from the keyboard, formats tape files, punches tape, functions as a word processor and searches for files and four letter strings within files. Keyboard controls the cartridge units above on rewind and fast forward. Special keyboard codes enable you to dump and read Phase Encoded tapes as well as NRZ tapes. (Including K.C. Std.) Call routines give access to these from your software.

MODEL 2SIO(R) - With 1 ROM for NRZ Cassettes \$169.95 (Assembled \& Tested)
(Half of above Program)
With 2 ROM's for Data Cartridges and
P.E. cassettes. $\$ 189.95$ (Fuli Program)

Kits available for $\$ 30$ off above prices.
OVERSEAS: EXPORT VERSION $-220 \mathrm{~V}-50 \mathrm{~Hz}$. Write Factory or - Megatron KG, 8011 Putzbrunn, Munchen, W. Germany; Nippon Automation 5-16-7 Shiba, Minato-Ku, Tokyo; EBASA, Enrique Barges, 17 Barcelona, Spain; Hobby Data, SpireaVagen 5, Malmo, Sweden; G.Ashbee, 172 Ifield Road, London SW 10-9AG.

MODEL 3M1 - Uses the 3M Data Cartridge type DC100A. This cartridge contains 150 feet of .150 tape and is the same cartridge used by H.P. and others. Runs at 4800 baud NRZ, 2400 baud P.E. Tape speed adjustable, but nominally set at $5^{\prime \prime} /$ second. Maximum recommended flux density 1200 fcpi. Cartridge measures 2-1/8' by $3-1 / 4^{\prime \prime}$. This model is ultra compact, yet extremely capable. It is intended for word processing, mailing list use and other applications requiring the compact storage of data. Data location is by inter-record gaps and automatic file search. See Common Specs and $2 S I O(R)$ below. $2 S I O(R)$ is not required for use, but is highly recommended for 8080 and Z 80 users.
For 8080 and $\mathbf{Z 8 0}$ users: Comes complete with software program listings for the programs on the $2 S I O(R)$ ROM below. 6800 software is being written, but not yet completed. These programs give FULL SOFTWARE CONTROL.
CARTRIDGE AVAILABILITY: Cartridges are made by 3 M , ITC, Wabash and others. They are available at all computer supply houses and most major computer service centers. We can also supply them at normal current list prices.
NEW: AUDIO CASSETTE INTERFACE* Phase Encoding interface for use with audio cassettes or NRZ recorders. Runs 2400 baud phase encoded on good quality audio cassette recorders. May also be used with $2 S I O(R)$ above to use the $2 S I O(R)$ cassette programs with your audio cassette player. Can also accommodate "Tarbell" tapes and K.C. Std. tapes.
\$50.00, Wired \& Tested. - \$35.00, Kit Form.
*NOTE: You do not require an interface with the 3M1 and 3M3 unless you Phase Encode. But, you do need an interface to use the $2 \mathrm{SIO}(\mathrm{R})$ with your own audio cassette.
"COMPUTER AID" and "UNIBOARD" are trademarks of the NATIONAL MULTIPLEX CORPORATION. The 3M Data Cartridges are covered by 3M Patents and Marks. "UNIBOARD" Patents Pending.

For U.P.S. delivery, add $\$ 3,00$ each item. Overseas and air shipments charges collect. N.J. Residents add 5\% Sales Tax. WRITE or CALL for further information. Phone Orders on Master Charge and BankAmericard accepted.
ment. In particular someone needs to invent a single op amp (single +5 V power supply using one section of a quad) noise editor that will blank out wide band noise pulses without generating transients driving the narrow band filters. Noise blankers are a well known art, but what this world really needs is a simple one that does not double the front end complexity of the present Mini-O system.

Omega Sensors

All Omega receivers involve some analog radio frequency circuitry in the front end to amplify the microvolt signal levels up to
values sufficient to operate digital processing systems. It is highly advantageous to use a lot of sequential narrowband filtering to improve the resolution of the resulting square wave edges. A typical Omega receiver will have a preamplifier, a set of narrow band filters, some type of limiter, and finally a comparator to generate edges for phase processing. Preprocessing bandwidths in the 30 to 100 Hz range are found in most commercial systems. The advent of quartz tuning forks and mechanical filters operating in the 10 kHz region makes it possible to have a relatively simple system with 4 to 15 Hz bandwidth. Very narrow radio fre-

GLOSSARY OF OMEGA TERMINOLOGY

This is terminology frequently found in Omega literature, some of which is used in these articles. Readers will find this glossary a useful guide to detailed study of Omega navigation.

Frame	One complete 10 second Omega sequence of transmissions.	
Time Slot	The time within a frame when one station transmits on a single frequency according to the table in figure 1 ; simultaneously several other stations will be transmitting on the other frequencies in the same time slot.	Diurnal Offset
Lane	Spacing between adjacent LOPs which are 360° apart electrically, but measured over the earth surface usually in nautical miles. Note that this distance will vary from 8 miles in the center of the hyperbolic pattern to 25 miles or so at the extreme baseline extensions of the station pair in question.	PCA
Centilane	One hundredth of a lane (1/100). (Abbreviated CEL.)	SID
Cycle	Phase difference of 360° between two transmitters as measured at the receiver.	
Centicycle	One hundredth of a cycle (1/100). (Abbreviated CEC.)	Prop
Line of position	Path of constant phase difference (usually at 0° or 360°) between two transmitters as measured over the earth surface. (Abbreviated LOP in literature.)	Precip or P-static
Epoch of A	Start time of the A transmitter (NORWAY station on 10.2 kHz) with respect to UTC (Universal Coordinated Time as referenced to atomic cesium clock time).	
Difference Omega	Use of two or more frequency channels to generate longer range LOPs as $13.6-10.2=3.4 \mathrm{kHz}$.	PPC

Differential Omega
Composite
Omega phase on 10.2, 11.33, and 13.6 to generate pseudo frequencies such as 11.9 or 12.2 kHz for reducing effects of diurnal changes.

Day to night changes in the position of particular station pair lines of position as measured over the earth surface.

Frequency difference between two clocks usually expressed in fractional cycles where cycles are defined in terms of UTC seconds (Hz), may be expressed as $\Delta f / \mathrm{f}$ or $\Delta t / \mathrm{t}$.

Polar cap absorption associated with solar radiation which causes Northern Lights type of display may last for hours or days and disturb signals which propagate over the polar regions.

Sudden ionosphere disturbance, changes in the height and density of the ionosphere caused by showers of solar radiation particles associated with sun spots.

Propagation of VLF signals as it refers to Omega, such as 'prop error."

Precipitation static due to charged water, snow, ice, fog, rain, clouds, striking conductive surfaces and antennas. Most pronounced in aircraft "E-field" antenna systems, but also observed in marine and ground monitors, particularly during very cold dry blowing snow, or sudden rain showers underneath thunderheads.

Predicted propagation corrections as obtained from tables, or computer programs built in to Omega navigation systems.

Figure 5: A 24 hour record of raw data received with one of the first test rigs of the Mini-O design. During the daylight hours, considerable 60 Hz interference was noted. This results from the fact that noisy electrical machinery or high power SCR or TRIAC controls connected to the local AC power system of the laborutory generate significant amounts of the 170th harmonic of $60 \mathrm{~Hz}, 10.2 \mathrm{kHz}$. This recording was made using a 4 bit precision for phase differences between the C and D station pair of the Omegu system on April 8 1976. A total of 8640 consecutive measurements were made during the day, once every 10 seconds. The results were recorded on a Healhkit charl recorder as they were measured with a 200 minutes per inch chart drive speed.
quency bandwidths like 0.5 Hz cannot be used because the filter bandwidth is less than the "on time" of the signal. Other types of filters involve ceramic and mechanical magneto-restriction devices. Another method that has sometimes been used is the superheterodyne receiver where a local oscillator is mixed with the Omega signal to generate an intermediate frequency such as 1 kHz or lower where the bandwidth of the intermediate frequency is inherently narrower than the incoming signal amplifiers.

The receiver local oscillator or reference oscillator used for phase comparison must have good stability and a frequency offset of less than 5×10^{-6} to insure that the phase difference over a several second gap does not drift more than a few centicycles. Quartz crystal oscillators can provide this. Most receivers use what is called a TCXO (temperature compensated crystal oscillator) which can be set to an offset of 1×10^{-7} and will maintain this low offset within 1×10^{-6} over a reasonable operating temperature range (the short term stability over several hours is usually much better). The low frequency quartz oscillators used in digital watches ($2{ }^{15} \mathrm{~Hz}$) can provide better
than 1 second per week (about 5×10^{-6}) low offset capability when treated with some care. The most expensive Omega receivers sometimes use an atomic clock reference and can operate in the direct ranging mode, comparing each station to the atomic clock without subtracting station pair differences.

The receiver clock system (housekeeping timer) should provide some means of generating the desired Omega sequence intervals and a suitable reference for the phase comparison. It is convenient to choose a crystal oscillator frequency which has some direct and simple relation to the Omega frequency desired. A TCXO clock on 2.6112 MHz is often used $\left(2^{8} \times 10200 \mathrm{~Hz}\right)$. Other receivers may use a standard 5 MHz reference and a complex frequency synthesizer to provide equivalent references. If we think in terms of binary systems, it is possible to devise intermediate frequency types of digital processors which use $2^{\mathrm{n}} \mathrm{Hz}$ as the basic reference or BCD equivalents like $1 \mathrm{kHz}, 100 \mathrm{~Hz}$, $10 \mathrm{~Hz}, 1 \mathrm{~Hz}$ and 0.1 Hz . The Mini-O system to be described uses a $2^{15} \mathrm{~Hz}$ clock to provide all the reference frequencies including the Omega sequence timing rate.

The second part of this series of articles by Ralph Burhans and his associates at Ohio University will follow in next month's BYTE. In part 2, you'll find details of the hardware of the Mini-O receiver, which can be built by the advanced experimenter with interests in navigation problems. Part 3 by Richard Salter follows with information on processing software.

Another feature common to all Omega receiver systems is some form of multiplexed phase locked or recursive filtering applied to the phase information following the comparator. Digital hardware sensor systems are one method where a suitable clock system is advanced or retarded in phase by adding or deleting pulses to a countdown chain. An up-down counter system can also be used with a digital comparator. Software based digital filters have been devised which are basically recursive low pass filters operating at a relatively low sample rate. The sampling rate of the original edges is controlled by the analog radio frequency bandwidth used in the front end. Thus a 30 Hz bandwidth system might require a digital sampling rate of something like 100 Hz for optimum detection in the Nyquist sense where the Nyquist Sampling Theorem requires the sampling rate to be at least twice the input bandwidth. Some systems combine both software and hardware filtering of the phase information to generate final output bandwidths of the information down to 0.01 Hz . With this narrow effective bandwidth, the receiver requires a long time (2 minutes) to lock up on the signals and correspondingly can hold lock through a lot of transient noise where the signal drops out momentarily. These digital systems are inherently sample and hold types where a shift register, counter, or latch holds the data for each Omega time slot in a multiplexed operation.

Current research effort among microprocessor Omega researchers is involved with the development of software based sampling systems at a suitable low interrupt rate where the microprocessor itself becomes the equivalent of the voltage controlled oscitlator as it is used in analog phase locked loops. These are still in the development stage in our laboratory.

Mini-O Receiver Concept

The simplified Omega receiver methods which have been used for a basic digital interface are shown in block form in figure 3. This consists of a short whip antenna, a radio frequency preamplifier, a 10.2 kHz narrow band filter and limiter, zero crossing and amplitude gate detectors, clock and housekceping timer, and finally a binary sampled phase output module. The output consists of 4 to 8 bit words which are processed after interrupts which occur at a 40 Hz rate. The master crystal clock labelled HKT in figure 3 supplies all the timing functions necessary to operate the Mini-O as an independent monitor recciver or as an interface for a microprocessor system. The modules may also be used to drive hardware
digital filters or analog type signal processors depending on the user's interests.

4 Bit Raw Data Recordings

The Mini-O receiver is a digital superheterodyne design which indirectly mixes a 10240 Hz local oscillator with 10200 Hz to generate a 40 Hz intermediate frequency difference. Because the local oscillator is on the high side of the signal, the phase change of the 40 Hz intermediate frequency is reversed in direction with respect to Omega. In the first work on this system a sampling rate of 8 Hz or $40 / 5$ was used because of convenience. By averaging 5 cycles of the 8 Hz samples, a binary count was generated with 4 bit precision. Example recordings of this raw data for measurements averaged over single time slot intervals are illustrated in figures 4 and 5 .

SELECTED REFERENCES ON VLF NAVIGATION AND RELATED TOPICS

On general VLF applications:
J M Beukers, "A Review and Applications of VLF and LF Transmissions for Navigation and Tracking," J Inst of Nav 21 No. 2, pages 117-133, Summer 1974.

On optimum VLF frequencies: R Grover Brown and R L VanAllen, "Three Frequency Difference Omega," Proc Nat Aero Symp, Inst of Nav, Warminster PA, April 27-28 1976.

On RF preamplifiers:
R W Burhans, "Single Preamplifier/Isolator Drives LF and VLF Receivers," ELEC. TRONICS 48, pages 107-108, Sept 41975.

On previous simple receiver designs:
R W Burhans, "Phase-Difference Method Offers Low-Cost Navigation Receivers," ELEC. TRONICS 47, pages 98-105, Sept 51974.

On digital concepts for Omega receivers: R W Lilley, "Binary Processing and Display Concepts for Low-Cost Omega Receivers," J Inst of Nav 22 No. 3, Fall 1975.

On microcomputer-based Omega systems:
R W Lilley and R J Salter, "Simulation Analysis of a Microcomputer-Based Low-Cost Omega Navigation System," Proc Nat Aero Symp, Inst of Nav, Warminster PA, April 27-28 1976.

On analog amplifiers and limiters:
W G Jung, IC Op-Amp Cookbook, Howard W Sams Co, Indianapolis IN, 1974.

On microprocessor interfaces:
D Lancaster, TV Typewriter Cookbook, Howard W Sams Co, Indianapolis IN, 1976.

On applications for simple Omega receivers: R W Burhans, "Mini-O, Simple Omega Receiver Hardware for User Education," Proc 1st Int Omega Assoc Symp, Washington DC, July 27-29 1976.

The POLY 88 Microcomputer System

If you are into computers or considering a system, the POLY 88 is the machine to contemplate.

HARDWARE

- Popular 8080 central processor - Single-board CPU with ROM, RAM, vectored interrupt, real time clock, single-step logic and serial I/O - Video interface card generates video to TV monitor and provides parallel keyboard input port - Serial and cassette mini-cards plug directly into CPU with ribbon cables - Cassette - ROM monitor with powerful debugger, video software, bootstrap loader - Backplane and power supply on one board simplifies construction - Rugged 6 amp power supply • All circuit boards are high quality, double-sided with plated-through holes - System is compatible with a wide range of Altair peripherals - Minimum point to point wiring means that the POLY 88 kit can go together in three evenings!

ABOUT SOFTWARE

 Software is the reason the POLY 88 was designed. The operator can proceed from higher level languages like BASIC to developing machine code with the aid of our assembler. Our BASIC is a full 8 K BASIC with character and byte manipulation. Best of all, the programmer is finally free of the teletype emulation mode so the video display can be used to full advantage. The video display provides a unique opportunity to write new types of programs and games. Characters (16 lines of 64) and graphics (48 by 128 grid) are part of the processor's memory, so the display may be altered rapidly - the entire screen written in less than 20 milliseconds.POLY 88 hardware provides many additional features that programmers have come to expect, such as vectored interrupt and real time clock.

See it at your local computer store.

ARE YOU NEW TO COMPUTERS?
The POLY 88 was designed for ease of use. No one should have to learn all the inner workings of computers just to enjoy one at a reasonable price. With the POLY 88, you can "play" pre-developed programs or explore the world of computer languages as your interests expand.

THE POLY 88 IS FOR EVERYONE

Want to develop a new computer language? Want to fight Klingons? The POLY 88 provides a firm foundation upon which to build your interests and develop your skills.

POLY 88 SYSTEM PRICES:

SYSTEM 1 - Kit includes 8080 vectored interrupt processor with real time clock, $1 / 2 \mathrm{~K}$ of RAM and 1 K monitor on ROM: Video Terminal Interface displays 16 lines of 32 characters on a video screen and has a keyboard input port; cabinet, backplane, and power supply; complete assembly, operation and theory manual. \$595.
SYSTEM 2 -System 1 plus 64 character line option and Byte/biphase cassette interface kit. \$690.
SYSTEM 3 - System 2 plus 8 K of RAM with BASIC and assembler programs on cassette tape. \$990.
SYSTEM 4 - The complete kit. It includes system 3 and TV monitor, keyboard and cassette recorder with all necessary cables and connectors. \$1350.
SYSTEM 7 - System 4 assembled, tested and ready to run. \$1750.
ACCESSORIES - 8K RAM kit, \$300. Assembled \$385
POLY I/O Ideaboard, hardware prototyping kit board. \$55. Analog Interface (1 channel) kit. \$145.

Prices effective until January 15,1977. Prepaid orders shipped postpaid.

PolyMorphic Systems

737 S. Kellogg, Goleta, CA 93017
(805) 967-2351

Continued from page 11

IBM Selcctric series. I would like to have some suggestions and comments on this proposed project from other readers. Any readers who can give any information on how to convert the IBM Selectric 10 a teleprinter will be greatly appreciated.

Ronald K S Chan
Engineer, Engineering Laboratory Canadian General Electric Co Ltd

3-397 Reid St
Peterborough, Ontario
CANADA K9H $4 \mathrm{G}+$

FLEXOWRITING

KLH

Dear Siris,
In recent months the Friden Flexoviter hat begun to turn up in numeroue clasolfied liatings end murplue catalogs as an tev posiliolisty for a relatively inexpensive hard copy output device. To those contemplating purchasing one of these unito, thin letter atanda as evidence that they cas indeed be interisced to a micro output port ulthout too much dificiculty. This letter vaa typed by a model 230

The interfacing of the 2300 series of Friden Flexouritera ia almilar in many respects to interiacing old Baudot-code machines, but there ore many advantagea to the Flexowriter. First is obviously having both upper and lower case. This plus the typewriter-type font on most models make tise unt very applicabie to text-editing and typing prograns. Second, the Flexorriter types at a practical 12 codes/sec. (The neceasary in the text.) Third, the atandard 16 -1nch carriage provides more than 160 columns of output, and if you're lucky enough to get the optional 20-1nch carriage, vell.......

There are many differont flexowriter modela and many variations of each, so the prospective buyer may inad the following information of most applicable of the commonly avallable models. While like must Flexcoritera, they have anori-atandard e-level code (which is very caslly reduced to a 7 -level code) they uavally feature a standard 8 -level paper tape punch and typeviter-type font. The 2304 even bosata proportional apacing and oecretary-shift, whicbmight make interfacing emsier.

The 2200 acries uatally had a larger character set and many modele have the $20-1$ nch carrioge..

While the above unita ubumlly 1 include a mechanical tape reader and code output from the keyboard the necesbary code conversions make it much more practical to use a separate abcil-encoded keyboard and op-

In aron, the iriden flexorier con
In anort, the Friden Flexouriler can provide a very auizable hard
copy device. Certainly the price of most of them alone makes them quite aitractive. Certainly the price of mot of then alore makes tiem circumatances for free. They can be interfaced to a parallel ascil circuratances for free. much lean if you're a good ocavenger.

Anyone contempleting, or actually attempting to interface a Flexowriter to hia micro may write me the belov address and 1 will be elad

Sincerely,
Bob Ridaruea
2367 Yeager fd. 115 47906
ok
The letter is reproduced here photoqraphically to show the type font and demonstrute the practicality of Flexowriters.

REGARDING BAR CODES CONTINUED

I read with great interest your a ticle "A Proposed Standard for Publishing Binary Data in Machine Readable Form" in the November 1976 issue of BYTE. I am very much interested in the problem of publishing soltware in cheap and casily transmitted form. Cassette tapes require an expensive ($\sim \$ 100$) interface as well as a not so cheap (~ 3) tape. Your method requires only a piece of paper and a light pen hooked up to a single input bit of a microcomputer. The soltware is relatively simple, and doesn't take up that much room. (Remember,
once the program has been read successfully, it can be transferred to your own cassette system, il needed.)

I am worried about one dspect of the standard that you discussed in your article. I think that reliability is the key issue - more important than either pcople, readability or density. Furthermore, this reliability should be conserved through making at least one Xerox copy. I do not know the chardcteristics of a Xerox machine lhat well, but I can conceive that they consislently either make the black bars marrower or wider. This might cause all ones to be mapped into seron or vice versa. I think that in addition 10 a longitudinal parits check, there should be a parity bil on each character. This method allows single bil correction instead of single bit detection.

I have done a little experimentation with your code lormat 2 , which seems to have the most reliability built in. It seems that $1 / 5$ inch is probably more than necessary lor the length of the bars - 1/7 inch looks good. I also think that whether the code is published in columns or rows is not so important (unless someone is planning 10 build page readers).

1 include the firss paragraph of this letter which has been coded into bar code and produced by the MIT Artilicial Intelligence Labordtory Xerographic Printer. This printer has 200 dots/inch resolution, and each character is 28 dots high and 48 dols wide. All of ou software is line oriented, so I have taken the liberty of making the bars vertical instead of horisontal. Since the characters use format 2, each zero is 2 black lines followed by t white lines and each one is \& black lines followed by 2 white lines. (The line are only $1 / 200$ inch wide, so that they merge together into bars.) Using this format, we can put 28 characters on a 7 inch line, 66 lines on a 10 inch page. This gives a wotal of 18.18 bytes/page. No symehroniadion or parits characters have been used, allhough they could easily be added.

$$
\begin{array}{r}
\text { Henry G Baker Jr } \\
\text { MIT Laboratory for Computer Science } \\
545 \text { Technology Sq } \\
\text { Cambridge MA } 02139
\end{array}
$$

This is the complete teat of a lelter printed in bur code form in last month's BYIE. See fannary ByTE for the har code lest refertaced.

APL INTEREST?

Inspired by the APL article in the November BYTE, 1 would like 10 get together with some other people who have access to all APL system or are looking ahead to their own microprocessor based APL system and would like to build or modify a CRT or dot matrix impat lerminal to display the APL/ASCII chardetersel.

I have some ideas which I will share on how to incorporate overstrike capability in a CRT terminal inexpensively;
but the character generator is the problem. APL character generator ROMs are nearly impossible to acquire and I would like to have one manufactured.

If anyone is interested please send me your name and address along with any comments vou may have. For example, would you prefer 5 by 7 (similar to the APL Decwriter) or 7 by 9 character matrix? If I perceive sufficient interest I will have the chip encoded and send you information. I expect cost per chip to be about $\$ 30$.

Piillip Apley
Hampshire College Box 9 Amherst MA 01002

DELIVERY COMMENTS

In December 76 BY「TE you included a product review by D Anderson of our VDM-1 Video Display Module. He did a good job on the technical side; however, I am pleased to update the 60 day delivery time he referred to. We are now delivering the VDM-I and most of our other products FORTY EIGHT HOURS after receipt of order when a money order or certified funds are included with order.

Terry M Holmes General Manager
 Processor Technology Corp
 6200 Hollis St
 Emeryville CA 94608

IDENTITYCRISIS:
 ARE WE NERDS?

In the letters section of the October 1976 issue of BYTE, Bryan Patterson posed the question of what computer hobbyists should call themselves. Your preference for the lem "hacker" leaves much to be desired, as most computer professionals could legitimately clam this term, particularly those who specialize in soltware devetopment at olter people's expense.

In spite of over 25 years of commercial application, computer system development is still latgely an undisciplined form of self-expression, using ad hoc design methods, usually resulting in late and over budget delivery of unreliable products. Recent developments in soltware engineering are largely scorned or ignored by the "dulists" of the profession. Standards, usually a sign of stability and maturity of a profession, are largely ignored as being a damper on the free spirit of creativity. Judging by the practices and results achieved by the professionals in the computer fied, I would say the term "hacher" belongs to them.

The computer hobby ist, on the other hand, is working with his own money and is his own customer. Some protessionals are also hobbyishs, but it is my observation that more planning and careful design goes into thei personal systems than in their professional ativities. Some of this is due to severe limitations on their personal resources, to be sure,
and such limitations always seem so obvious. The rapid adoption of such things as the KC cassette standard and the Altair bus (as a de facto standard) are real signs of maturity. The free exchange of information, construction tips, programs, etc, by hobbyists, as opposed to the publications of thesis papers on the professional level, is much more practical in an engineering sense.

I would not claim that the hobby computer field is not subject to mudding, but it has a "can do" spirit to it.

The computer hobbyist seems to be interested in the novelty, education, recreation and delight offered by the small programmable systems. An acronym composed of the first letters of those attributes of amateur computing spells "NERD," which might be a term suitable for the computer hobbyist. Next time, Mr Patterson, you can say, "Hi, I'm a computer nerd!"

Dick Curtis 4741 Newlons Dr E Murrysville PA 15668

DIRECT BINARY?

I was reading your article in the November BYTE (issue \#15) entitled "A Proposed Standard for Publishing Binary Data in Machine Readable Form." I thought it was a very good idea and I had considered it myself as a good way to store data in bulk and an easy way not to have to load in by hand programs that you see in magazines. However, 1 think that there is an easier format than the ones proposed in your article. The following format is similar, but takes up less space and has a consistent bit length:
$V 1 \leftarrow[X X X X X X X X X X$
$V 0 \leftarrow 1$
$V 1 \leftarrow[X X X X X X X X X X$
$V 1 \leftarrow[X X X X X X X X X$
$V 1 \leftarrow[X X X X X X X X X$
$V 0 \leftarrow 1$
$V 0 \leftarrow 1$

ETC.

Where X_{s} represent a solid black line with no gap between lines and blanks represent an area with no ink at all.

I hope you will consider using the above format as it could simplify it greatly and also save some paper.

Wayne Loofbourrow
815 Standish Av Westfield NJ 07090

This method suffers from the problem that it is not self-clocking. A format for bor codes, to be usable, must be selfwlocking, which virtually requires some redundancy in the encoding.

I NEED EASY COMPUTERS!

Right now all I have going for me is a desire to use a computer, a little knowledge I have gained of computers from
books, and a subscription to BYTE. Even with the dropping prices of microcomputer hardware, being a student, I still cannot afford a computer. How about an article on building your own microcomputer, using easily available parts and easy construction techniques, with provisions for expansion and fol-low-up articles on programming?

Mark Sebald
8722 W Bluemound Rd Wauwatosa WI 53226

We're working on it. Already in house, expected out in mid 1977, is a very detuiled construction project on a 6502 computer system; and we're working on getting articles for several other varieties. "Easily available" is taken to mean that most parts are found in the catalog sheets of hobby distributors.

PRAISE FROM "DOWN UNDER"

Please find enclosed order for US ($\$ 30$), being 3 years subscription renewal to BYTE (as from January 77). May the high standard of articles continue!

> G N Gould Sydney Hospital Biochemistry Dept
> Macquarie St
> Sydney 2000 AUSTRALIA

COMPUTER LANGUAGE PTERODACTYLS, AND OTHER BEASTIES

I write primarily in response to Mr Skye's letter in your August issue. I can only conclude that he had been with IBM too long, otherwise he would not attempt to debase the 8080 with FORTRAN or PL-I. FORTRAN is a virtual pterodactyl, flying on solely by inertia, whereas PL-I is much better, but too rambling in construction. If he indeed takes up the admirable task of writing a high level compiler for the 8080 , he would be better advised to base his compiler on a fully structured language such as PASCAL.

Inasmuch as PASCAL was originally devised as a pedagogical tool intended for use in examples of systems programming, it does not have a defined 10 structure. In this aspect Mr Skye would be quite justified in reverting to PL-I. PASCAL also lends itself readily to modifications which would allow compile time extensibility in several areas. This is definitely to be preferred over add on "features" which take exception to structure, syntax, grammar, or common sense in any language.

Whatever the final characteristics of Mr Skye's language, it may well become the hobbyist's first or second programming language, due to early availability. Just as with natural languages, the language in which one program affects his approach to programming as a whole, and the first or primary language used tends to influence all later programming.

It is therefore the duty of the language designer to attempt to instill the rudiments of proper programming practices and style in the novice by designing languages which encourage or require such practices. It is, admittedly, not easy to forego the use of some thrilling bit of "trick" code merely because it is configuration dependent, poorly documented, grossly unstructured, or difficult to follow when encountered unexpectedly in the code; however, it will be appreciated later, and practice helps firm the will. The best solution, by far, is to reduce the availability of such tricks until the user has outgrown his programming adolescence.

Small tricks may be introduced in the code produced by the compiler if they are suitably documented. In fact, the reduced resources of the average microcomputer installation provides fertile ground for a well written optimizing compiler. If optimization of tricky output is included in a compiler, it is suggested that d section of the user's manual be devoted to the discussion of each instance, giving examples and a full explanation of how it works and why it was done in that manner. It is also to be suggested that optimization be a user option if included, as it is usually much easier to debug unoptimized code, than optimized code when finished.

I will gladly enter into correspondence with anyone who wishes to discuss or debate the features which should properly be included in a programming language, and why (or why no1).

PM Lashley Director of Computing CSCS POB 764
 114 S Bullard St Silver City NM 88061

Program structure should be looked upon as the langaage level equivalent of an integrated circuit used by the hardware designer. Why reinvent the DO or If statements when you can get a language structure prepackaged to do the work? Why reinvent the NAND gate when it can be bought four per package in a 7400? And debugging with standard packages is so much easier, since function is checked rather than internal details. Tiny BASIC and its later full function relatives are just a start in the righl direction.

APL CHARACTER ROMS?

When APL becomes available for 6800 s and 8080 s , it will be nice to have the APL character set, too. In view of the profusion of television displays based on the Motorola MCM6570 series character generator chips, I investigated the practicality of obtaining an MCM6570 series generator for APL. My initial enthusiasm was almost quenched by my local Motorola representative, who informed me that although the unit price of a custom 6570 would be only $\$ 8.50$, the minimum order would be 500 units and
the custom-masking charge, a cool \$1000.

While I can't justify spending $\$ 5250$ $(\$ 8.50 \times 500+\$ 1000)$ for one or two chips, I wonder how many people would be willing to spend $\$ 10.50$ ($5250 \div$ 500)? Or would one of the television typewriter manufacturers be willing to take the plunge, design and market an APL television typewriter, and concurrently finance and vend the APL 6570?

These approaches to the design of the new chip should be considered:

1. By omitting approximately four "noncritical" APL characters ie: characters not used to represent APL functions - the entire character set, including overstruck characters, can be generated by one chip. This would automatically make any 6570 based television typewriter an APL television typewriter by simple chip swapping.
2. Devoting a full chip to those APL characters that have no ASCH counterparts, the full APL character sel and full ASCII character set, including all legal (and some illegal) APL overstrikes, can be accommodated using a standard ASCII 6570 as well. Required modifications to the television typewriter with this approach would include a chip select bit for each character in the refresh buffer, addition of chip selection circuitry in the video generator, and redesign of any cursor circuitry (like that of the Processor Technology VDM-1) that depends on using only 7 bit ASCII.

Roderick Montgomery
 52 Birch Av Princeton NJ 08540

Creating a demand is what is needed. Would an APL enthusiast be willing to pay $\$ 52.50$ for an APL character generator? If that were the case, all it would tuke would be 100 such people to get together, bus 500 ROMS and use only 100. (Or better, give each purchaser 5 ROMs to do with as he or she pleased.) However, demonstruting a market interest in the products is a better way. Let's see how many BYTE readers ure really into $A P L$, document that, and use it as a message to potential manufacturers.

BELL 103 MODEMS NEEDED

It seems to me that as the hobbyist and small business computer field continues to develop, data communications will become increasingly useful and popular. Because the Bell 103 type data communications hardware interface is already a broadly accepted interface, I intend to use it and hope it will be widely used by other hobbyists and small business operators (at 30 and 10 characters per second).

I have a Tarbell cassette interface, and I intend to use it extensively in my system. However, the fact that no tape interface seems to be evolving as a hardware standard is creating a problem in the exchange of tapes by microcomputer users.

Is it not easily possible to use an originate answer modem as a tape interface? Wouldn't this be an ideal hardware standard for the exchange of casselte tapes in our field? I don't have the time now to describe all of the potential cost and flexibility advantages of such an idea, but l'm sure they can be casily imagined.

Stephen T Moore Moore Research POB 1562 Sacramento CA 95814

I think modem recording on tape has been tried ... with less than oplimal results due to the old "wow and flulter" problem. Besides, there are manufacturers now claiming that by using special techniques they cun get 400 bytes per second versus commumicutions rates; so why be stuck with a low rate?

STANDARDS

I am very confused about the plethora of cassette data recording "standards" presently available to the computer hobbyist. The more \mid read about them, the more confused I get, and I am pretty sure that I cannot be the only hobbyist out here with this dif. ficulty. If you could answer the questions below for me, I think you will be performing a noteworthy service for many of your readers:

1. Which "standards" are presently in use?
2. Which are gaining/losing favor with hobbyists?
3. Which are compatible with MITS Cassette BASIC?
4. Which are easiest to implement in hardware/software?
5. Which system is the fastest?
6. Is there any relationship between these "standards" and the Na tional Multiplex system advertised in BYTE?
7. Is there a consensus at BYTE about what system you would prefer to load MITS BASIC and to slore programs on an Altair 8800?

I realize that the answers to these questions could be both involved and lengthy, but any help you could give me would be greatly appreciated.

Chessman Kittredge III
 14 El Sereno Ct
 San Francisco CA 94127

1. Audio lape recording media vary from manufacturer to manufacturer, MITS uses the $A C R$ bourd of their own design, with modem

like choices of frequencies, Digital Group uses a similar method, but with different frequencies. The so called "Kansas City" standard is represented by several different manufacturers, including Southwest Technical Products' AC-30 and PerCom. Motorola is also reported to be using it with its latest evaluation board kit. The Tarbell high speed standard is one of the best in terms of speed of operation, as is a "Kansas City" standard interface operuting without redundancy using a 2400 baud data rate.
2. For audio cassettes, as in all 10 operations, unless some other circumstance gets in the way, the faster the operation, the better off you are.
3. All 10 methods are in principle compatible with MITS Cassette BASIC. The only problem is you probably will need to do a "hack"' on that BASIC's object text in order to make it work in nonstandard ways. We have not done that (yet) so the problems to be encountered can only be conjectured . . . but it has been done by more than one user.
4. In principal, nearly all of the different audio recording standards can be best implemented with one set of hardware and several software designs for the encoding and decoding afgorithms. The hardware minimum is an output (optionally filtered) from a TTL gate or equivalent, and an input signal conditioning port (single bit) which converts sine waves (more or less) from the tape into a clean clipped square wave while preserving transition times. Then the different interfaces are typically achieved by simply using a different 10 driver program.
5. To find out which system is the fastest, look at their dota rates. A 300 baud system such as the unmodified "Kansas City" standard is obviously much slower than the same hardware driven at 2400 baud. Also, look at the software being used for formatting the software. A cassette with a raw bit rate of 2400 baud will have an effective bit rate ever so slightly lower if the asynchronous data format of a UART is used, considerably lower if redundant coding is used to check or correct errors, and possibly as low as 30% of the maximum rate if the software employed sends hexadecimal data as ASCII codes for hexadecimal digits.
6. The National Multiplex system differs from the normal audio interface only in the greater effective speed possible, and the fact that it ignores the original head drive electronics of an audio channel and achieves greater speed in the electronics by driving the head digitally and directly.
7. In a way, yes ... the faster the better.
This is by no means an attempt to be complete about the answer. A fuller answer might make good material for an author to supply a detailed comparison almed at the neophytes just coming aboard.

OPPORTUNITIES

Display Text, Washington DC, has just introduced a Word Processing (text editor) microcomputer for $\$ 13,990$. The system incorporates 24 K bytes of RAM, a Zilog Z80 chip, two Sycor flippie diskettes, a Thompson 66 line CRT, and a 55 characters per second Qume (typewriter quality) printer.

At that price I expect the system to
sell quite well. The marketing outlets are to be selected from independent dealers in most metropolitan areas. (Entrepreneurs take note.)

So what? The opportunities for knowledgeable "microexperts" are unlimited with this system and many others. The significance of the Display Text system versus other systems is its Z80 full page 66 line CRT. System operators can scan a page on the CRT and know exactly how it will look printed. Of course, software by the mega bytes is needed to allow lawyers, insurance agents, doctors, etc, to do things other than word processing on their Z80s.

Never before have we had computers in the home to produce and debug commercially valuable software. I am personally involved with various smaller law offices in an attempt to help them select equipment and software to handle their typewriting, timekeeping, accounting, and case deadlines. This system and other microcomputers for the commercial market could be a very rewarding vehicle for computer enthusiasts who can produce software or hardware assistance.

Allen Swann
 Legal Office System Consultant 2510 Oak Trail S 104 Clearwater FL 33516

WUMPUS SOFTWARE?

I have written a machine language version of WUMPUS by Greg Yob. It's a great game. The 8080 program is under 3 K and is completely self-contained: It requires no user PROM subroutines. Anyway, if anyone wants a listing, just send name, address, and $\$ 5$ to:

Ron Santore
1957 Huasna Dr San Luis Obispo CA 93401

SWTP 6800 OWNERS-WE HAVE A CASSETTE I/O FOR YOU!

The CIS-30+ allows you to record and playback data using an ordinary cassette recorder at 30,60 or 120 Bytes/Sec.! No Hassle! Your terminal connects to the CIS-30+ which plugs into either the Control (MP-C) or Serial (MP-S) Interface of your SWTP 6800 Computer. The CIS-30+ uses the self clocking 'Kansas City'/Biphase Standard. The CIS-30+ is the FASTEST, MOST RELIABLE CASSETTE I/O you can buy for your SWTP 6800 Computer.

PerCom has a Cassette 1/O for your computer!
Call or Write for complete specifications

\$69.95 - KIT*
$\$ 89.95$ - ASSEMBLED*
Manual only - \$4.00 (refunded w/o)
*plus shipping

PerCom Data Co.
P.O. Box 40598 - Garland, Texas 75042
(214) 276 -1968

PerCom - 'peripherals for personal computing'
texas residents ado 5\% sales tax

BROADCAST STATION HANDLER?

Mr Hosking's article "A Ham's Applications Dream" |page 26, October 1976 BYTE \mid is very dear to my ulterior motives for studying the current revolutionary world of microcomputers.

In addition to being an old "ham" I am currently chief engineer for a small but automated FM broadcast station located at an altitude of 8500 feet (2600 m) in the Sierra Nevadas.

The "automation" system is a solid state device that was built about 20 years ago and is quite reliable but is slowly becoming obsolete. Some foresighted individuals in the broadcast industry have begun to use computer techniques but on a limited and very cosily basis.

I have talked to a few micrucomputer sales people regarding $m y$ application but receive an "I dunno."

Would it be possible for an Allair 8800 A or equivalent to, say, sequentially handle 2000 events (switch lape deck, etc) in "real time" and give a "hard copy" (log) for a broadcast station and still be simple enough for an announcer or secretary to program the day's events? (And or course, not cost an arm and a leg?)

Thanks to you and your stalf for an understandable approach to a very complicated and otherwise distant world of small systems.

Joe Alvin CE
 KMMT
 Mammoth Mountain FM Associates Inc
 POB 1284
 Mammoth Lakes CA 93546

If I were building such an application, I would want at a minimum a floppy disk system, and a good reliable printer. Using a single drive floppy system with 16 K bytes of memory and building custom drivers for ull the events, as well as a custom real time clock, such an application could probably be ussembled in the $\$ 4000-6000$ range for purts and subsystems, excluding labor. Would any readers with station automation experience care 10 share experiences? . . . CH

PROGRAM "BANK" NEEDED

After a year's exposure to your very line computer hobbyists' magazine, I feel considerably enlightened on the subject. The articles and advertisements have convinced me of the significance the machines will play in the computer revolution.

Although I confess to be a confirmed computer hobbyist, I do not plan lo submit to some of the rigorous repetitive activities that have been proven by other hobbyists. Namely, rewriting proven programs and manually loading the software into my computer.
in many of your articles over the past months, considerable information has been provided on peripherals that interface and load lypical programs into a computer's memory. However, I find myself in somewhat of a void regarding how to rapidly load a program into a paper or cassctte tape reader.

Is there a company or group that will translate software into a paper or cassette tape for a nominal fee? Is there a program "bank" where the hobbyist can order proven
software diready on paper or cassette tape? Is there available to the hobbyist a translator that can pertorm the same?

Any articles of revices that might illuminate these questions will be of great help to me and I'm sure 10 other computer hobbyists.

Laurence P Williams W5IIQ
 111 Bradford Cir
 Ocean Springs MS 39564

See the information cuarently in BYTE regarding oplical scanning of printed bar codes, and watch BYTE for intormation regarding clubs and other sources of software. Whe expect to be providing a soffware library of machine readable PAPERBYTESTM and SHEET PROGRAMSTM using the printed bur code techmiques. Watch future issates of BYTE for intormation on the PAPERBYTISTM project. (PAPERBYTES ${ }^{T M}$ and SIHET PROGRAMSTM are trademarks of B)TLE Publications me.)

MORSE REACTIONS TO OCTOBER

I do belicve filling your October cover with "BYTE" in Morse code was a bit self-centered. (-... . - .) Although the picture of Joseph Henry's telegraphy key was very interesting.

To remarh on Hichey's article, "The Computer . . . Versus Hand Sent Morse Code," I must saly that it wals very good. But an interesting point came up when I read it. If every amatedr rdios station used computers in sending and receiving Morse code there would be no need for Morse code. Each station could, and might as well, just use ASCII. OI course the use of ASCII would eliminate the use of telephone lines for teletype. This would not be good for phone companies but businesses and people renting time on a hager spstem could benelia trom the use of the air tansmissions. I hope this idea could be developed turthe:

Mark Lentczner
 445 Third St
 Brooklyn NY

There is only one problem, though. Amateth radio is amateat conmercial messales are not allowed on the dir to amaterars. Howerer, an amatear radio commanications net for passing games, personal use programs, etc, buck and forth would be quite legitimate within the constrames of being amatear. We're looking for articles to explore that possibility using established computer network soltware concepts presently used only by the "biggie's."

As for the cover issue, isn't the coner of a magazine supposed to advertise its nume???

AGGRESSION BY COMPUTER

Our facully, stalf and students are delighted with the way BYTE has developed. We look forward each month to receiving the next issue.

Every day we hear "the computer is responsible!" Business and govermment are experiencing problems in computer data processing. Many of the dilliculties are in relationships with the consumer public. Recipients are invariably frustrated in coping. I am researching "case studies" involving people who are having troubles created by
the dlleged computer error. I would like to hear from these people describing their situations and what steps they went through in solving, or attempting to solve the dilficulties. All responses will be treated confidentially.

Dr Richard A Bassler Associate Professor of Computer
 Systems Applications
 CTA-B The American University
 Washington DC 20016

HANGMAN?

I have bought several issues of your magarine and have enjoyed reading them very much. Although 1 am new to programming, and do not have a microsystem, I have access to an IBM 370/158 and an IBM 1130 computer. I am learning much from BYTE on programming.

Please, if you know of one, give me the name of a book or an article on games for computers, namely HANGMAN. The language can be in assembler, Fortran, Basic, or PL/I. I would appreciate this very much, as I have hacked my brains out trying to figure that one out.

Robert Todd
 1815 N Boomer Rd Apt F- 20 Stillwater OK 74074

See page 118 of 101 BASIC Games, a 250 page paperbound book availuble for $\$ 7.50$ plus $\$ 50$ postage/handling from Software Distribution Center, Digital Equipment Corp, Maynard MA 01754 . This book conlains a complete listing of the program, written by Kenneth Aupperle of Melville NY. See also, page 18 of What To Do Alter You Hil Relurn, published for $\$ 6.95$ by PCC, POB 310, Menlo Purk CA 94025, for a description of how to use such a game. TTo get the game program itself, order HANGMN for $\$ 3$ in paper tape form.)

DATA BASE MANAGEMENT INFORMATION?

I am a charter subscriber to BYTE Magatine, and very much interested in getting into the home computer field. However, I cannot justity it on the basis of it being the "ultimate toy."

1, and possibly many others, could justily it if the home computer could be applied to do useful work around the house.

One application which comes to mind is that of home or small business record keeping. This brings up the complex subject of data base management systems.

I would very much appreciate a dissertation in BYTE on the design and implementation of data base management. It could be presented as if the user had an Altair 8800 printer, keyboard, and one or more tape cassettes. For example, floweharts and samples of 8080 code could be used to illustrate how an editor updates a variable length record on cassette by inserting, deleting, or changing data somewhere in the middle of a casselle record.

I believe amateur radio grew as it did because of the social benefits of its applications. Amateur computing must also have a beneficial goal in order for it to grow.

H C Bickel
587 Kiersted Av Kingston NY 12401

The Impossible Dream Cassette Interface

Daniel Lomax
Community Data Systems
114 E Mohave Rd
Tucson AZ 85705

In May 1975, I had a new Altair 8800, from the original Popular Elecironics offer, with 256 bytes of momory and no more money. What could I do besides blink lights? The first thing I noticed was that there is an addressable latch in the system, the Interrupt Enabled latch on the 8080, which is nicely buffered and displayed on the Altair front panel. After turning it on and off for a few hours, it occurred to me that, with an earphone, the light might make music, and, after several day's mad programming, some incredibly accurate baroque music emerged, including one recorder piece of which a musician friend who loaded the data for it - said he had never before been able to hear, being too busy playing it.

After making recordings of the music, the question arose: "If I can record music, why not digital data?" I hadn't heard of the various systems being developed at that time, and my tape recorder is a Ward's Airline $\$ 30$ cheapie. But, anyway, I recorded various lones on cheap tape, played them back, and looked at them on an oscilloscope. I found that a $2000 \mathrm{H} \angle$ tone, linked to the tape recorder through a 0.1 uF capacitor,
was reliably reproduced -- more or less -with the tape recorder volume turned all the way up, as an 8 V peak to peak "square" wave: That is, "reliably" in the sense that the signal never failed to clip, had no visible glitches, and I could see no missed cycles. There was jitter in the frequency, a few percent.

So, I built a breadboard single channel input interface to look at the signal, capac-itor-coupled, and diode-limited between ground and +5 , with Altair IN instructions. Though this interface was all TTL.- no active lincar components - it was still unnecessarily complex, as I will show. Anyway, using one cycle of 1100 Hz as 0 and two cycles of 2200 Hz as 1 , I found that I could record data and recover it reliably, using the Altair to time the interval between transitions of the playback signal. According to what I have read, this is impossible. 3 M Corp is supposed to have spent many millions of dollars working on cassette data recording systems, only to find that audio cassettes were too unreliable. Therefore, cstablished engineers need read no further (except as entertainment), since this might

Abstract

About the Author: Daniel Lomax learned electronics in the physics laboratory at Cal Tech in the mid 60s, but never graduated. Recent work in printing and publishing brought him in contact with a burned out Honeywell Controller which was part of a nonworking Photon phototypesetter, repair of which created a business for him (phototypesetter repair) and taught him TTL logic. He is active in the L-5 Society, a group working to encourage the establishment of permanent human colonies at the L-5 Lagrangian point of the Earth-Moon system. Demonstration of his typesetting proficiencies came to us in the form of excellent typeset manuscripts (which we reset for editorial and stylistic reasons).

be in the same class as perpetual motion and angle trisection with compass and straightedge．

But，if you are an impoverished hobbyist， and would like to store programs and data at more than 1500 baud without spending any money－assuming you have a tape recorder， some capacitors，diodes，and connectors－ let us dream the impossible dream together． ／The＂unreliability＂of a device is not necessarily dependent upon the modulation method alone．This method hardly contra－ dicts any principles of information theory．．．．CH／

After doing the above experiments，the corporation which owned the Altair folded， and with it my source of income and support for my family．I ended up with the Altair，but had no time to play with it until recently．Meanwhile，I have been following the literature，and have observed all kinds of proposed systems，none of them fast enough for the kinds of applications I have been considering and cheap enough for me to afford．Like Dr Suding／see＂Why Wait？＂ page 46，BYTE，July 1976］，I cringe at the thought of waiting 15 minutes to find out that noise has destroyed data and I have to start over．

My original bootstrap loader program was 64 bytes long and included a routine which automatically set the appropriate timing value by examining a string of zeros which preceded the data on the tape，and which updated that value using the stop bit be－ tween each byte．This article，however， describes a shorter loader，not automatically self－adjusting，and the hardware has been practically eliminated．

It seems I had overlooked the fact that in the Altair there is，in addition to the sense switches，one free input channel－of sorts－ $\overline{\text { PINT．If PINT cannot be used for some }}$ reason，a program can be written using normal input channels．Also，there is no reason to output two cycles for a single bit，

Figure 1：Schematic of the＂Impossible Dream＇Signal Conditioning Logic． The output consists of simply driving the cassette recorder＇s input with a TTL level signal．The 0.5 uF capacitor is optional，according to the author，and can be replaced by a direct coupling．The input is a simple network to clip the signal coming back from the tape recorder．

Listing 1：Minimum Hardware Cassette Output Program．This program is a stand alone method of recording data starting at location BUFFER on to the recorder through the Altair PINTE line．This program terminates when the page address is zero．A more general program could of course be written by changing the initial conditions，and the end of execution test at locations 046 and 0．47．Note that in the listings of this article，the notation $\langle 0\rangle$ is used to indicute page addresses．The programs shown can be loaded at any arbitrary page boundary by substituting an octal number（such as 003）for $\langle 0\rangle$ every time it appears．

Split Octal Address	Octal Code		Label	Op	Operands	Commentary
	377		SSW	EQU	377	
	200		BUFFER	EQU	200	
＜0＞／000	041	200 ＜0》	START	LXI	H，BUFFER	set initial output pointer；
$<0>/ 003$	061	$200<0$		LXI	SP，BUFFER	set the stack；
$\therefore 0>1006$	333	377	LOAD	IN	SSW	input timing value；
$<0 \% 1010$	117			MOV	C．A	save it in C ：
$<0>1011$	027			RAL		set carry if SSW7 active；
$<0>1012$	324	055 ＜0		CNC	ZERO	if not，output data＇ 0 ＇：
$\cdots 0 \cdot 1015$	322	006 －0		JNC	LOAD	and if not，look again；
$\therefore 0 \div 1020$	017			RRC		recover timing value bit 7 ：
$<0,1021$	117			MOV	C．A	save it in $\mathrm{C}_{\text {；}}$
$\therefore 0 \times 1022$	315	066 ＜0	NEXT	CALL	ONE	output＇1＇as start bit：
－0：／025	176			MOV	A，M	look up data byte；
＜0＞1026	006	010		MVI	B， 010	load bit counter to one byte length：
$\therefore 0$／030	007		BIT	RLC		set carry if data＇ 1 ＇；
－ 0 －／031	334	$066<0$		CC	ONE	if＇ 1 ＇，output＇ 1 ＇，
＜0＞1034	324	055 －0＞		CNC	ZERO	if not＇ 1 ＇；output＇ 0 ＇；
$\cdots 0>1037$	005			DCR	B	decrement bit counter：
$\therefore 0 \div 1040$	302	030 く0：		JNZ	BIT	if byte incomplete，output next bit；
＜0＞1043	315	$055<0$		CALL	ZERO	byte complete，output stop bit；
＜0－1046	054			INR	L	advance output pointer：
$<0 \cdot 1047$	302	022 ＜0；		JNZ	NEXT	go output next byte；
＜0）／052	166			HLT		page done，halt：
$\therefore 0>1053$	000			NOP		space for
＜0\％／054	000			NOP		exit jump：
$<0>1055$	363		ZERO	DI		turn off PINTE：
＜0＞／056	315	$105<0$－		CALL	TIMEA	wait 2C cycles：
$\therefore 0>1061$	373			El		turn on PINTE：
＜0＞／062	315	$105<0$－		CALL	TIMEA	wait 2C cycles；
\cdots－$/ 065$	311			RET		
－0＞1066	363		ONE	DI		turn off PINTE；
人0：／067	315	$112<0$		CALL	TIMEB	wait C cycles：
$\therefore 0 \geqslant 1072$	315	$105<0$－		CALL	TIMEA	wair 2C cycles；
＜0＞1075	373			EI		turn on PINTE：
＜0＞1076	315	112 ＜0；		CALL	TIMEB	wait C cycles；
＜0＞／101	315	105 ＜0＞		CALL	TIMEA	wait 2C cycles：
$<0 \times 104$	311			RET		
＜0＞／105	121		TIMEA	MOV	D．C	load timing counter；
$<0>/ 106$	025		WAITA	OCR	D	count cycles；
＜0＞／107	302	106 ＜0＞		JNZ	WAITA	count until zera：
$<0>/ 112$	121		TIMEB	MOV	D，C	load timing counter：
$<0>1113$	025		WAITB	DCR	D	count cycles；
＜0\％／114	302	113 ＜0；		JNZ	WAITB	count until zero；
＜0\％／117	311			RET		

Listing 2：Minimum Hardware Cassette Bootstrap Loader．This program is used to read the data recorded on a tape by the output program of listing 1. The program is set up to assume coordination through the Altair interrupt line $\overline{\text { PINT，}}$ ，but the method could be applied using timing loops on input as well．

Split Octal Address	Octal	Code		Label	Op	Operands	Commentary
	200			BUFFER	EQU	200	
$<0>1000$	041	200	＜0＞	START	LXI	H，BUFFER	set initial load pointer：
＜ $0>1003$	061	200	＜0＞		LXI	SP，BUFFER	set the stack；
$<0>1006$	066	000		CLEAR	MVI	M，000	clear initial load location；
$<0 \% 1010$	303	106	＜0＞		JMP	SET	go to work：
＜0＞1070	063			INT	INX	SP	reset
＜0＞1071	063				INX	SP	stack pointer：
$<0>1072$	270				CMP	B	was interrupt immediate？
$<0: 1073$	312	110	＜0＞		JZ	INTE	if so，try，try again：
＜0ン 1076	326	001			SUI	001	set carry if data＇ 1 ＇：
＜0\％－1100	176				MOV	A，M	look up byte under construction；
＜0＞／101	027				RAL		rotate through carry：
$<0>/ 102$	167				MOV	M，A	put it away：
$<0>/ 103$	332	122	＜0＞		JC	BYTE	if byte complete，go advance pointer；
$<0>/ 106$	333	377		SET	IN	SSW	input timing criterion（sense switches）；
＜ $0>1110$	107				MOV	B，A	hold for comparison；
＜0＞／111	373			INTE	El		enable interrupt：
$<0 \cdot / 112$	000				NOP		give it time to act before timing；
＜ $0>/ 113$	075			COUNT	DCR	A	time period until interrupt：
＜0＞／114	302	113	＜0＞		JNZ	COUNT	$A>0$ at interrupt，data＇0＇；
＜0ン／117	303	117	＜0＞	LOOP	JMP	LOOP	$A=0$ at interrupt，data＇ 1 ＇；
＜0＞1122	054			BYTE	1NR	L	advance load pointer：
$\therefore 0 \div 1123$	302	006	＜0＞		JNZ	CLEAR	if not end of page，go load next byte：
$<0>/ 126$	052	001	$<0>$		LHLD	START	restore initial load pointer；
$<0>/ 131$	351				PCHL		transfer control to object program：

Listing 3：Timing Test Patches to Listing 2．These patches are used to verify the timing for the outputs by testing the actual timing values received for each bit，storing them instead of the data．

Split Octal Address	Octal Code	Name	Op	Operands
＜0＞／113	074	COUNT		$\begin{aligned} & 113 \\ & \text { A } \\ & 076 \end{aligned}$
＜0\％／076	000		NOP	
$00 \cdot 1077$	000		NOP	
$<0>1100$	000		NOP	
く0：／101	000		NOP	
＜0＞／102	167		MOV	M，A
$\leq 0 \div 103$	$303122<0\rangle$		JMP ORG	$\begin{aligned} & \text { BYTE } \\ & 131 \end{aligned}$
$\therefore 0 \cdot 1131$	166		HLT	

Listing 4：Dropout Test Patches to Listing 2：These patches are used to look for spurious binary 1 data in a tape filled with binary 0 data．The Altair will halt on any byte which is not 000 （octal）．

Split Octal Address	Octal Code	Name	Op	Operands
			ORG	122
$<0>/ 122$	054000	BYTE	CPI	OOD
$<0>/ 124$	$312006<0>$		JZ	CLEAR
$<0>/ 127$	166		$H\llcorner T$	

so the revised program looks for one cycle of 2020 Hz as 0 ，and one cycle of 1470 Hz as 1 ．

To try the system out，you can use a solderless breadboard，or even just a bunch of jumpers with alligator clips．PINTE（for output to tape）can be picked up on the front panel．Both PINT and PINTE can be found on the motherboard，at Altair back－ plane connector pins 73 and 28 ，respec－ tively．I have found it convenient，for debugging programs using interrupts，to wire $\widetilde{\text { PINT }}$ to one of the extra switches on the Altair front panel，connecting the center terminal of the switch to ground．For the clipping network，I pick off ground from the
motherboard support rails，and +5 V from the front panel．Connect it all up as shown in figure 1.

For a system test，clear the memory，then deposit the output program shown in listing 1 into the memory．Replace the HLT at 000,052 with a JMP START，303．The NOPs will serve as the START address．Set the sense switches to 010，and initiate RUN． Start recording．Wait about five seconds， then switch SSW7 to 1．Let the tape run to its end before stopping the Altair．This test begins by outputting continuous zero bits and then，when SSW7 is turned on，it outputs a start bit in the 1 state，then eight data zeros followed by a stop zero．Then it repeats with another start bit，and so forth．

To read back this data，deposit the bootstrap loader into the memory．Change the PCHL at 000,131 to HLT （166）．With the connector out of the earphone jack of the recorder，so you can hear the recording， start playing the tape．When the clean，high pitched tone starts（the train of zeros），stop the tape recorder immediately．Put the connector back in，and turn the recorder volume all the way up．Set the sense switches to 050 ．Start the recorder，wait a second or so for it to settle，then start the Altair with the RUN switch．The Altair should，when the tape runs into the data and begins transmitting bytes，load for about a half second and then halt．To get out of the halt condition，hold the STOP switch up while you RESET．The memory，from 000,200 to 000,377 should be blank，all zeros．Put 377 into 000，377，and try loading the tape again． 000,377 should come out blank again．

If it doesn＇t work，tape recorder signal polarity may be reversed between recording and playback．Try reversing the signal and ground leads from the tape recorder to the input network．（Disconnect the output con－ nector and any other common grounds．）If the system then works，interchange the El and Dl instructions in the output program to produce correct results with normal con－ nector polarity．

To verify the timing，you can modify the loader as shown in listing 3．Set the sense switches to 000 ．Start reading the tape while data is being played back，rather than during the leader zeros as usual．The Altair should quickly halt．At address 000,200 ，and in sequential addresses，you should find the timing values for each bit as it came in．Make a list of these values，and you should see the data pattern．The value 050 was chosen to be in between the timing values for 0 and 1 ．

To test tape for dropouts，which will read as spurious 1 s ，use the bootstrap loader with
the patch shown in listing 4. Start the recorder and Altair as usual for data, with the test tape having been filled with data 000 as in the first test. The Altair will halt if it finds any byte that is not 000 . It will also probably halt when the tape ends, from shutoff noise.

The data rate for this system, as described, varies with the data: 1470 baud for all binary $1 \mathrm{~s}, 2020$ baud for all 0s. I suspect that it would work with higher data rates; but, for my cheap cassette, the signal level won't drive TTL reliably much above 2 kHz . The addition of an amplifier or zero-crossing detector could compensate for that problem, possibly increasing the data rate by a factor of two to four; of course, a better recorder and better tape would also help.

The key feature of this method of recording data is that the recorded signal is symmetrical: It spends as much time high as low. I found that, if I tried to record unsymmetrical signals on the cassette, the narrower pulses tended to be present only as dips and bulges in the distorted attempt at a sine wave that the recorder produces.

Figure 2 shows the waveforms present in the system under various conditions. If the cassette output does not produce a reliable interrupt, try a larger value capacitor or a

Figure 2: Tracings of Typical Signals.
a. The PINTE output signal from the Altair which is fed to the recorder.
b. The input signal clipped and seen by PINT when a recording of (a) is fed back into the computer.
c. Typical signals, in the case where polarity is reversed. See text for a complete explanation.
lower frequency (increase the sense switch setting from 010).

A final note: Timing values (sense switch settings) described in this article are appropriate for an Altair 8800 with memory wait cycles. If the processor is running at 2 MHz with no wait states, try 014 as sense switch setting for the Output Program, and 074 for the bootstrap loader.

FILL IN:

4 Letter Words	7 Letter Words	8 Letter Words	9 Letter Words
BETA	DENSITY	BINOMIAL	DEVIATION
CASE	GROUPED	CUMULANT	EMPIRICAL
MEAN	POISSON	HARMONIC	GEOMETRIC
MODE	THEOREM	KURTOSIS	VARIATION
		MARGINAL.	
5 Letter Words	11 Letter Words	QUARTILE	10 Letter Words
GAMMA	COEFFICIENT	SAMPLING	ARITHMETIC
RANGE	CONDITIONAL	SKEWNESS	CUMULATIVE
	CORRELATION	VARIABLE	PERCENTILE
6 Letter Words	EXPECTATION	VARIANCE	REGRESSION
DECILE	MULTINOMIAL	WEIGHTED	
EXCESS			12 Letter Words
MEDIAN			DISTRIBUTION
MOMENT			

FLIP OVER OUR FLOPPY Only $\$ 750$ from Peripheral Vision.

Peripheral Vision is a brand-new company that's dedicated to selling reasonably priced peripherals for various manufacturers' CPU's.

We think you'll flip over our first product.
It's a full-size floppy disk for the Altair-Imsai plug-in compatible S-100 BUS. And it's available for as low as $\$ 750$. Here are the features:

- 1 interface card supports 4 drives
- Stores over 300,000 bytes per floppy
- Bootstrap EPROM included-no more toggling or paper tape
- Completely S-100 plug-in compatible
- Interface cabling included
- Drive is from Innovex (the originator of the floppy concept)—assembled and tested
- Interface card design is licensed from Dr. Kenneth Welles and the Digital Group
- Disk operating system with file management system included on floppy
- Cabinet and power supply optional

Prices:

Interface card kit and	Kit	Assm
assembled and tested drive	$\$ 750$	$\$ 850$
Power supply-+24V at 2A	45	65
Cabinet—Optima, blue	-	85

Now, a little more about our company.

Peripheral Vision may be brand-new, but we have some old-fashioned ideas about how to run our business. We know there are serious incompatibilities among the
different manufacturers' peripherals and CPU's. We want to get them together. And, we want to bring significant new products to market-products consisting of everything from adaptation instructions/kits for hardware and software to major new products.

It's a tall order, but we feel we're up to the task. Peripheral Vision has already obtained a license from The Digital Group to adapt versions of some of their products to the S-100 BUS. And we're working on getting more from other companies.

Most important to our customers, Peripheral Vision is committed to helping you get along with your computer. We'll do all we can to make it easy.

Write us now for all the information on our company, our philosophy and our exciting line of products. And be prepared to flip over all of it.

Send me the works, and I just might flip over it!

Name \qquad

Address \qquad

City/State/Zip

Microprocessor Update:

The F8 System

Figure 1: Pin designations for the 3850 central processing unit chip.

The architecture of the F8 microprocessor is rather unique in design since the various system functions are deliberately divided among the several basic circuits of the F8 family instead of being centralized within a single processor. The currently available F8 system components include the following devices:

3850	central processing unit
3851	program storage unit
3852	dynamic memory interface
3853	static memory interface
3854	direct memory access

These devices are interconnected by an 8 bit time multiplexed data bus for addressing and data functions, along with a 7 bit control bus for system coordination and synchronization. System timing signals are derived from a master clock generator with a maximum frequency of 2 MHz within the 3850 processor. The clock output of the processor divides the machine cycle into a number of discrete phases dependent on the type of instruction being executed. Multiple memory references may require as many as three machine cycles as controlled by the processor's WRITE clock. Besides these two clock lines, the remaining five lines of the control bus are the Read Only Memory Control (ROMC) outputs. They are derived from the processor's internal control read only memory as a function of each instruction and are listed in detail within the Fairchild documentation along with a description of the corresponding operation of each F8 component.

A 16 bit address structure allows addressing of up to 64 K bytes of memory containing any combination of programmable stor-
age units or standard read only memory and programmable memory with the appropriate interface devices. Instead of transmitting an address to all the individual memory devices during each processor cycle, the memory devices maintain their own 16 bit program counter. Every programmable storage unit or memory interface updates its program counter just as a processor would, incrementing the register each time an instruction is fetched or loading a new address when a jump instruction is encountered. For relative addressing, each device also has a built-in hardware adder to compute the displacement from the current program counter value.

A sccond register, known as the stack register, backs up the program counter in all memory elements during subroutine calls and interrupts. When a subroutine or interrupt handler address is jammed in to the program counter, the return address, the old contents of the program counter, is saved in the stack register.

Every memory chip also contains a 16 bit pointer register called the data counter which can be addressed and loaded from the 3850 processor. All memory references during memory reference instructions utilize the data counter which implicitly indicates an object address.

The 3850 Processor

The 3850 processor is the heart of the F8 microprocessor system, containing the data manipulation logic that can perform either binary or decimal arithmetic. A control unit decodes 8 bit instructions controlling execution of logic within the processor and generating control signals for the other chips in the system. The processor chip pin assignments are shown in figure 1. Figure 2 indicates the three different modes of system clock generation: resistor capacitor network, crystal, or external clock; that may be used to provide a typical 2μ s cycle time.

The 3850 processor has a single 8 bit accumulator, and a scratchpad consisting of 64

Figure 2: Three modes of clock generation for the F8 system.

Octal Address of Scratchpad Byte

Information and diagrams courtesy of Fairchild Semiconductor from their F8 Circuit Data Book and F8 Microprocessor Programmer's Guide.

8 bit general purpose registers that are addressed by a 6 bit indirect scratchpad address register as shown in figure 3. The W register, a 5 bit status register, indicates sign, carry, zero, and overflow conditions as a result of various processor operations and contains the interrupt control bit. The proc-
essor chip also contains two 8 bit, bidirectional, 10 ports with output latches for transferring data to and from the processor.

Any of the over 60 machine instructions together with the eight different addressing modes, shown in table 1, may be used to manipulate or operate on 8 bit data con-

Table 1: F8 instruction set and addressing modes.

ADC	Add data counter with accumulator
AI	Add immediate with accumulator
AM	Add binary accumulator with memory
AMD	Add decimal accumulator with memory
AS	Add binary accumulator with scratch-
	pad register
ASD	Add decimal accumulator with scratch-
	pad register
BC	Branch on carry
BF	Branch on false condition
BM	Branch if negative
BNC	Branch if no carry
BNO	Branch if no overflow
BNZ	Branch if no zero
BP	Branch if positive
BR	Absolute branch
BR7	Branch if ISAR is not 7
BT	Branch on true condition
BZ	Branch on zero condition
CI	Compare immediate
CLR	Clear accumulator
CM	Compare with memory
COM	Complement accumulator
DCI	Load data counter immediate
DI	Disable interrupt
DS	Decrement scratchpad register
EI	Enable interrupt
INC	Increment accumulator
IN	Input
INS	Input short
JMP	Jump

LI	Load accumulator immediate
LIS	Load accumulator short
LISL	Load ISAR - Lower 3 bits
LISU	Load ISAR - Upper 3 bits
LM	Load memory
LNK	Link carry into accumulator
LR	Load register (5 types)
	Scratchpad
	Program counter
	ISAR
	Status
	Data counter
NI	Logical AND accumulator immediate
NM	Logical AND memory accumulator
NOP	No operation
NS	Logical AND scratchpad and accumulator
Ol	Logical OR immediate
OM	Logical OR memory with accumulator
OUT	Output
OUTS	Output short
PI	Push program counter into stack register
	Set program counter to new location
PK	Push program counter into stack register
	Set program counter from scratchpad
POP	Put stack register into program counter
SL	Shift left
SR	Shift right
XDC	Exchange data counters
XI	Exclusive OR immediate
XM	Exclusive OR accumulator with memory
XS	Exclusive OR accumulator with scratchpad

Indirect Register Addressing - All 64 scratchpad registers may be indirectly referenced, using the indirect scratchpad register in the processor. This 6 bit register, which acts as a pointer to the scratchpad memory, may either be incremented, decremented, or left unchanged while accessing the scratchpad register.

Indirect Memory Addressing - A 16 bit indirect address register, the data counter, points to either data or constants in bulk memory. A group of one byte instructions is provided to manipulate this area of memory. These instructions imply that the data counter is pointing to the desired memory byte. The data counter is self-incrementing, allowing for an entire data field to be scanned and manipulated without requiring special instructions to increment its content. The memory interface circuit contains two interchangeable data counters.

Relative Addressing - All F8 branch instructions use the relative addressing mode. Whenever a branch is taken, the program counter is updated by an 8 bit relative address contained in the second byte of the instruction. A branch may extend 128 locations forward or 127 locations back.
tained in the accumulator, scratchpad registers, or any memory location. Instructions referencing scratchpad bytes are the fastest executing F8 instructions, but only the first 16 scratchpad bytes can be referenced directly by instructions. The indirect scratchpad address register must be used to reference the last 48 bytes of the scratchpad but may also be used to address the first 16 bytes as well. Scratchpad registers 9 through 15 have special significance for the F8 system as mentioned later.

The 3851 Program Storage Unit

The program storage unit contains 1024 bytes of read only memory, two independently addressable 8 bit 10 ports, a programmable timer, external interrupt control circuitry, and three address registers, called PC0, PC1 and DC. Each program storage unit chip is mask programmed during manufacturing to user specifications, including a 6 bit page select, chip enable, option which corresponds to the upper 6 bits of the address space. This customization at manufacturing time makes it unlikely that the 3851 will ever be used by homebrew computer people; however, it may show up in finished product or kit machines as a place to put the system monitor. The memory access logic of each program storage unit is only activated when the upper 6 bits in the program counter match the program storage unit page select code. With up to 64 possible program storage units, every program counter will

Figure 4: Pin designations for the 3851 program storage unit chip.

Figure 5: A block diagram of the 3851 program storage unit.

Figure 6: Pin designations. for the 385? dynamic memory interface chip.
VGG-1
¢

Pin Name	Description	Type
DBO-DB7		Data bus lines

contain the same address but only one chip will detect a page select match and forward an 8 bit instruction to the processor during a fetch cycle in a properly designed system.

The 16 bit program counter provides the memory address of the next instruction to be fetched and transmitted to the processor, while the internal program storage unit logic will increment the program counter after each fetch. The program counter registers of all program storage unit chips are logically connected to the K register of the processor scratchpad, bytes 12 and 13. The contents of all program counter registers may be loaded from the K register or modified by certain instructions. The data counter register, as described earlier, is similarly linked to the H register, bytes 10 and 11, of the processor scratchpad. Each program storage unit contains only one data counter register, so the swap data counters instruction has no effect.

The 16 bit stack register (called PC1) is primarily used as a buffer for the program counter, saving return addresses for subroutines and interrupt handlers. The stack register is logically connected to the K register of the processor scratchpad and may be loaded to or from the K register. Whenever the value of the program counter is saved in the stack register, the value in the stack register is first saved in the K register.

The internal circuitry of the two 10 ports within the program storage unit may be selected from one of three manufacturing mask options for different hardware applications: standard pull up, open drain, or driver

Figure 7: Block diagram of the 3852 dynamic memory interface.

pull up. The programmable timer and interrupt logic are accessed in the same manner as the IO ports with specifically assigned port addresses that are the same in each program storage unit except for the page select bits.

The programmable timer port is a continuously running polynomial shift register that sends a signal to the interrupt control logic every 3.953 ms if the system has a 2 MHz clock. Any numeric value between 0 and 254 loaded to a timer port is decremented once every 31 clock pulses allowing programmed delays of up to 7,905 clock pulses. If 255 is loaded into a timer port, the timer is stopped. When a loaded timer count is decremented to zero, a timer interrupt is generated and will be transmitted to the processor if timer interrupts have been enabled via a control code loaded to the interrupt port.

A mask programmed 16 bit interrupt vector is pushed into the program counter whenever an interrupt from the interrupt control of the program storage unit is serviced. However, bit 7 of the interrupt vector is set by the interrupt control and is not mask programmed.

Pin assignments of the 40 pin program storage unit chip are shown in figure 4 with a block diagram in figure 5. Each chip requires +5 V and +12 V DC power supplies with total power typically less than 275 mW .

The 3852 Dynamic Memory Interface

The dynamic memory interface provides the necessary address and control lines to interface up to 64 K bytes of programmable
$V_{\text {GG }}-1$
$\Phi-1$
WRITE

Figure 8: Pin designations for the 3853 static memory interface chip.

Pin Name	Description	Type
DB0 - DB7	Data bus lines	Bidirectional
ADDR0 - ADDR15	Address lines	Output
Ф, WRITE	Clock lines	Input
MEMIDLE	DMA timing line	Output
CYCLEREQ	R AM timing line	Output
CPU SLOT	Timing line	Output
CPU READ	R AM timing line	Output
REGDR	Register drive line	Input output
RAM WRITE	Write line	Output
ROMCO - ROMC4	Control lines	Input
VSS $=0 \mathrm{~V}$		
$V_{D D}=+5 \mathrm{~V}$	Power lines	Input
$V_{G G}=+12 \mathrm{~V}$		

Figure 9: A block diagram of the 3853 static memory interface.
memory, read only memory, or combinations of the two to the F8 processor. It contains the same address registers as the 3851 program storage unit but it has two data counter registers ($D C 0$ and DC1). DC1 is used as a temporary storage buffer for DC0 and the swap data counters instruction may be used to exchange the contents of the two counters. The dynamic memory interface has no chip select mask since the entire program counter address is passed from the dynamic memory interface to the attached memory which in turn must decode the appropriate chip select lines. Two addressable ports provide direct memory access capabilities in conjunction with the 3854 direct memory access chip discussed later and also provide refresh control for external dynamic MOS memory chips. Figure 6 shows the pin assignments of the 40 pin package while figure 7 shows a block diagram of the interface.

Figure 10: Pin designations for the 3854 direct memory access chip.

The 3853 Static Memory Interface

The static memory interface chip is very similar to the dynamic memory interface except it is used to interface only static memory to the processor and does not have direct memory access capabilities. In addition, it contains local timer and interrupt control ports like those in the program storage unit together with two additional programmable interrupt vector registers. Figure 8 shows the pin assignments for the 40 pin chip and figure 9 shows a block diagram of the static memory interface.

The 3854 Direct Memory Access

The direct memory access chip, together with the dynamic memory interface chip, allows high speed data transfers between peripherals and memory. All direct memory access data transfers are made during the second and third clock pulses of each instruction cycle without affecting program execution time. Up to four direct memory access chips may be used in a single F8 system and an external device, including another microprocessor, may be connected to the system through these chips.

The direct memory access interface contains three internal registers that are addressed as four separate 10 ports: a 16 bit address register holds the address of the next memory byte to be accessed for a transfer; a 12 bit byte count register allows blocks of up to 4 K bytes to be transferred; and a 4 bit control register determines the direct memory access operation to be performed. Figure 10 shows the pin assignments and figure 11 is a block diagram of the direct memory access unit.

Applications and Conclusions

For personal computer applications, the F8 system provides an easy to use building block architecture with a narrow bus structure simplifying hardware design and construction. Figure 12 shows a general F8 system configuration implementing all of the possible system components. The F8 system architecture restricts the maximum number of chips per system as follows:
$1-3850$ central processing unit
$64-3851$ program storage units
$1-3852$ dynamic memory interface
$1-3853$ static memory interface
$4-3854$ direct memory access

At the other extreme, a minimum F8 system requires only two chips, the 3850 processor and a single program storage unit.

Since all program storage units are mask programmed during manufacturing, software

Figure 11: Block diagram of the 3854 direct memory access.
development may be slightly more difficult or expensive for the hobbyist depending on the applications involved. By using a dynamic memory interface or a static memory interface along with standard memory chips, the more expensive program storage units may be avoided and make software development much easier. At least one program storage unit should, however, be included in a basic system to provide the additional IO and programmable timer ports. Ideally, this program storage unit would provide a standard, commercially available, software utility package designed for the average hobbyist. Additional units could then be added later for standard, more advanced software or when desired custom routines and programs have been thoroughly tested.

The F8 microprocessor system appears to be most ideally suited for mass produced microprocessor based products utilizing proven software. It does, however, provide enough flexibility to be of more than passing interest for general purpose personal computer applications.■

A MIKBUG Roadmap...

John Rathkey
4808 SE 28th \#316
Portland OR 97202

Some of the more useful microprocessor options for hobbyists available today are based upon Motorola's MIKBUG monitor program. These options include the Motorola 6800 Design Evaluation Kit, the SWTPC 6800 computer, etc. A big attraction of such kits is the MIKBUG read only memory, which provides the user with a monitor system and includes several utility routines. These allow the user to program in hexadecimal code from the terminal rather than in a binary code from the front panel. The purpose of this article is not to extol the virtues of the kit, but to demonstrate to proud new owners of 6800 systems that the MIKBUG read only memory can be used to much greater advantage than is generally pointed out by the manuals, particularly for IO techniques. An example of the use of MIKBUG routines is provided by the simple application of listing 1, a program which adds two numbers.

The MIKBUG firmware is a computer program for the 6800, copyright 1974 by Motorola Inc. It is called firmware because it resides in read only memory and is nonvolatile. In computers which use MIKBUG the program is located starting at hexadecimal address E000. The MIKBUG firmware takes 512 bytes, or just half of the 1 K memory. The program does not use the other half, nor does it use any device located at an address higher than hexadecimal E1FF, the end of the MIKBUG firmware. The 6800 microprocessor does use higher addresses for the interrupts and restart, but these are decoded to address locations within MIKBUG when MIKBUG is used.

The main function of MIKBUG firmware is to provide a monitor and several utility functions which make the programming and debugging processes easier. The monitor can
be regarded as a home base in the vast wilderness of addressable memory. It accepts utility function commands, executes them, and returns to the terminal with an asterisk. If a program gets lost in memory, control of the situation is regained by pressing the reset button, which brings back the ever faithful servant monitor. The utility functions allow the user to load memory with a paper tape reader (L), go 10 any address and begin executing there (G), examine and change the contents of memory (M), print and punch selected blocks of memory (P), and display the contents of the stack, on which the values of all the registers are stored when under MIKBUG control.

To take advantage of MIKBUG one must have a terminal, and most often the beginning hobbyist will have no other peripherals to play with. Anyone who has purchased a microprocessor kit and has encountered the "let's see it do something" attitude from doubting friends and acquaintances will appreciate the immediate need for quick and easy IO techniques. Such techniques are present in MIKBUG, just waiting for the user, if he or she can find them. MIKBUG is organized in several groups of subroutines, which are selectively accessed by the MIKBUG utility functions that need them. For example, the memory change function needs a routine to input a character (M), output a character (space), input a 2 byte number (the address to be examined), input a carriage return, output a 2 byte number, space, then a 1 byte number, and so on. Many of these routines are nested several levels deep. For example, the routine to output a 2 byte number simply calls the routine to output a 1 byte number twice in a row. That's simple enough. Since a 1 byte number looks like two characters from the set zero through F
to the terminal, the routine to outpul 1 byte uses the routine to output a character iwice. As you may have guessed, input routines for numbers and characters use the same cleverness. The point of all this is that the user can use aforementioned cleverness for his or her own 10 routines by simply accessing the MIKBUG subroutines at the appropriate places. People with a MIKBUG listing, familiarity with the 6800 instruction set, and the time and patience to trace through Motorola's MIKBUG mouse maze of subroutines can figure out where the appropriate places are for themselves. I encourage you to attempt this, for your own edification and purification of spirit. (1t's always a good practice, when learning a new computer's instruction set, to peruse a few existing programs like MIKBUG in order to get examples.) Those lacking one of the above ingredients, or the inclination to try it, can get some of the more useful information from what l've found.

Output Character

The output character routine, labeled OUTEEE in the MIKBUG listing, is located at hexadecimal address E1D1. It uses accumulator A as a data source. Thus you must define the contents of accumulator A which will then be interpreted as an ASCII character and shifted out in standard asynchronous format. It also uses accumulator B and the X register, but saves their contents at the beginning of the subroutine and restores them at the end. Therefore, the user need not be concerned with losing the contents of B or X. Listing 1 shows an example of the use of OUTEEE in a subroutine labeled PSTR which prints a string of characters, or a message. Control functions such as carriage return and line feed may also be implemented this way, by outputting their ASCII codes.

Input Character

The input character routine, labeled INEEE in the MIKBUG listing, is located at hexadccimal address E1AC. Like OUTEEE it saves the X and B registers. When accessed, INEEE loops while waiting for an asynchronous format character to be sent from the terminal, and upon receiving input, shifts data into the A accumulator. After access to INEEE the content of the A accumulator is the ASCII code for the key of the terminal which was pressed when INEEE was called.

Input Byte

This routine, labeled BYTE in the MIKBUG listing, is located at hexadecima!

Listing 1: This example program demonstrating the uses of MIKBUG uses all the techniques discussed in the article. The program requests and inputs two 1 byte numbers. It then adds them and prints the decimal codiusted result in an algebraic sentence. The program then asks the user if another run is desired. If the reply is Y, it branches to the beginning of the program; otherwise it relurns to monitor. This progrum requires a mere 127 by tes of memory.

address E055. BYTE does not affect the X register, but unlike OUTEEE and INEEE, it destroys the previous contents of the B accumulator. BYTE uses INEEE twice to get two characters, checks to be sure they are hexadecimal characters, and combines them, convering them 10 a 1 byte binary number in the process. This is stored in the A accumulator and is present there on return from BYTE.

Output Byte

This routine, labcled OUT2H in the MIKBUG listing, is located at hexadecimal address EOBF. It outputs one byte of data located at some memory address chosen by the user. OUT2H requires that the X register be loaded with the address of the byte of data to be output, which may be located anywhere. This routine does not affect the contents of accumulator B, but does change the contents of accumulator A. It also increments the X register, which makes it very convenient for outputting sequentially located bytes in a block. More on this later.

Table 1: A descriptive list of the available MIKBUG subroutines summarizes the point of this article: Don't ignore the parts and pieces of your monilor, BASIC interpreter, compiler or other programs if you intend to wrile assembly language or machine language code. If you buy a program, ask for a source listing so you can get programming technique pointers. (Motorola is to be commended for handing out MIKBUG listings as a standard parl of documentation right from the start. MIKBUG is described in detail in Engineering Note 100, "MCM6830L 7 MIKBUG/MINBUG ROM," which was published by Motorola. The program is credited to Mike Wiles und Andre Felix of Motorola Semiconductor Products Inc.)

Entry Points Discussed Here. . .

Address	Name	Description
E1D1	OUTEEE	Character output: A sent to terminal device. E1AC E055
INEEE	BYTE	Character input: A set equal to next input character. Hex byte input: input two characters as hexadecimal byte in A.
EOBF	OUT2H	Hex byte output: A sent to terminal as two hexadecimal digits.
EOE3	CONTRL	Return to MIKBUG control.

Other Useful MIKBUG Entry Points. . .

Address	Name	Description
E047	BADDR	Build address by calling BYTE twice; result in X register.
E067	OUTHL	Hexadecimal digit output from left nybble of byte in A.
E06B	OUTHR	Hexadecimal digit output from right nybble of byte in A.
E0AA	PDATA2	Print string of data pointed to initially by X until EOT character (hexadecimal O4) is found. E0C8
OUCA	OUT4HS	Input hexadecimal digit, on error go to CONTRL. Output four hexadecimal characters and a space (uses OUT2H).
	OUT2HS	Output two hexadecimal characters and space (uses OUT2H).

Access to Subroutines

In the 6800 instruction set there are 16 branch instructions and two jump instructions. All may be used to access subroutines under certain conditions. The branch instructions all use relative addressing, which limits the range of branching from 126 bytes backwards to 129 bytes forwards. This is because they use a 1 byte operand as the branch offset. The jump instructions (extended addressing) use a 2 byte operand which allows them to jump anywhere. One of the branch instructions (BSR) and one of the jump instructions (JSR) store a return address in the stack before executing the branch. They go to the addresses specified by their operands and begin executing instructions at the new address until they encounter the return from subroutine instruction (RTS), at which point they return to the return addresses previously stored. Each return from subroutine instruction read by the processor must be paired with a branch or jump to subroutine instruction, although the same subroutine may be accessed by more than one branch or jump instruction. If a subroutine or a series of subroutines which is terminated with a return from subroutine instruction is accessed by any of the other branch or jump instructions, the return instruction will cause a return to an invalid address since the stack would not have been properly set up. Similarly, if a subroutine or a series of subroutines which does not end with the relurn instruction is accessed with jump or branch to subroutine, there will be no return to the main program. It just gets lost. The MIKBUG subroutines discussed in this article all eventually end with the return from subroutine instruction. Since they will always be located further than 129 bytes away from the main program departure point if called by a user, they must be accessed with the jump to subroutine instruction.

General IO Techniques

More often than not, a program will need to input or output more than one character or byte at a time. The use of subroutines which access the MIKBUG subroutines facilitate this. An obvious example is the need to print a message, which involves printing several characters in a row. A good way to do this is illustrated in the subroutine labeled PSTR in listing 1. PSTR requires that the X register contain the starting address of a block of characters to be printed. PSTR increments the X register each time it prints a character and returns when it encounters
an ASCII code of 00 , which is a rarely used control character and is easily recognized with the test for zero (TST) instruction. Other stop characters could also be used. Similar subroutines may be used to input strings of characters or numbers. These subroutines may know when to quit by either counting the inputs and stopping at a preassigned number or by recognizing a stop character or number at the end of a string. A routine to output a string of sequentially located bytes would be even easier than PSTR using the same idea, because OUT2H increments the X register itself. Such a routine may also be terminated by either counting outputs or by recognizing a stop byte at the end of a data block. If a subroutine inputs or outputs hexadecimal numbers, it is best to count in order to terminate, otherwise one of the 256 possible numbers is excluded from use because it is the stop number. When using the decimal numbering system, any byte which is not a member of the set of 1 byte binary coded decimal numbers may be used as a stop byte.

Individual characters or small groups of characters which are input or output frequently in one program deserve their own subroutines. A good example is the combination of carriage return and line feed. The subroutine in listing 1 labeled CARRET illustrates this.

There may be times when an ouput is desired on certain conditions. There are 14 conditional branch instructions which make it easy for subroutines to serve these needs. The subroutine labeled OVRFLW in listing 1 illustrates this situation. In the sample program, if the decimal adjusted result of the addition is greater than 100, the carry bit is set and the byte reserved for the answer holds only the two least significant digits. OVRFLW is accessed if the carry bit is set, and prints a 1 in front of the answer byte to make the algebraic sentence correct.

Return to Monitor

A happy end to any program is a graceful return to monitor. This is labeled CONTRL in the MIKBUG listing, and is located at hexadecimal address E0E3. CONTRL should be accessed with the jump (JMP) instruction, and only at the end of the users program. Listing 1 includes examples of all the routines described above. Other routines, or different nesting levels of the ones mentioned here, may be found in the MIKBUG listing, and are summarized by name in table 1. The industrious reader can find routines which may be more useful to him or her, but the preceding ones will help get the show on the terminal.■

WANTED: One set unpopulated MOD-8 PC boards and Monitor 8 extra RAM boards. Jerry Walker 761 Clayton, San Francisco CA 94117

WANTED: Parts to complete Teletype Corp model 35 for my own personal home computer system. 1 only have a typing unit. Karl F Kornafel, 2741 Baur Dr, Indianapolis IN 46220; home after 1800 (317)257-6044 or business after 2300: (317)262-2445.

WANTED: Schematics or PC board layout for simple Intel 8008 microprocessor using minimum hardware: also need simple 1702A PROM pro grammer schematic. Will pay or exchange for technical information. Raymond J Ramirez, 2A-8 Bairoa Pk, Caguas PR 00625.

FOR LEASE: Model 735 Silent 700 portable data terminal. 6 month term for $\$ 90$ per month. Has an acoustic coupler, RS 232 interface, full or half duplex, 10 to 30 cps , ASCII code. Dick Harding, 633 Kingwoad Rd, King of Prussia PA 19406; (215)265-3719 (eve) (215)864-7017 (day)

WANTED TO BUY: PDP8-E expander box with cable and quad slot bus assembly. 861-C cabine power control, MI8-E bootstrap, MM8.E and MM8.EJ memory modules, card reader, printer, disk control and drive, magnetic tape, cassette system, all with cable and interface card for PDP8-E. Willing to talk about any PDP8-E hard ware or software. Please call: (617)861-6500 or write: Harry Bellmar, Minuteman Regional School 758 Marrett Rd, Lexington MA 02173.

FOR SALE: FLEXOWRITER model SPD has 8 level reader and punch. Previously used to create computer data base. Standard unit without modifi cations or changes. S175. M T Buckelew. POB 10 Falls Church VA 22046.

FOR SALE: Memories - 27011031 K RAMs \$400, 16074 S 206256 bit RAMs $\$ 500$, and a core stack constructed from 17 planes of IBM 1401 memory $\$ 200$. Each plane of the stack is arranged as a 50×80 matrix with separate sense and inhibit tines (68,000 bits total). All of the above will be sold with documentation included. Also for sale 8080A CPU chip $\$ 25$. Contact: Arthur W Wetzel 222 North Craig St, Apt 2A, Pittsburgh PA 15213, (412)624-5208 (day) or (412)683-6293 (evening).

WANTED: Information on care and maintenance of a Friden 2303 Flexowriter. Also would like information on how to interface it with a proc essor. I will pay for cost of duplication and mailing. Dan Hastings, 5055 Lily La, Api 210, Indianapolis IN 46254. (317) 297-1079 (calt collect).

Readers who have equipment, software or other items to buy, sell or swap should send in a clearly typed notice to that effect. To be considered for publication, an advertisement should be clearly noncommercial, typed double spaced on plain white paper, and include complete name and address information. These notices are free of charge and will be printed one time only on a space available basis. Insertions should be limited to 100 words or less. Notices can be accepted from individuals or bona fide computer users clubs only. We can engage in no correspondence on these and your confirmation of placement is appearance in an issue of BYTE.

Please note that it may take three or four months for an ad to appear in the magazine. \square

FOR SALE: Tektronix model 115 pulse generator, 10 ns pulser witl delay and 100 Hz to 10 MHz repetition with manual, like new, \$595. Tom Murph, 4244 Pluladelphia Dr, Dayton OH 45405 , (513) 274-4405.

FOR SALE: Programs in BASIC, including games, scientific and educational programs. Also program guides and software packages. I have written a number of programs which I will sell for $\$ 1$ to $\$ 5$. All programs come with complete documentation including a cross reference listing of all variables. For list, send stamped envelope to: Richard Traynham, 2928 Softwind Trail, Fori Worth TX 76116.

DEC: BUY,SELL,ot TRADE: I have some DEC-11 modules and hardware. Included are such things as a DF110, M7821. M795, and some brand new W9671 PDP. 8 Wire Wrap Boards. I need, or am interested in, the following items: DL11e, DF01 or other mociem, DR11c, KE11. KW11L, TA11, RC11, or a floppy drive. If you can part with any of the aforementioned items for cash or trade, please let me know. L Stewart, 1402 Regent St, Apt 506, Madison WI 53711, (608) 255-5380.

FOR SALE: 1 C-Mod 80 system including: CPU (with 5204 Micio-Monitor), 2 K RAM card (2102-1's), parallel or serial io card, backplane with connectors for 12 cards, \$150 for above. RCA CDS 1200 mortem with documentation, $\$ 50$; Teletype model BRPEB8 high speed 8 level punch, S45: RPC-4000 Computer System (has Fortran), $\$ 500$. Call Sam Ulin at (302) $475-7355$ evenings or write POB 216, Claymont, DE 19703.

HELP: Does anyone out there have any information on a Datia Trends Inc general terminal unit? I need schematics, operating information, anything 1 can get. Also need any data on International Computer Products Digi-Deck units. I will pay all reproduction costs and shipping, or I have wall sized (11×14) 1C microphotos and electronics graphics-trade? Contact: Bob Retelle, 2005 Whittaker Rd, Ypsilanti MI 48197

FOR SALE: DEC PDP-8s, 4 K core memary, serial interface, possible 10 bus, all cables and power supplies. $\$ 450$ or best offer or will trade for video terminal, 8080 machine, or any DEC mass storage peripherals. Also needed: information on Design Elements or Mg^{2} Data Svstems modem, model 88-OA. Jim Gonzalez, 150 S Summit Av. Hackensack NJ 07601, 1201)342-3110.

WANTED: BYTE issues November 75 and April, May, June 76. Will pay almost anv price. George Valaitis, 647 Linklieid Rd. Watertown CT 06795. (203)274-5628.

HELP: Neophyte will pay for technical assistance in converting Burroughs TM2OK 714 terminal, with or without the control unit, to something my IMSAI 8 K BASIC can digest. Have 7 data bits in paraltel at the terminal, no parity or buffers. I want 10 send entire line with a carriage return. A semischematic would do. Leo Biese, RFD 1, Hill NH 03243, (603)744-8906.

FOR SALE: VIATRON 2111 data management system las advertised in March 1976 BYTE, page 87). The unit is in brand new condition and works like a charm. Complete with instruction manuals, cassettes, and schematics for $\$ 400$; also IBM Selectric Printing Robot attachment for above $\$ 175$. you pay shipping (160 Mbs). First cashier's check or money order for $\$ 550$ takes them both. Bill Robertson, 123 W Pearl St, Apt 22, Nashua NH 03060.

FOR SALE: Cleaning house, all new unused parts. Intel 4004 \$5; 4040 \$10; 4289 \$2; 4201, 4002-1. 4003 \$1 each; MC6871A \$5; MC14411 \$3; 1MHZ xtal \$1; 1.797 MHZ xtal $\$ 1$; MOS TECH scientific calculator chip set $2525-2526$ with data sheets $\$ 5$. Ron Angstadt, RD 3, POB 281, Kuiztown PA 19530.

WANTED: Does anyone have a spare copy of SWTP Newstetter No. 1? It's no longer available from SWTP; many thanks!! Also, if you have use for an IBM 6400 accounting system, please write: "Pete" Peters, Microputer Tinkers Society, 3845 Le Bleu St, Beaumont TX 77707.

FOR SALE: ASR33, excellent condition lused by a little old Altair), \$800. George Nelms, 3908 Abbott Av S. Minneapolis MN 55410. (612) $922-3087$.

FOR SALE: Altair compatible 8080 CPU board with sockets, \$35. CDC floppy disc drive in a sack includes spares and documentation, \$125. Super Display: Computek 400/20, 96 character ASCil. Vector and Curve generator, Jovstick input and keyboard, RS 232 110-2400 baud, full documentation, $\$ 1250$. Vermont Research Drum, 950 tracks, 2600 rpm , Read/Write electronics, documentation, $\$ 350$. Hans Mahr, 28028 Ella Rd, Rancho Palos Verdes CA 90274, 1213) 377-0735, eves.

FOR SALE: Paper Tape Splices. Prepunched, clear or opaque mylar patches for 8 channel tape. $\$ 2$ per 50 or $\$ 3$ per 100 . Send SASE. Finest quality. money back guarantee. Mike Campo, 457 Prom ontory Dr W, Newport Beach CA 92660 (714) 751.8271 .

FOR SALE: Dual-drive Innovex Diskette (1974) for PDP.8E, ready to plug into Positive 1/O Interface. Inclucies test tape, 10 used Diskettes (some with glitches). my own hander, 48 tracks, 8 sectors of 25912 bit words per sector. Best offer that is not absolutely ridiculous. William T Powers, 1138 Whitfield Rd, Northbrook IL 60062.

FOR SALE: Ampex core memory 32 K of 8 bits 300 ns access with R/W electronics, power supply and complete manual. $\$ 750$ or make offer. Rainer McCown, 9537 Longlook Ln. Columbia MD 21045.

WANTED: Information leading to the contact of Charles D Hackett, former USAF 306×0, current electronics ireak. Have him contact Ssgt James D Tucker, Lot 8, Hughes Trir Crt, Knob Noster MO 65336, (816) 563-2177, after duty hours.

COMPUTING MACHINERY FOR SALE: One KIM board modified for half duplex terminal (can easily be changed back) in good working order with complete documentation. Also one JOLT system with CPU board, PROM board (with one PROMI) and power supply mounted in box. Some. thing wrong with power supply but otherwise in working condition. Will sell both together for $\$ 200$ or KIM for $\$ 150$ and JOLT for $\$ 75$ all as is Norman Bringsjord, 1346 Connecticut Av NW, Washingion DC 20036, (2021785-9440.

WILL TRADE/SELL: KELSEY 8 by 10 letterpress (like new) with 10 trays of type, (6 pt to 36 pt). All will be included. To use for business or hobby Lots of extras. Value $\$ 750$. Also have ThomasParamount Heathkit electronic organ in 100% mint condition with bench value $\$ 1150$. Want microcomputer ensemble (IMSAI, MITS, ALTAIR, SWPTC, etcl. Can be kit (unassembled) or assembled. Write or call and tell me what you have. Shipping arrangements will be negotiated to interested parties. H Zallen, PO Drawer 2790, Norman OK 73070, (405)364-1119.

REALITY STRIKES!: I'm sitting on more of a system than I need in my work. 16 K PDP. 8 F 18 K core), dual Innovex diskette, VT-8E alpha/graphic terminal and KB, ASR-33 TTY, 16 channel A/D, 2 channel D/A in need of two D/A converter ICs, rolling cabinet with 3 hinged sides. Worth over $\$ 13 \mathrm{k}$ new: everything works. Will settle for less than half price, and accept some items in trade (toward Z-80 system) in lieu of cash. See your bank and make me an offer. William T Powers, 1138 Whitfield Rd, Northbrook IL 60062. (312)272-2731.

FOR SALE: Motorola Evaluation Board 2 with Minibug 2 ROM, crystal clock, baud rate generator from $75-9600$ baud. Has serial interface for 20 mA TTY and RS 232 output, iwo 8 bit parallel output ports and fully buffered address and data lines. PC board has sockets for all chips and a socket for PC edge connectors. Asking $\$ 350$ or best offer. R C Brand, 62 Preston Dr, N Kingstown RI 02852, (401)295-1996 (evenings).

WANTED: BYTE back issues, 2, 3, 8, 9 and 10 No reasonable offer refused, and 1 will accept Xerox copies. Write Mark Brown, Minneapolis Medical Research Foundation, 501 Park Av. Minneapolis MN 55415.

Put Your Computer to Work

Bill Roch ${ }^{*}$
RO-CHE Systems
7101 Mammoth Av
Van Nuys CA 91405

Now that you have your hobby computer assembled and running . . . what next? Well, there is always Star Trek, Life, Hunt the Wumpos, and more in the way of computer
games. After the games maybe you built a Christmas card list, list of anniversaries, phone directory or the like. But what happened when you volunteered to keep the batting averages for the Little League? All of a sudden you ran out of memory or you had to reenter the file of data each time you did an update.

It seems the manufacturers of our little "beasties" did not foresee the need to read and write records. Sure, you can save and load blocks of data, but what about that collection of characters which makes up fields and a group of fields which makes up records?

Our new product (RO-CHE Systems) is a controller designed to handle multiple motor control of audio cassette drives using status bits controlled by the computer. The software we supply with the unit is designed to work with either the high speed Tarbell cassette interface or the Altair 8800 ACR interface. In the past it took a commercial system or time sharing house to give you the ability to handle files containing individual records. With the "Magic Black Box" as we call it, control of audio cassette motors provides an element of automation previously unobtainable using simpler cassette interface disciplines. We grabbed the extra status bits available on Don Tarbell's cassette interface and used them as control signals for the multicassette controller. In using our control box with other cassette interfaces, all you need to supply, outside of software
patches to the driver routines, is a parallel interface output to accomplish the same function.

This controller handles up to four inexpensive cassette recorders at one time without losing the ability to save and load from Altair BASIC and other packages. The software developed with our unit reads and writes physical records to and from software selected records. It's like having a big computer with four tape drives but not as fast.

With all this file handling software and the hardware control box available at a fraction of the cost of a big system, how can it be used?

Personal computer users are doctors, lawyers and indian chiefs, butchers, bakers, candlestick makers, white collar, blue collar and dirty collar workers who are members of lodges, churches and bowling leagues, and owners and managers of businesses.

With the capability of handling data files larger than your memory size, it becomes only a matter of user application software to create such things as:

- Mailing lists
- Membership rosters
- Inventory
- Accounts receivable
- Accounts payable
- Back orders
- Batting and bowling averages
- Form letters
- Word processing
- Check book balancing
- Income tax calculations
(I've started . . . you add to the list)
We demonstrated the multicassette controller at the June and July Southern California Computer Society meetings where it was set up to create a mailing list.

The demonstration started by one individual keying in his name and address which were written on deck 0 . The next individual entered his last name. The software read the name from deck 0 and decided which name to write to deck 1 first. The rest of the name was entered and now the tape in deck 1 had two names and addresses. Each time a name was entered, the old master file was read and the new name was merged in alphabetically
to the new master file. The demo software also had the ability to find a last name and print it out or to list the whole file of names. Last names were used as the key field for identification, but it could just as well have been part numbers, account numbers or any other such identification code.

In addition to the cassette 10 routines, the software supplied with this box contains a number of utility routines for such things as keyboard entry and echo, message output, string compare, line feed, carriage return, string moving, etc.

Where to Get It

RO-CHE Systems, 7101 Mammoth Av, Van Nuys CA 91405, offers the multicassette controls in a two and four port model at $\$ 95$ and $\$ 125$ in kit form, and $\$ 135$ and $\$ 175$ when assembled and tested. A two port add on kit is also available at $\$ 32$. Shipping and handling is $\$ 2.50$ per unit except the add on kit which is $\$ 1$.

The units come complete with assembly and operating instructions and a cassette containing the RCSCOS operating systems, Tarbell IO and a low core assembler editor and monitor. Source listings of the operating system are available at $\$ 5$ each.

A discount computer store in Berkeley, California. We sell and service small computers for personal, educational, and business use, both in kit and assembled form. Many items are at substantial discounts from manufacturer's list prices. Special prices on complete systems.
*IMSAI-Computers, memory, interfaces \& peripherals North Star Computers-FPB \& Disk
Lear Seigler-ADM3 Terminal kit-\$835 (\$995 assem.)
*Polymorphic Systems-Computers, memory \& interfaces
*Cromemco-TV Dazzler, Bytesaver, 7A+D \& ZPU
Enclosed Cherry Keyboard-\$125
*Morrow's Micro Stuff-Cassette interface

* Vector Graphics-memory
*Starred items available by mail order at 10\% discount from manufacturer's current list prices. For prompt delivery, send money order or cashiers check plus 2% shipping \& handling. Personal checks require 3 weeks processing. Calif. res. add sales tax. Minimum order $\$ 80.00$.

KENTUCKY FRIED COMPUTERS
2465 FOURTH STREET
BERKELEY, CA 94710
TELEPHONE: (415) 549-0858
A COMPUTER IN EVERY POT

YOU'LL SAY...

WHY OUR MEMORY SHOULD BE YOUR MEMORY

1. Quality 2. Delivery 3. Price ALTAIR \& IMSAI COMPATIBLE 8K STATIC RAM SPECIFICATIONS:

Access Time: 450 ns - no wait states
Current Requirement: +5 to +10 V at 1.6 A worst
case, 1.35A typical
Memory Chips: Prime components plus two extras
Address Lines: Fully buffered
Memory Protect: Hardware 8K
Power Regulators: 4 ea. 7805
Address Select: Dip switch accessable from top of board. No need to remove board to relocate
Oulput Disable: Permits use with transparent loader
Board: Quality G-10 material with solder mask both sides. Pre-tested for etch bridges.
Order your 8K RAM kit for only $\$ 265.00+6 \%$ Cal. sales tax $+3 \%$ hndlg. $\$ 350$ assmbld., both incl. sockets.

Calculator Keyboard Input

for the Microcomputer

Joseph Hoegerl
RD 1 Box 262
Guy Mills PA 16327

There was a need for a simpler method to put programs into memory.

Some months ago I purchased an RGS Electronics 008A Microcomputer Kil in order to learn about this computer thing. In the intervening months it has served a number of very useful functions.

First, I learned about the basics of computers. In putting the kit together, I learned a great deal about the 8008 microprocesser and its associated circuits. By solving a problem in the operation of $1 O$ transfer, I got to understand a lot about the logic ol my computer. (It turned out to be a malfunctioning 7442 chip which provided the $I O$ gating pulses.)

Second, I have become reasonably proficient in programming, using the basic machine language of the 8008 in octal form. The instruction set of the 8008 is simple enough that one can remember the numbers in octal from about as easily as the mnemonics and it saves lime when working with shorter programs.

Third, it has provided me with a number of projects involving the computer itself or with the equipment tied into it.

It did not take long for me to see that entering programs by way of the front panel
switches was tedious and time consuming, especially since programs quickly become more complicated and longer as programming proficiency develops. There was a need for a simpler method to put the programs into the memory. The thought occurred to me that an inexpensive and simple solution might be to adapt a calculator keyboard to enter data in octal form. The circuit described in this arlicle is the result of thinking about this alternative. The unit proved to be both trouble and error free in the five months since it was completed. I use the keyboard continually, even though I have since interfaced a Model 15 Teletype and a five level tape unit to the CPU which enables entering programs from tape.

A bootstrap program for initial input after a power shutdown requires only 15 bytes which must be entered by the original front panel switches (see listing 1). The main program requires only 62 bytes and these are entered using the bootstrap (see listing 2). The keyboard has provision for entering data either in octal or hexadecimal format. The unit may be built with the full capability, or parts can be omitted to dedicate the key-

Listing 1: Bootstrap Keyboard Input Program. This 8008 program reads the keyboard device of figure 1 and loads memory in ascending sequence. Its primary purpose is to enter the second full progrum of listing 2.

Intelese Octal Address		Octal Code	Label	Op	Operand	Commentary
000/000	006	070		LAI	070	define device address;
000/002	161			OUT		select device;
000/003	056	XXX		LHI	(H)	load upper address byte here;
000/005	066	XXX		LLI	(L)	load lower address byte here;
000/007	300			LAA		no op;
000/010	250			XRA		clear " A " to zero;
000/011	141			OUT		send control pulse out to interface;
000/012	101			INP		read a byte into accumulator;
000/013	370			LMA		load the byte into memory;
000/014	060			INL		increment the address pointer;
000/015	121			OUT		output a pulse to reset data ready flag;
000/016	000			HLT		end of program, wait for restart.

board to octal or hexadecimal input exclusively:

Circuit Description

The circuit of the input device is given in figure 1. A diode matrix decodes the heyswitch closures into binary format. Data is entered in the normal sequence with the most signilicant digit first. The three 7475 latches are activated sequentially (only two are used for the hexadecimal mode of input) and the binary equivalent of each digit is held in the 7475 latches until read by the computer and then cleared by a signal from the computer, or, in case of keypressing errors, by pressing the clear entry (CE) hey on the heyboard.

The chuice of octal or hexadecimal is accomplished by the use of two 74157 multiplexers, ICII and ICI2. These are set to pich hexadecimal or octal encoding by Sl. It only octal format is needed, the binary data can be taken directly from ICI, $I C 2$ and IC3, at the points maked $A 0$ io $A 7$
on figure 1. If only hexadecimal format is desired, ICII, ICI2, and IC3 may be omitted and the outputs taken from the remaining ICI and $I C 2$ at the points marked B0 to B 7 on the diggram.

The circuit uperate as follows: When a key is depressed, one or more of the five decode lines will go to the high state. (Four lines are uned for encoding the digits ' 1 ' to ' F '; and the filth line is used to decode the cro key.) These are inverted by the five inverters, IC4A through IC4E, the outputs of which go low when a key is pressed. This causes the output of IC5, which functions as a nor gate, 10 go high. This transition is converted to a positive going pulse by the combination of $I C+F$, capacitor C 1 and resistor $R 6$. The pulse is inverted and syuatred off by ICGD. The output pulse of IC6D is fed to the three gates ICIOA, B and C, one of which is cmabled by the state of the 2 bit counter IC7A and IC7B. A "cleat llag" signal from the CPU, or a clear entry (CE) key closure will reset the two flip flops

Toggle switches are relics of the dark ages (of computing).

Listing 2: Full Keyboard Inpul Program. This soos progrum defines a memory address with the first two bytes read trom the keyboard after restart. Then it enters a loop which loads memory byle by byle in ascending address securence.

Figure 1: Keyboard Input Logic. This circuit contains "diode malrix which encodes 16 hexadecimal input keys as a four bit code, a register to contain the results of that conversion, a multiplexer which gives a swilch selected 3 digit octal or a 2 digit hexadecimal interpretation to the inputs, and control loyic for keybourd debouncing, clearing, and entering data.
to the start position. When this happens, gate IC10A will be enabled by a high level on two of the three inputs. The pulse from IC6D mentioned previously then satisfies the gate and its output will go high, momentarily causing IC1 to latch on the data present on the decode lines.

When the key initially depressed is released, the delay monostable made up of R7, R8, C2, IC6A, B, and C, causes a pulse which increments the counter formed by flip flops IC7A and B, thus setting up two lines of ICIOB to a high level and ready to accept the next digit. Note that this does not happen until the key is released, thus avoiding erroneous writing of the same data into more than one latch. This process continues for the third digit with ICTOC enabled.

After the desired digits have been entered
on the keyboard, the enter (EN) key is pressed. This sets the flag RS flip flop made up of IC8A and B. To prevent multiple data entry, its output must pass through the dual input gate IC9B, which will prevent data from passing through until the enter key has been released. At that time a high level will appear on the data ready flag output, signalling the CPU that data is ready for processing. The RS flip flop is reset by a negative going pulse on the clear flag input from the CPU. When this flag flip flop was initially set by the enter key, the 7474 flip flops IC7A and B are cleared to zero through IC8C and D.

The Interface

A standard RGS Electronics interface board was used with the addition of the
circuit shown in figure 2. This circuit is a multiplexer which allows one of the eight data bus lines to read either data or the data ready flag output. To simplify programming, D7 was chosen for the dual purpose line.

The instruction "LAI 200" followed by a 141 output control instruction will set the Q output of IC13A to a high level. This will set the multiplexer IC14 to accept data from the data ready flag on the D7 input, signalling the CPU that data is avalable. The program then performs an XRA which clears D7 to zero, followed by a 141 output control instruction which sets the Q output of IC13A to a zero and the $\overline{\mathrm{Q}}$ to a high level which switches the selector of IC14A, B and C to accept the D7 output of the 74157 IC11.

Construction Notes

Little rouble was encountered in the construction of this unit. The circuit, with the exception of the keyboard and the interface, was all put on a single sided printed circuit board four by six inches. As I do in most of my construction projects, 1 used single sided board and wired across the board where I couldn't paint in the reguired wiring. I have found that this technigue gives results with considerable saving in time when only one model is to be made. Ribbon wire was used between the circuit and the keyboard. This allowed the keyboard to be moved around to the most convenient location and out of the way when not in use. Power was taken from the power supply of the computer, which is capable of supplying three amperes. My present memory size is low enough to make a considerable excess power drailable for peripherals. The universal interface board supplied by RGS Electronics in kit form is a very flexible circuit which lends itself to many types of external equipment such as this unit.

Programming

A bootstrap program, 15 bytes in length, is found in listing 1 . It is placed into the first 15 address locations on page zero to take devantage of the RST instructions to minimise program length. These bytes must be entered using the original switches on the front pancl of the CPU. The purpose of the simple bootstrap program is to load a second, more sophisticated bootstrap program.

The starting address of the program to be entered is placed in location 004 for the upper and 006 for the lower address. These two addresses are two of the 15 bytes which make up the program. Operation is as follows:

Figure 2: RGS-008A Interface Logic. This diagram shows the logic used to control the interface to the author's RGS-008A computer.

1. Set the front panel switches to 005B.
2. Press the "clear entry" key on the keybodrd.
3. Enter the three octal numbers that represent the program byte.
4. Press the enter (EN) key.
5. Press Interrupt on the CPU front pancl.
6. After the first byte has been entered, sel the front panel switches on the CPU to uetal 015, then repeat steps 3,4 , and 5 above for each additional byte lo be entered.

You will note that this is not a continuously executing program but stops after each entry and is restarted for each byte using the RST and interrupt instruction.

A More Sophisticated Bootstrap Program

Listing 2 shows a program which requires only 62 bytes and is entered using the simple bootstrap program. In my case the program is located at page <ero, octal location 070. It is a continuously executing program and after linishing program entry, the front panel switches are set to zero and an interrupt entered. It operates as follows:

1. Set the front panel switches to 075 and press interrupt switch.
2. Cleal the keyboard with the clear entry (CE) key.
3. Enter the upper starting address and press the enter (EN) key.
4. Enter the lower address and press the enter key.
5. Enter the program bytes, sequentially, pressing the enter key for cach byte. If more thatn one byte of the same program instruction is to be put into memory, it is not necessary to rekey them. Merely press the enter key again for each additional byte. -

Glubs 890 Newsletters

The RAMS of Rochester

We recently received word from Dave Noderer, secretary of the Rochester NY Area Microcomputer Society, a relatively new organization, that meetings are scheduled for the second Thursday of each month at the Rochester Institute of Technology, Building 6, Room 1030 at 7:30 PM.

The primary objectives of RAMS are exchanging newsletters, establishing group purchasing power, and organizing regional computerfests and conferences. A monthly newsletter called Memory Pages is published and can be obtained by writing to RAMS, POB D, Rochester NY 14609.

Omaha Hackers - Getting It Together

Mid-America Computer Hobbyists announce the organization of an Omatha based club primarily to exchange information on construction and software development projects. Those interested in joining MACH should get in touch with Lt Tom Smith, 2708 Calhoun Si, Bellevue NE 68005.

British Columbia Computer Society

A group of computer hobbyists have banded logether in British Columbia. For more information about what should be a promising new club contact Karl Brackhaus, 203-1625 W 13 Av, Vancouver BC Canada V6) 269, (604) 738-9341.

San Diego Computer Society Personal Systems

SDCS has apparently developed into a first rate organization at least by the looks of its newsletter, Personal Systems. Among the articles in the October issue (the latest we have unfortunately) is one by C S Pepper, "The MM5740AAE Encoder," d complete keyboard interface system capable
of encoding 90 switch enclosures in a ASR 33 Teletype format as a 9 bit code, "The Micro-Tower" by Dr Lance Leventhal, the next few articles of which will deal with computer intersection sets, and an article on an "Extended Debugging Aid" by Richard S Mason. All major entries in this newsletter appear to be technically competent and thorough. So, if you want to learn more about computers write Personal Systems, San Diego Computer Society, POB 9988, San Diego CA 92109.

New England Computer Society

NECS continues to publish a fine monthly newsletter, The COMPUTERIST. Volume 1, Number ?, featured an article on the future of the home terminal: a feedback loop with the potential to plug personal experience in the form of coded brainwaves into any conceivable sequence or situation. According to author Jocl Henkle of The Valley Institute, Hillsboro NH , this could become a form of "electronic LSD." So watch out; this could have some very interesting possibilities!

Along with the fine articles which appear here monthly is a rundown on the happenings of six hobbyist groups in the region. This is a mighty handy journal for New England hackers. Subscription rate is $\$ 6$ per year. Write POB 3, South Chelmsford MA 01824, or call (617) 256-3649.

Northwest Computer Club

It looks like some noteworthy things ate happening in the Seattle area through the Northwest Computer Club. An interesting newsletter has been assembled: a monthly presentation of computer lore and a fairly extensive classified section that might help a body save a buck or two. The October issue features an article called "8080 Programing

Tips and Tricks," some nifty ways to use the unique address calculation ability on this machine. There's also some information on the West Coast Computer Faire, April 15 to 17, at the San Francisco Civic Auditorium. Contact the Northwest Computer Club at POB 5304, Seattle WA 98105.

Rock Island Hackers Unite!

The Quad City Computer Club in Rock Island IL held its first mecting on October 24. A group of thirty got together for a presentation. To contact what may be an up and coming club write: John E Greve, $4211 / 1 / 2$ th Av, Rock Island IL 61201.

KC Thru Put

The Computer Network of Kansas City has been publishing a newsletter called KC Thru Put. If you'd like to get in touch with the folks in Kansas City, send a note to $K C$ Thru Put, 968 Kansas Av, Kansas City KS 66105.

Central Florida - A New Club

Christian S Bauer, assistant professor of engineering at Florida Technological University in Orlando, announces the formation of a microcomputer club open to the community as well as students. The plan is to undertake construction projects from BYTE and a number of Motorola 6800 designer's kits in order to build up a microcomputer center. Contact Dr Bauer at (305) 678-2413 to find out more.

PACE Users Group?

"We are seeking to form a PACE users group for the purpose of exchanging software, describing systems implementations, and communicating hardware hints and kinks on interfacing peripherals to the 16 bit National Semiconductor microprocessor. Although National Semiconductor has its own microprocessor users' society, this organization covers IMP16 and SC/MP as well, and is also not primarily hobbyist oriented. Our intention is to serve as a clearing house for PACE based systems, both homebrew and commercial kit configurations (such as PACER), which will bring existing and potential users together to share ideas, know-how, and the pleasures and pains of getting a system up and running. Up the 16 bit microprocessor!
"Please send your name, address, phone number and a brief note on your system and its application to me, Jock Millenson, at 64 The Uplands, Berkeley CA 94705." ${ }^{\text {m }}$
1455-A So. 1100 E. Salt Lake City, Utah 84105 Phone: 801-466-7911

WHEN YOU WRITE FOR OUR CATALOG AND ENCLOSE $\$ 1$ TO help defray the cost of handling and mailing, HERE'S WHAT YOU GET:

1. A CERTIFICATE GOOD FOR $\$ 2$ ON YOUR NEXT PURCHASE
2. the c[MPUTER RDGM EASY to understand CATALOG COVERING

IMSAI
THE DIGITAL GROUP
POLYMORPHIC SYSTEMS
SOUTHWEST TECHNICAL PRODUCTS CORPORATION
TECHNICAL DESIGN LABS
ETC.
3. the camputen ranM "Easy guide" to help you PICK THE RIGHT SYSTEM, PERIPHERALS, COMPONENTS, AND SOFTWARE FOR

THE BEGINNER
THE ADVANCED
THE EXPERT
THE SMALL BUSINESS
4. A CURRENTLISTING OF PRESENTLY AVAILABLE

SOFTWARE
PUBLICATIONS
PERIPHERALS
5. INFORMATION ON REPAIR SERVICE, LOW COST CUSTOM PROGRAMMING AND OTHER SPECIAL SERVICES.

at the c[MPUTER RGGM your whitten questions ARE HAPPILY RECEIVED AND PROMPTLY ANSWERED

We also stock a complete
LINE OF AMATEUR RADIO EQUIPMENT

BANKAMERICARD
.MASTERCHARGE

San Francisco Bay Area-where it all started-finally gets its act together.
7.000-10,000 PEOPLE - 100 CONFERENCE SESSIONS - 200 COMMERCIAL \& HOMEBREW EXHIBITS 2 BANQUETS - SPECIAL INTEREST SOCIAL CENTERS
San Francisco Civic Auditorium, Northern California's Largest Convention Facility

YOU Can Be A Part Of It:

- Some of the things you can do are:

Exhibit a Homebrewed System

- Hardware or Software
- Prizes for Best "Homecooking" (just like a country fair)
- Nominal Grants-In-Aid Will Help With Exhibit Transportation Costs (grants will be refereed)
Present a Talk
- A Formal Paper
- An Informal Talk

Serve on a Panel

- As a Panel Member
- As the Coordinator/Moderator

Give Suggestions

- Topics for Talks \& Panels
- Speakers \& Panel Participants
- Interesting Exhibits (homebrewed or commercial)
- Special Activities
- Quick, write or call for more details!

Jim Warren, Faire Chairperson
Box 1579
Palo Alto CA 94302
(415) $851.7664 \vee 323-3111$

- Some of the Conference Sections being planned:
- Computer Graphics on Home Computers
- Computer-Driven, \& Computer-Assisted Music Systems
- Speech Synthesis Using Home Computers
- Computers \& Amateur Radio
- Microprogrammable Microprocessors for Hobbyists
- Program \& Data Input via Optical Scanning
- Floppy Disc Systems for Personal Computers
- Computer Games: Alphanumeric \& Graphic
- Computers \& Systems for Very Small Businesses
- Personal Computers for the Physically Handicapped
- Personal Word-Processing Systems
- Software Design: Modularity \& Portability
- Personal Computers for Education associated with a Univ. of California short-course
- Several Sections Concerning Standards
- Other Sections for Club Leaders, Editors, Organizers, etc.
- Co-Sponsors include amateur, professional, \& educational groups:
- The Two Largest, Amateur Computer Organizations Homebrew Computer Club Southern California Computer Society
- Both Area Chapters of the Association for Computing Machinery San Francisco Peninsula Chapter Golden Gate Chapter
- Stanford University's Electrical Engineering Department
- Community Computer Center
- People's Computer Company

What's New?

A New Case of Independent Suppliers
For some time now, the small computer world has been treating the Altair bus of MITS as the de facto bus to interface if you're about to make an independent peripheral or processor. Well, sales of the Southwest Technical Products Corporation 6800 system have apparently gotten to the level where at least one company feels there are enough of them about to supply an independent peripheral product. This product, the first we've seen for a 6800 by Southwest, is the M-16 16 K memory board by Smoke Signal Broadcasting. It uses the new AMD 9141 ADC static memory chips and costs $\$ 595$ and delivery is quoted as from stock. With the SWTPC 6800 it is now possible to expand to 32 K without any modifications of the circuitry by simply plugging in two of these boards, and you can go all the way to 48 K with some rewiring of the SWTPC 6800 processor to avoid conflicts between MIKBUG and addresses 8000 to BFFF hexadecimal. This product is the first of several the company has designed and plans to produce which will plug into the SWTPC computer. The size of this board is the same as the SWTPC 6800 processor board (5.5 by 9 inches; (14 cm by 23 cm) and the 9141 chips utilized are fast enough to run the 6800 at its full rated speed.

Contact Smoke Signal Broadcasting at POB 2017, Hollywood CA 90028.■

The Tarbell Cassette Interface

- Plugs directly into your IMSAI or ALTAIR
- Fastest transfer rate: 187 (standard) to 540 bytes/second
- Extremely Reliable-Phase encoded (self-clocking)
- 4 Extra Status Lines, 4 Extra Control Lines
- 25-page manual included
- Device Code Selectable by DIP-switch
- Capable of Generating BYTE/LANCASTER tapes also.
- No modification required on audio cassette recorder
- Complete kit \$120, Assembled \$175, Manual \$4
TARBELL ELECTRONICS
144 Miraleste Drive \#106, Miraleste, Calif. 90732 (213)538-4251

California residents please add 6% sales tax

So You Want a Beginner's Introduction? Try This Book as a Starter ...

How to Buy and Use Minicomputers and Microcomputers, by William Barden Jr, Howard W Sams and Co Inc, Indianapolis, 1976, 240 pages, $81 / 2 \times 11$, paperback, $\$ 9.95$.

William Barden Jr has written an interesting new book entitled How to Buy and Use Minicomputers and Microcomputers. The book is designed with the new user or potential user in mind, as is reflected by the following excerpt from its preface:

It doesn't take a mathematical or electronics genius to learn how to use and program one of these computers. Starting with a basic system, a beginner can learn by writing two- or three-step programs and rapidly work up to larger and more complicated functions. The beginner may then add to his basic system as his hobby (and pocketbook) grows. A minimum system is now in the $\$ 200$ range.

The purpose here is to instruct the interested person in what computers are, how they perform their computing, and what tools are necessary to talk to all computers, especially the newer minicomputers and microcomputers. A detailed description of four low-priced minicomputers and many lower-priced microcomputers is included. Many examples of "real-world" connections to computers are given, as are short programs illustrating the programming of the computers both in the more rudimentary machine language and the BASIC language. Benchmark programs for every minicomputer
or microcomputer discussed are provided for comparisons of one computer with another.
Further, the book reflects an important point, which we can only emphasize over and over again: microcomputers, per se, are merely extensions of the concept of a minicomputer to a lower price range. As such, the book is about inexpensive general purpose computer systems, rather than exclusively concentrating upon the microcomputer as a currently fashionable and practical way of implementing the processors for such systems.

You'll find a chapter on the basics of computers, a chapter on the hardware of processors, a chapter on software, an excellent and comprehensive chapter on peripheral devices from the standard to the nonstandard, a chapter on how to select a system, a chapter on programming and applying a system, and two chapters profiling general purpose systems based on microcomputers and minicomputers. The book is finished with a set of 10 appendices and an index. We highly recommend this book as a background source of information for the new computer user who wants to get oriented in the field as quickly as possible. . . CH■

Electronic Projects for Musicians, by Craig Anderton, Guitar Player Productions, Saratoga CA, 1975, $\$ 6.95$.

If brevity is the soul of wit, clarity and conciseness are the life's blood of a good technical handbook - especially when a neophyte's comprehension is at stake. That's what makes this text so satisfying. The beginner's understanding is not short-circuited by seemingly groundless technical lingo. Rather, the reader is led by a friendly hand through the wirey labyrinth of integrated circuits, resistors and capacitors. Within fifty pages, even a novice is well on the way to building his or her own preamps, metronomes, sound mixers, tone controls or any of fifteen other musical projects.

With Anderton's light readable style and Vesta Copestake's clear illustrations and schematics, Chapter one's introduction to electronics is quick and relatively painless. The musician may not learn everything, but he or she will pick up enough theory to take off the gloves and just about get to work.

But first, he or she will need parts and tools. The next chapter dissects the electronics marketplace - from small retail outlets to large industrial vendors. The author shows how to obtain quality parts at reasonable

WHO NEEDS IT?

If you run a lot of programs and need flexible yet inexpensive storage, you need a cassette recorder interface.

Why choose DAJEN?
CRI uses biphase format for high speed and density. DIP switch seleclion of baud rate from 800 to over 6000 baud. Digital comparator, no adjustment. Level and sync indicator. Operate from systems clock for stability. Fully Altair, IMSAI, Tarbell compatible. Bus driver. Single voltage power supply. All IC sockets provided. Prerecorded cassette tapes.

Complete 16 page manual $\$ 2.50$.
Refundable with order Kit \$120.00
Assembled, tested \$160.00
COD \$1.50 extra
DAJEN Electronics 7214 Springleaf Ct. Citrus Heights CA 95610 (916) 723-1050

8,192 X 8 BIT STATIC MEMORY
EXCEPTIONALLY LOW POWER

KIT \$295.00
PROTOTYPING BOARD
2-80-CPU
16K RAM
EXTENDER CARD
2K RAM / 2K ROM
CARD RACK AND POWER SUPPLY
LOW PROFILE IC SOCKETS
EDGE CONNECTORS
DB25 CONNECTORS

SHIPPING EXTRA, ADD $\$ 2.00$
NJ RES. ADD 5\% SALES TAX
ELECTRONIC CONTROL TECHNOLOGY
P.O. Box 6, Union, New Jersey 07083

Computer

New York

LONG ISLAND

Computer leasing available.
IMSAI, SWTPCo, Digital Group Processor Tech, Apple, OSI TDL-Z-80, Seals, Cromemco,

Varas, Tarbell, Oliver
Magazines, books, chips, sockets, connectors, terminals.

IT'S ALL HERE WAITING FOR YOU FRIENDLY ADVICE TOO

New York City
314 5th Ave.
(32nd St)
New York 10001
212-279-1048

Long Island 2072 Front St East Meadow NY 516-794-0510

U. S. ROBOTICS

Makers of fine robots since 1982, announce the next best thing in 1977
the

AUTO - ANSWER MODEM

- originate/answer switch means your micro can answer calls from other computers or terminals.
Build your own timesharing service. (make your hobby pay)
Start a software exchange.
Enjoy a new dimension in games: man/ machine teams in battle!
- fully assembled and tested.
- 103 type, runs 0.600 baud.
- interface with RS232, 20 ma and TTL.
- digital modem, crystal controlled.
-90-day full warranty.
- optional S25/yı maintenance contract.
- 10-day modem-back-money-back guarantee.

Send \$105 (shipping, handling and Illinois sales tax included) to

U. S. ROBOTICS
 Box 5502
 Chicago, IL. 60680
 Phone: 312-528-9045

Pictured above is the new OP-80A High Speed Paper Tape Reader from OAE. This unit has no moving parts, will read punched tape as fast as you can pull it through ($0-5,000$ c.p.s.), and costs only $\$ 74.50 \mathrm{KIT}, \$ 95.00$ ASSEMBLED \& TESTED. It includes a precision optical sensor array. high speed data buffers. and all required handshake logic to interface with any uP parallel I/O port.
To order, send check or money order (include $\$ 2.50$ shipping/handling) to Oliver Audio Engineering, 7330 Laurel Canyon Blvd.. No. Hollywood. CA 91605. or call our 24 hr . M/C-B/A order line: (213) 874-6463.

GRAPHICS

- Simultaneous display of text and graphics
64 programmable GRAPHICS characters
- Upper case ASCII ROM
- Character selective inverse video
All needed RAM included

This high resolution low cost graphics/text display has been made possible through the use of 64 totally user-programmable graphics characters. These contiguous 8×12 "building-blocks" are accessed just like any text character and displayed on the same 64 character x 16 line screen grid.

This complete single board kit plugs directly into the S-100 bus (Altair/IMSAI) and is yours for only \$199.

Ask for THE DETAILER.

> MicroGRAPHICS
> P.O. Box 2189, Station A

> Champaign IL 61820

Terms: Prepaid. Illinois residents add 5\% sales tax.

prices. Included is a log of mail order suppliers, a representative price list of retail and wholesale components, and some warnings on detecting bad deals.

The author also assembles a decent set of tools for about sixty dollars, which should pay for itself within a few projects. Included are pointers on the care and feeding of tools as well as some safety tips: "Don't solder with shorts on if you're sitting down. Sometimes the rosin spits out and hits you on the leg."

Once the tools, parts, and basic theory
are together, the next step is construction perfboard assemblage, soldering, drilling templates and the like. With the clear instructions for basic workmanship digested, even the greenest are now ready to disappear into the basement for some hands-on experience.

Each of the projects uses one integrated circuit, runs on common battery voltages, and requires about the same level of technical competence. For each gadget, the author explains just what it does (a record comes with the book to show how each sounds), as well as how to build, substitute, or modify. Included for every project are schematics, parts lists, component layout diagrams, and a one-to-one scale positive of the board foil pattern.

The appendix gives approximate material costs for the projects (at December 1975 prices). The most expensive project, an eight-in-one-out mixer, is listed at $\$ 20$ to $\$ 40$. The rest range from under $\$ 5$ to about $\$ 25$. Not bad when you consider the manufactured costs; and, with Anderton's help, not all that difficult to build either. Even if you haven't the faintest interest in electronic music projects, the practical pointers on identification of parts and construction of electronics projects make this book an essential starting point for us novices.

Jim Travisano

Box 4
Marlboro VT 05344 -

The Compleat Computer by Dennie Van Tassel, Science Research Associates, Chicago, 216 pages, softbound, $\$ 5.95$.

RIDDLE: What do a medical center, the Senate Watergate Committee's investigative team and a Tibetan monastery have in common? ANSWER: a computer. Surprised? Thanks to Dennie Van Tassel's The Compleat Computer, such information about the increasing use of computers has lost much of its stiff scientific "byte" and been replaced with beneficial information that anyone can understand.

The Compleat Computer (1976), a carefully compiled collection of over 100 in formative and often humorous articles by noncomputer specialists, seems to be the best publication so far to help expose people to the many diverse opinions about the computer. Author Van Tassel, user liaison in the computer center at UCSC and collector of computer miscellany, has filled his paperback book with a wide variety of selections
from fiction, poetry, newspapers, cartoons and advertising as well as articles that concern the computer specialist. Such wellknown noncomputer experts as Norman Cousins, Ray Bradbury and Issac Asimov are just a few of the writers whose articles appear in the book.

Some of the different areas covered include the story of a fully computerized poison control center in a children's hospital in Missouri, a computer which acted as a key "member" of the Senate Watergate investigative team by spewing out minute facts about any witness in a fraction of a second and a fictional account of how a Tibetan monastery might use a computer to compile a list of all the possible names of god.

In order to include as much material as possible, Van Tassel capsulized the longer articles and selected only the "tastiest tidbits" for publication. His extensive references following each article are helpful to the interested reader who wishes to pursue a topic in greater depth. After each well-
organized section of the book, a long list of questions and exercises is included to further aid the reader in exploring other various opinions about the use of computers.

The book is divided into nine sections starting with three introductory chapters which discuss the basics of computers. Articles appearing in this first section include "The Development of Automatic Computing," "Computer Games People Play" and "Technology, McDonald's Collide as Students Best Burger Bonanza," a humorous article describing how Cal Tech students used an IBM computer to print out 1.2 million entry blanks and win a McDonald's contest.

The seond portion of the book brings the reader up 10 date with chapters on "The Present and Potential," "Applications" and "Governmental Uses" of computers. In "Justice, the Constitution and Privacy," Sam Ervin Jr, Senator from North Carolina, raises some interesting questions concerning the computer's role in government surveillance and the individual's right to privacy. On a more humorous side, Art Buchwald's "The Curse" warns of the horrible consequences a computer metes out when a defiant citizen dares to fold, bend and mutilate his phone bill and send it (with payment) back to the company.

The book's final three chapters, "The Impact of Computers," "Controls or Maybe Lack of Controls" and "Your Future," explore the many significant effects the computer has upon our everyday lives and the potential it plays in our country's future. Articles in this section include "Computerized Dating or Matchmaking," "Computer Crime" and "Machines Hold Powers for Good and Evil."

Interspersed among the many informative articles are imaginative poems, computer generated illustrations and cartoons. Throughout the book the famous comic strip character Doonesbury and his friend Mark marvel at the many wonders of the computer. A newspaper ad for computer operators convinces them that they have found their true vocation in life. "Earn $\$ 7,000$. . . impress your friends . . . MEET GIRLS!"

In addition to all that humor, intrigue and important information to both the computer and noncomputer specialist, The Compleat Computer also offers a fictional romance about a computer named Max who almost breaks up a marriage. For $\$ 5.95$ a

copy, who could ask for more? Van Tassel has also written Progrum Style, Design, Efficiency Debugginy and Testing (PrenticcHall Inc).

Linda Blocki

1706 Silver SE, Apt 27
Albuquerque NM 87106 •

ALTAIR 8800 OWNERS

* Does your Altair crash when the lights dim?
* Is your Altair power supply inadequate for all the memory and I/O that you'd like to run?
Then you need the unique Parasitic Engineering ConstantVoltage Power Supply Kit. A custom engineered power supply that installs easily in your Altair 8800 or 8800 a mainframe. It has performance no other Altair power supply can match.
* Full 12 amp output with line voltage as low as 90 volts or as high as 140 volts.
* Isolation from power line fluctuations and noise.
- Protected against overloads.

Don't let power supply problems sabotage your Altair. Order your kit TODAY.
only $\mathbf{\$ 9 0}$ postraidid in the UsA.
Ca residents add $\$ 5.40$ sales tax.
BABKAMEACCAAD
mastion charge
PARASITIC ENGINEERING

PO BOX 6314
ALBANY CA 94706
your particular interface carefully. What is even worse is that this procedure will probably destroy blanking during vertical and horizontal retrace. The casiest way out of the blanking problem is to gate the output of the added inverter with the various counters provided on the interface in such a way as to provide a black on white image only in the character field of the display. This will leave ugly black borders on the screen, but they are preferable to a lack of blanking.

The nexi problem involves generating subjective color timing pulses such as those shown in figure 3. This turns out to be a very easy problem to solve. A 60 Hertz nonsymmetric clock is certainly available at the interface since it is needed to generate the vertical sync pulse for the television. A 7492 TTL IC configured as a divide by iwelve counter and a two input NOR gate are all that is required to generate the color liming pulses in figure 3 from the 60 Hertz clock. We want the first flip llop, the A
stage, in the counter to trigger every time a vertical sync pulse goes out, but we do not care whether it triggers just before or just after the sync pulse. Thus, the fact that the counter is triggered by a falling edge is likely to be just interesting trivia.

Another problem is providing for the storage and readout of the color information. The simplest and mosi versatile approach is to provide separate color information for each character. If we provide for four character colors: black, red, green and blue, we need to provide two extra bits of storage at each character address. If you have a video interface such as TVT II which only implements a 64 character subsel of ASCII, both color and character information can be stored in a single 8 bit byte. Since virtually all of the small computers for personal use are byte oriented, this configuration is particularly appealing. You may wish to use it even if your video interface is capable of generating the full ASCII character set.

A suggested but arbitrarily chosen code for the two color select bits is also provided in figure 3 along with explanations for

Figure 4: The heart of a subjective color generator. CCK is the input from the 60 Hz nonsymmetric clock, CS1 and CS2 are the color select bits read in from memory. The two outputs, BW for black and white, and ECD for enable character display, are used to gate the output of the character generator to provide the table.
various abbreviations. The color select bits can be decoded with a 74155 TTL demultiplexer, but random logic is less expensive. The color select bits are to be read into and out of memory at the same time as the character bits so the same address lines and timing can be used for both.

Figure 4 is a logic diagram of the heart of a black and white to subjective color converter. Its inputs are the previously mentioned 60 Hertz nonsymmetric clock and the two color select bits which are read from memory. Its outputs are two signals which are to be used to gate the output of the character generator's shift register in such a way as to provide the results listed in the table in figure 4. Please note that figure 4 is drawn for pedagogic value rather than for package minimization.

Some Final Notes

In adding subjective color to your current video interface you will certainly want to include an override switch since you will likely find the black on white display and the subjective color flicker to be somewhat distracting in noncolor applications.

For best results the video display on which subjective color is implemented should be placed where there is moderate ambient light, preferably from incandescent lamps. Since the phosphors on most black and white television sets produce a white of high color temperature, you will find that an overall filtration of the CRT face with a large acctate warming filter is useful in producing the best reds.

You can produce subjective colors on a color set, but the technique works best on a black and white set. This is due to the black and white set's superior contrast and resolution.

The best time to think about implementing subjective color is before the design of a video interface. Perhaps this article will be the catalyst for some new products.

Will subjective color knock Cromemco and Intelligent Systems on their respective ears? Hardly. Its advantages are obvious but its performance is modest. Subjective color should be viewed as an interesting and useful method of displaying occasional color information on a black and white video terminal.■

How Well Will It Work?

This is an idea article. The details of implementing it in any particular system must be worked out by the experimenter. We'd like to see some feedback from readers who actually implement this experiment... CH

DIGITAL SYSTEMS FLOPPY DISK SYSTEM

 COMPLETELY

 COMPLETELY ASSEMBLED UNIT ASSEMBLED UNIT $\$ 1595.00$

 $\$ 1595.00$}(Price guaranteed till 3/1/77)
Includes: single drive, cabinet, power supply, controller, interface and all cables - completely assembled and tested.

Features Shugart Associates drives and DIGITAL SYSTEMS FDC-1 controller. Disk formatting is IBM compatible. Comes with single board interface to the Altair/IMSAI bus. The controller uses a simple DMA interface that allows concurrent processor execution, uses hardware bootstrap without processor intervention.

The powerful CP/M Disk Operating System, written by the originator of Intel's PL/M compiler, is available for only $\$ 70.00$. CP/M was developed on our hardware. Systems have been operating in the field for over two years.

Add $\$ 575.00$ for the dual drive system.

DIGITAL SYSTEMS

1154 Dunsmuir PI
Livermore, Ca. 94550 (415) 443-4078

CONGRATULATIONS
 WE DID IT! THE 6800 IS COMPLETE

SWTPC 6800 PLUG COMPATIBLE PRODUCTS -
COMPLETELY ASSEMBLED
M-16 A 16 K single power supply STATIC RAM memory system. The M-16 is fully buffered and requires only half the power of a similar size system using low power 2102's. With the M-16, you can expand your system to 48 K and still have room left over. Price $\$ 595$.
P-38 An 8K EPROM board containing room for 8 2708's. Alternately, you may use it to hold up 1072708 's plus your Motorola MIKBUG, MINIBUG II or MINIBUG III ROM. Using it in this mode at EOOO through FFFF you have direct access to the restart and interrupt vectors which are then switch selectable between MIKBUG and your EPROM but still under MIKBUG contral. The P-38 addressing is switch selectable to any 8 K location. Together the $\mathrm{P}-38$ and $\mathrm{M}-16$ allow various combinations of RAM plus EPROM up to 56 K . Price $\$ 179$.

P-381 Contains all the features of the P-38 plus interface capability to the Oliver Paper Tape Reader and our EPROM programmer which will be announced shortly. Price $\$ 229$.
P-38FF Contains all the features of the P-381 plus a plug-in interface to the ICOM Frugal Floppy. Includes one 2708 with the ICOM bootstrap software. Price $\$ 299$.

PS-1 Power Supply Kit. Provides plus and minus 16 volts required for up to 5 P-38 series systems. May be wired to provide a one volt increase in the plus 8 volt supply. Recommended for any system where the 8 volt supply falls below 7.7 volts under normal load. Price $\$ 24.95$
BFD-68 Basic Floppy Disc System. Complete with controller, cabinet, power supply and one mini-floppy drive. Cabinet, power supply and controller will accommodate up to 3 drives. Includes our nifty Disc File Management software. Assembled and ready to plug into your SWTPC 6800. Price $\$ 795$. Additional drive and interface cabling $\$ 429$
ALL OUR PRODUCTS EXCEPT THE PS-1 ARE COMPLETELY ASSEMBLED. AVAILABLE AT MOST SWTPC DEALERS OR FROM US BY MAIL. BANKAMERICARD AND MASTERCHARGE WELCOME.

SLAM: A Software New Product for Professionals

A company called PennMicro, POB 5073, Lancaster PA 17604, has announced the availability of SLAM, a compact improved operating system designed to operate on Intel's Intellec 8/MOD 80 and MDS Microcomputer Systems. According to PennMicro, SLAM makes these microcomputers far more powerful and easier to program by providing a text editor and high level language interpreter in a package occupying less than 3200 bytes of memory. The aim of the package is to give the user a facility to create a program using the text editor, then run it immediately using only the microcomputer and a Teletype. This eliminates paper tape operations completely without the cost of a diskette. Since SLAM uses a high level language similar to BASIC, programming is faster and easier than assembly language usually used with microcomputers. SLAM (Symbolic Language Adapted for Microcomputers) sounds a bit like Tiny BASIC: It uses 16 bit signed numbers for convenience, has 10 and bit masking operations, has a variety of conditional and subroutine commands, and is totally symbolic in nature . . . the user need not assign registers or memory addresses. An optional SLAM feature permits program development while the microcomputer is operating other real time systems.

SLAM is loaded and entered using the Intel System Monitor. It is supplied on paper tape, ready to load without modification. A

complete instruction manual is supplied. SLAM is available directly from PennMicro for $\$ 99$; delivery is quoted as stock to two weeks. Customers should specify whether Intellec or MDS version is desired and whether provision for interrupts is desired. For users of these Intel Systems, SLAM sounds like an excellent way to get instant high level language capability.-

Attention Music Lovers

Chateau Engineering $\mathrm{Co}, \mathrm{POB} 11$, Arlington VA 22210, manufactures a system called SCORTOS, which is a completely automated music score editing and performance system built from an Altair 8800, an ADM-III Video Display Terminal, a cassette or floppy disk mass storage device, and their special hardware product, the "Keyboard Interface Controller." This system is designed to interface mechanically with existing keyboard instruments, so that scores edited in the computer can be played in real time. As commented in the brochure, "The computer converts musical symbols to musical events much the same as does a musician; in fact
the SCORTOS system can be thought of as an organist with sixteen hands since it is capable of performing sixteen separate parts simultaneously." The key item, the Keyboard Interface Controller, operates by switching mechanical relays and is completely electrically isolated from the instrument it is controlling. This facilitates the connection of instruments to SCORTOS since electrical characteristics ranging from none (as in a piano) to extensive (as in electronic organ or Moog synthesizer) need not be a consideration. Each KIC controls two octaves of keyboard, or 24 keys, but the system can handle up to 11 KIC units. The response time of the mechanical relays is 10 ms , and up to 255 keys can be controlled with up to 22 KIC units. In a one drive floppy system, 80,000 musical events can be stored on line for up to 16 channels. The software described in the brochure is a music description language edited with a specially configured ASCII keyboard.

The price? A cassette based system with one KIC output unit starts at $\$ 8000$. A floppy disk based system can be purchased with one KIC output unit starting at $\$ 10,000$..

Here is a Neat Little 8 K 6800 System

Electronic Product Associates Inc, 1157 Vega St, San Diego CA 92110, (714) 276-8911, has announced a complete, self contained 6800 system for $\$ 1186$ called the Expanded-68. Designed primarily for system prototype development use, the Expanded-68 comes complete with 8 K of memory, power supply, 16 digil keyboard, hexadecimal LED display, expansion cabinet, 36 pin edge connector, and MIKBUG as an operating system. Also available for direct interfacing are: dual floppy disk drive, IMP-1 printer, 132 column printer, TV interface, and full ASCII keyboard. However, even if you're not a systems engineer designing new products, you may find this 6800 in its attractive desk top package will prove to be an interesting personal computer option.■

Software New Product

Are there bunches of PDP- 8 users buried in the woodwork? Of course there are, since Digital Equipment Corp's PDP-8 started the growth of the small computer field, and is probably the widest selling minicomputer prior to the microcomputer revolution. There is even the IM6100 copy of the PDP-8 which is a CMOS microcomputer which represents a dedicated applications route to a PDP-8-like system.

Recognizing this presence of the PDP-8 (which is still a very widely sold product in DEC's stable), a firm called EDUCOMP, located at 196 Trumbull St, Hartford CT 06103, has been active in the independent software market for PDP-8 compatible products, with the star attraction being a PDP-8 operating
system called ETOS. This software has just been cycled through to version 4B, which was described in a recent press release. ETOS version 4 B provides timesharing, real time tasks, and batch processing simultaneously. Real time programs supported under this release typically include device handlers for time dependent tasks such as process control and data acquisition. With ETOS $4 B$ real time tasks can be serviced while background users continue to operate undisturbed under timesharing.

The operating system includes a lot of useful "big computer" OS features not normally associated with minicomputers. For those readers with PDP-8 computers, multiple disk drives, multiple terminals and professional level requirements, this $\$ 4,900$ operating system package may well be worth your investment. For further details, contact EDUCOMP Corp.

BYTEs Bugs

APL COMMENTARY

I was extremely pleased to see an article on APL in your magazine. There were a few errors, however, possibly because of the stated difficulty of achieving "Selectric" quality printing fonts.

Of particular interest was the author's inconsistent use of the non-APL symbol " ε."No such symbol exists to my knowledge. He uses it for two operations: execute (Φ) and membership (\in).

A minor typo: in APL, $2 \times 3+4 \times 5$ is 4610 , not 56 ?

Although explained well, the negative $\operatorname{sign}(-)$ was incorrectly used in the explanation of take and drop (\uparrow, \downarrow). The correct symbols are $-N \uparrow A$ and $-N \downarrow A$. The subtract $\operatorname{sign}(-)$ was used erroneously (negation).

If \mid were a scalar, X/J would not yield the same result as !J. What was probably omitted was an iota; ie: X / t].

The T-bar symbol is new to me. It is not used in the 3.0 release of the IBM program product nor in the APL plus system nor Honeywell's file management version. I suspect format ($\bar{\phi}$) was meant.

Despite my nit-picking, my utmost encouragement to Mr Arnold in developing an APL interpreter.

Carmen J D'Agostino ${ }^{\text {■ }}$

Where Is It?

John G Madry Jr, MD, Melbourne FL 32901, calls our attention to our omission of the address for Executive Devices, which makes the pocket data terminals described on page 99, November 1976 BYTE. The firm is located at 740 S Logan, Fresno CA 93727; phone (209) 255-6977.■

1702A MANUAL EPROM PROGRAMMER

Features hex keypad, two digit hex address and two digit hex data display. Controls include load, clear, go! (step), key/copy, data in/ data out, and counter up/ down. Profile card includes high vol tage pulse regulator, timing, 8 bit address and 8

bit data drivers/receivers. Two $612^{\prime \prime} \times 9^{\prime \prime}$ stacked cards with spacers. Allows programming in 20 minutes - copying in 5 minutes. Requires $+5,-9$, and +80 volts.
ASSEMBLED \$299.95
KIT \$189.95

NOW

The best of two worlds . . . use our 1702 EPROM programmer as a manual data/address entry programmer . . . or connect it to your processor.
IMSAI/ALTAIR computer interface (requires 3 output ports, +1 input port) and software $\$ 49.95$ Briefcase unit with power supplies and interface connectors (assembled and tested only) \$599.95

ANNOUNCING

Our NEW 16K Byte Pseudo-Static, IMSAI/ALTAIR compatible RAM. Single card slot. Uses less power than equivalent low power RAM. All memory chips socketed. Uses all prime, factory fresh ICs. High quality, two-sided, through-holeplated circuit board. Crystal controlled, totally invisible refresh system requires NO software management. Just plug it in and use like STATIC memory.
Complete kit . $\$ 349.95$
Assembled, tested, and burned in 5449.95

ASSOCIATED ELECTRONICS

12444 Lambert Circle - Garden Grove, CA 92641 (714) 539-0735

SIFTWRAE
 BATTLESHIP
 ANOTHER EXCITING INTERACTIVE GAME FROM TSC. THIS 6800 ASSEMBLY LANGUAGE PROGRAM PLACES YOU IN COMMAND OF A CONVOY OF SHIPS DOING battle with the fleet commanded by the comPUTER. YOU EXCHANGE FIRE WITH THE COMPUTER IN AN EFFORT TO DESTROY ITS FLEET BEFORE YOUR'S IS. YOU RECEIVE A COMMENTED ASSEMBLED SOURCE LISTING INCLUDING A SYMBOL TABLE, HEX CODE DUMP, INSTRUCTIONS, AND SAMPLE OUTPUT. SOURCE LISTING (REQUIRED) SL-23 \$8.00 PAPER TAPE (MIKBUG FORMAT) PT-4 $\$ 5.00$ CASSETTE (KC STC. MIKBUG FMT.) CT-6 $\$ 6.95$ DIAGNOSTICS
 THIS DIAGNOSTIC PACKAGE IS JUST WHAT YOU NEED FOR TESTING YOUR 6800. IT CONTAINS 5 MEMORY TESTS. PLUS 6 OTHER DEVICE TESTS FOR A TOTAL OF 11 INDISPENSIBLE SYSTEMS PROGRAMS. AND AT THIS PRICE, YOU CANT GO WRONG. SL-23 $\$ 10.00$ PROGRAM OF THE MONTH CLUB THIS UNIQUE OPPORTUNITY IN HDME COMPUTING IS ENJOYED BY HUNDREDS OF HOBBYISTS. COMPLETE INFORMATION IS INCLUDED IN OUR CATALOG.

ORDERING INFORMATION

PLEASE INCLUDE 3\% POSTAGE, INDIANA RESIDENTS ADD 4% TAX (US FUNDS ONLY). CHECK YOUR LOCAL DEALER FOR OUR PRODUCTS. (DEALER INQUIRIES WELCOMEDJ. SEND $\$.25$ FOR A COMPLETE CRTRLOG.

TSC TECHNICAL SYSTEMS CONSULTANTS TSC

dĩī̃̃fifale

MICROCOMPUTING FOR HOME AND THE SMALL BUSINESSMAN

The professional publication bringing microcomputing technology to the hobbyist, small businessman, educator, engineer and student. Every issue edited to bring technology and people together in the simplest manner.

INTERFACE AGE is packed with

- HARDWARE ARTICLES - Product profiles, comparisons, applications, modifications and construction projects.
- SOFTWARE ARTICLES - Microcomputer development software, short software routines, application software, off-line software storage formats, software communication standards and access to the microcomputer software depository for all INTERFACE AGE readers.
- TUTORIALS - Fundamentals of micro processors, basics for microcomputing, professional to technical transition information, understanding software, elementary math for computing.
- NEW PRODUCTS - Manufacturer profiles and latest product releases.
- USER COMMUNICATION - UPDATE - devoted to club and organization announcements and activities. - LETTERS TO THE EDITOR - Reader forum for expression of opinions and feedback on articles and features.
- MICRO-MARKET/FIFO FLEA MARKET - Low cost/no cost advertising for the new marketeer/garage sale enthusiast.

If you need to know how to get started in microcomputing or need the valuable software once your system is completed then INTERFACE AGE is a must for you.

The reactions to bar code as a means of printing programs have been quite encouraging. We've received a flood of letters with numerous comments ranging from "great" to "scurrilous" [hard to believe], from no technical content to multiple page tomes of opinionated technical proposal.

We had planned to put in a little bar code contest this month, but a number of circumstances at the production end added together in phase to prevent the copy from reaching the magazine for February. The production of bar codes in this form is still a very experimental art... The tricks which Walter Banks had to pull, together with the usual programming glitches and circumstances lotally unrelated to bar codes or programming made themselves evident when February's bar code information was prepared.

The first output came our way well in advance of the publication deadline. The mental model at that point was "everything's just fine." Then, along about two weeks before press time, yours truly decided that it might be a good idea to try decoding the copy. A test decode of the copy found a bit of a discrepancy. It turns out that there was a minor bug in the conversion software: 9 bits instead of 8 bits per byte. (The program was run on a machinc with a 36 bit word. . . hmmm sounds suspicious).

So Walter went back to work on ironing out the bug - only to find that after fixing the program a crucial step in the process of bootstrapping the minicomputer in the Photon phototypesetter decided to die: The stepper motor in the paper tape reader of the machine burned out. In a feat of real time hardware redesign, on the weekend of December 11-12, Walter and associates discarded (logically) the paper tape reader and added another direct hardwired link to the Honeywell computer which enabled them to bootstrap directly. The actual data for the bal codes had always been sent directly over a communications link, which is a good thing, since for just one 6.75 by 3 inch (17.1 by 7.6 cm) segment of bar code copy the machine requires over 70,000 commands.

Finally, to cap off the whole process, three days before the deadline, Walter sent the package containing the bar code samples for this issue, and they were promptly lost by the air express company which was used as a courier. As is usual in magazine practice, we prepared this alternative set of copy to go with the magazine - in case at the last minute the missing bars were to arrive like cavalry and save the day.

TTY REPLACEMENT?

Contains its own microprocessor
LOW COST BUSINESS SYSTEM?
THE MP-40 PRICED AT
Connects to your parallel nort
for ASCII data tanaster
MINIMUM COST FOR HOBBYIST?
THE KP-40 KIT PRICED AT
Mechanism and minmum electomes s179
fr connecion to your parallol port
All of ou 40 serms pinters use the same retiable 5×7 impact dot materx morhanism with up to 40 coltums per tine on ordinary paper with a pront speed of 75 lines/mmute

SEND FOR FREE LITERATURE
mpi
MICROPROCESSOR SYSTEMS
AND PERIPHERALS
P.O. BOX 22101/SALT LAKE CITY/UT 84122 [801] 566-0201

MASTER CHARGE WELCOME - UTAH RESIDENTS ADD 5\% SALES TAX

M6800 ADVANCED SYSTEMS SOFTWARE RT/68

RT/68 is mask-programmed on a 6830 ROM that replaces the Mikbug* ROM in your SWTPC 6800, Motorola Evaluation Module, etc. It is a powerful real time, multiprogramming operating system with many versatile system functions. RT/ 68 can support up to 16 concurrent programs at 8 priority levels, and has 8 software I/O channels.
MICROWARE has improved the Mikbug* functions, added four more (Dump, Exec, Sys, Bkpt) and made tape load and punch program-usable. RT/68 ${ }^{6}$ is designed so programs that use Mikbug* I/O don't require changes.
The comprehensive manual provides a good short course in multiprogramming, describing programming techniques illustrated with many examples. RT/68G MULTIPROGRAMMING POWER CAN RUN A SECURITY SYSTEM, ANALYZE THE ACCOUNTS receivable, and monitor an experiment, all WHile Challenging a klingon fleet.
RT/68" was originally developed for complex industrial control applications and is available in a dedicated OEM version. Write for details.
RT/68 is recommended for those with assembly language familiarity.
ORDER RT68MR
$\$ 45.00 \mathrm{ppd}$.

THE MICROWARE CORPORATION P.O. BOX 954 Des Moines, lowa 50304

Write or use reader service card for free brochure. BankAmericard and Mastercharge give all info on card. Mikbug* is a trademark of Motorola, Inc.

TTL Loading Considerations

Figure 1: Schematic Diagram and symbolic representation of a simple 7400 NAND gate. The inputs are A and B and the output is Y.

Figure 2a: Schematic Diagram of a basic TTL gate showing the direction of $1 O H$ when the output is high, VOH.

Greg Tomalesky
Design Engineer GT Electronics 164 Preston Rd
Parsippany NJ 07054

If you have ever studied a microcomputer's schematic diagram, chances are you have seen gates, flip flops, memories, etc, connected together to perform certain tasks essential to the operation of the computer. Upon closer examination you should notice that various logic families are mixed, such as $74 X X, 74 L X X, 74 L S X X$ and perhaps even CMOS. However, you may not have noticed that there is a limit to the number of gates that may be interconnected. The purpose of this article is to show how these limitations are arrived at by circuit designers and what you should watch out for in your own circuit design.

Let's take a close look at what goes on inside a typical gate and apply this knowledge to our circuit design. Figure 1 is a schematic diagram of a standard TTL NAND gate model 7400. The inpul of this gate is a multiemitter transistor, Q1. The base of Q1 is tied to $V C C,+5 \mathrm{~V}$, through R 1 . This arrangement turns Q1 on and allows current to flow from emitter to collector (see Bibliography, reference 1, for further discussion of this circuit). When both emitters are at a logical 1 voltage, $2.4 \mathrm{~V} \leqslant \mathrm{VIH} \leqslant \mathrm{VCC}$, this current flows through Q1 and turns Q2 on. With Q2 on, Q3 is also on, and it conducts from collector to ground. This causes a logical 0 voltage, $(0 \mathrm{~V} \leqslant \mathrm{VOL} \leqslant$ 0.4 V , to appear at the output.

In the case where both emitters are grounded, no current flows to Q2 and it remains in the off state. With Q2 off, Q3 is also off. Q4 is now on and a logical 1 voltage appears at the output. Table 1 is a truth table summarizing input and output for the circuit.

The current for the input transistor Q1 is set by varying R1. A large value for R1

Table 7: Truth Table for the NAND circuit shown in figure 1. The inputs are A and B and the output is Y.
results in a lower input current, IIH and IIL, for the various TTL families.

On the output side, the currents IOH and IOL are determined by Q3, Q4, R2 and R4. For a logic 1 voltage, this current is flowing out of the output and is governed by R4. In the data books this current is given a minus sign to indicate current flow out of a terminal. Low values of R4 allow higher output currents for single transistor output stages. In some cases, such as the 745 series, a Darlington transistor pair is used to boost the output current beyond that obtainable with a single transistor.

Figures 3a and 3b illustrate the direction of current flow for VOH and VOL respectively. In table 2 the output currents are given for the various TTL families. Circuit designers use the values of IIH, IIL, IOH and IOL to calculate the fanout. Fanout is a measure of the number of inputs which may safely be connected to one output.

The fanout between two logic families may be calculated in one of two ways. Table 3 gives the fanout based on IOH and IIH . The results of the division $(\mathrm{IOH} / \mathrm{IIH})$ are given as absolute values in table 3. Absolute values are used because negative fanout has no practical meaning. Table 4 gives the fanout values calculated from IOL and IIL. Again the absolute value is taken. To find the number of inputs that may be driven from one output, one simply locates the driving output family across the top of the chart and proceeds down that column to the row corresponding to the driven input. This procedure should be followed for both charts since the fanout values will be different depending on the mode of calculation. As an example, using table 3 , we want to know how many 74 L series inputs may be driven by one 74 S series output. By following the above directions, we see that this value is 100 inpuls. Using table 4 , we notice the value is more than with table 3 . In this case the limiting value is the smaller of the two. Since the figures are based on manu-

Figure 2b: Schematic Diagram of a basic TTL gate showing the direction of IOL when the output is low, VOL.

	74	74 L	74 H	74 S	74 LS
IOL mA$)$	16	2	20	20	4
(OH $)$	-400	-200	-500	-1000	-400

Table 2. High and low output currents from several different TTL devices.

Driving Output						
		74	74L	74H	74S	74LS
$\begin{aligned} & \stackrel{H}{J} \\ & \frac{\square}{E} \\ & \frac{1}{c} \\ & \stackrel{\rightharpoonup}{\Delta} \\ & 0 \end{aligned}$	74	10	5	12	25	10
	74 L	40	20	50	100	40
	74H	8	4	10	20	8
	74S	8	4	10	20	8
	74LS	20	10	25	50	20

Table 3: Fanout Chart used to compute the number of devices any particular TTL device can power. The fanout is calculated by dividing the output current by the input current. In this case the highest input and output values were used.

Driving Output						
		74	74L	74H	74S	74LS
	74	10	1	12	12	2
若	74L	88	11	111	111	22
-	74H	8	1	10	10	2
,	74S	8	1	10	10	2
	74LS	44	5	55	55	11

Table 4: Fanout Chart calculated the same way as table 3 except that the lowest values of input and output current were used in the calculations.
facturers' specifications, they are valid over the temperature range $0 \mathrm{C} \leqslant \mathrm{Ta} \leqslant 70 \mathrm{C}$ for a given part and represent worst case conditions. Fanout decreases with an increase in temperature above the upper specification limit.

Gate outputs must also sink current to ground during the VOL state. This current must go through Q3 as shown in figure 2a. As is often the case, a gate output is able to drive more inputs high than it is able to sink at VOL.

When doing your own circuit design, plan out your connections to avoid exceeding the fanout specifications as calculated above. Remember also, when using multiple input gates as inverters, ie: 7420,7400 , etc, only one input should be used. The other inputs should be tied to VCC through a 1000 ohm resistor. It is also good practice never to tie unused inputs to used inputs because of the increased current drain. As an example, each input of a 7400 NAND gate requires $40 \mu \mathrm{~A}$ at IIH. If both inputs are tied together to act as an inverter, the resultant input current would be $80 \mu \mathrm{~A}$ or the sum of the two input currents. On the other hand, if one input is used while the other is tied to VCC, the current of the active input is $40 \mu \mathrm{~A}$. Also, do not tie two or more outputs together. If all
the outputs are high it's okay, but as soon as one goes low it will try to bring the others low also. This will result in faulty performance or at worst a damaged gate.

In addition to the charts and tables described here, be sure to consult any pertinent data books for further information as to specifications, pin connections, etc. If you are just getting started in digital circuit design, it may be helpful to look over published schematics to get some ideas and also to compare calculated fanout data.

Digital design can be both rewarding and frustrating; however, by paying close attention to the recommended design practices, you will insure yourself against frustration and produce better circuit designs.■

BIBLIOGRAPHY

1. Morris, RL, and Miller, JR, eds, Designing with TTL Integrated Circuits, McGraw-Hill, New York, 1971.
2. Hnatek, ER, A User's Handbook of Integrated Circuits, J Wiley \& Sons, New York, 1973.
3. The TTL Data Book for Design Engineers, Texas Instruments, 1973.
4. Supplement to the TTL Data Book, Texas Instruments, 1974.

101 Basic
 Computer Games

David H. Ahl. An anthology of games and simulations-from Acey-Deucey to Yahtzee, all in the BASIC language. Contains a complete listing sample run plus a descriptive write-up of each game. Our most popular book! Large format $248 \mathrm{pp} . \$ 7.50[6 \mathrm{C}]$

What to Do After You Hit Return

Another collection of games and simulations-all in BASIC-including number guessing games, word games. hide-and-seek games, pattern games, board games, business and social science simulations and science fiction games. Large format. $158 \mathrm{pp} . \$ 6.95$ [8A]

Fun \& Games with the Computer

Ted Sage. "This book is designed as a text for a one-semester course in computer programming using the BASIC language. The programs used as illustrations and exercises are games rather than mathematical algorithms, in order to make the book appealing and accessible to more students. The text is well written, with many excellent sample programs. Highly recommended." - The Mathematics Teacher 35! pp. $\$ 5.95$ [8B]

Game Playing With the Computer, 2nd Ed.

Donald Spencer. Over 70 games, puzzles, and mathematical recreations for the computer. Over 25 games in BASIC and FORTRAN are included complete with descriptions, flowcharts, and output. Also includes a fascinating account of the history of game-playing machines. right up to today's computer war games. Lots of "how-to" information for applying mathematical concepts to writing your own games. $320 \mathrm{pp} .1976 \$ 14.95$ [8 S]

BYTE Magazine

If you are considering a personal computing system now or later, BYTE provides a wealth of information on how to get started at an affordable price. Covers theory of computers, practical applications, and of course, lots of howto build it. Monthly. 1-Year sub'n $\$ 12.00$ [2A], 3-Years $\$ 30.00$ [2B]

Games \& Puzzles Magazine

The only magazine in the world devoted to games and puzzles of every kind mathematical, problematical, crosswords, chess, gomoko, checkers, backgammon, wargames, card games, board games, reviews, competitions, and more. Monthly. 1-Year sub'n \$12.00 [3A]

Games With The
 Pocket Calculator

Sivasailam Thiagarajan and Harold Stolovitch. A big step beyond tricks and puzzles with the hand calculator, the two dozen games of chance and strategy in this clever new book involve two or more players in conflict and competitiorr. A single inexpensive four-banger is all you need to play. Large format. $50 \mathrm{pp} . \$ 2.00$ [8 H]

Games, Tricks and Puzzles For A Hand Calculator

Wally Judd. This book is a necessity for anyone who owns or intends to buy a hand calculator, from the most sophisticated (the HP65, for example) to the basic "four banger." 110 pp . $\$ 2.95$ [8D]

So you've got a personal computer.

Now what?

Creative Computing Magazine

So you've got your own computer. Now what? Creative Computing is chock full of answers - new computer games with complete listings every issue. TV color graphics, simulations, educational programs, how to catalog your LPs on computer, etc. Also computer storics by Asimov, Pohl, and others; loads of challenging problems and puzzles; in-depth equipment reports on kits, terminals, and calculators: reviews of programming and hobbyist books; outrageous cartoons and much more. Crealive Compuling is the software and applications magazine of personal and educational computing. Bi-monthly 1 -year sub"n $\$ 8.00$ [1A], 3-years $\$ 21.00$ [1B]. sample copy $\$ 1.50$ [1C]

The Best of Creative Computing - Vol. 1

David Ahl, ed. Staggering diversity of articles and fiction (Isaac Asimov, etc.) computer garnes (18 new ones with complete listings), vivid graphics, 15 pages of "foolishness." and comprehensive reviews of over 100 books. The book consists of material which originally appeared in the first 6 issues of Creative Computing (1975), all of which are now out of print. 324 pp. $\$ 8.95$ [6A]

Computer Lib/

Dream Machine

Ted Nelson. This book is devoted to the premise that everybody should understand computers. In a blithe manner the author covers interactive systems, terminals, computer languages, data structures, binary patterns, computer architecture, mini-computers, big computers, microprocessors, simulation, military uses of computers, computer companies, and much, much more, Whole earth catalog style and size. A doozy! 127 pp. $\$ 7.00$ [8P]

Computer Power and Human Reason

Joseph Weizenbaum. In this major new book, a distinguished computer scientist sounds the warning against the dangerous tendency to view compuiers and humans as merely two different kinds of "thinking machines." Weizenbaum explains exactly how the computer works and how it is being wrongly substituted for human choices, 300 pp . \$9.95 [8R]

Artist and Computer

Ruth Leavitt, ed. Presents personal statements of 35 internationally-known computer artists coupied with over 160 plates in full color and black \& white, Covers video art, optical phenomena, mathematical structures, sculpture weaving, and more. 132 pp. $\$ 4.95$ [6D] Cloth cover $\$ 10.95$ [6E]

Computer Science:

A First Course (2nd Ed.) Forsythe, Keenan, Organtick, and Stenberg. A new improved edition of this comprehensive survey of the basic components of computer science. There has been an updating of important areas such as Programming, Structured Programming, Problem Solving, and other Computer Science Concepts. The quantity of exercises and problems has quantity of exercises and problems
been increased. 876 pp. $\$ 16.95$ [7D]

Mr. Spock Poster

Dramatic, large ($17^{\prime \prime} \times 23^{\circ \prime}$) computer image of Mr. Spock on heavy poster stock. Uses two levels of overprinting. Comes in strong mailing tube. \$1.50[5B]

Problems For Computer Solution

Gruenherger \& Jaffray: A collection of 92 problems in engineering, business social science and mathematics. The problems are presented in depth and cover a wide range of difficulty. Oriented to Fortran but good for any language. A classic. $401 \mathrm{pp} . \$ 8.95$ [7A]

A Guided Tour of Computer Programming In Basic

Tom Dwyer una Michael Kaufman "This is a fine book, mainly for young people, but of value for everyone, full of detail, many examples (including programs for hotel and airline reservations systems, and payroll), with much thought having been given to the use of graphics in teaching. This is the best of the introductory texts on BASIC."
Crearive Computing Large format. 156 pp. $\$ 4.40$ [8 I.$]$

BASIC Programming 2nd Ed

Kemeny and Kurtz. "A simple gradual introduction to computer programming and time-sharing systems. The best text on BASIC on almost all counts. Rating: A+"-Creative Computing. 150 pp. $\$ 8.50$

Problem Solving With The Computer

Ted Sage. This text is designed to be used in a one-semester course in computer programming. It teaches BASIC in the context of the traditional high school mathematics curriculum. There are 40 carefully graded problems dealing with many of the more familiar topics of algebra and geometry. Probably the most widely adopted computer text. 244 pp. $\$ 5.95$ [8.]]

A Simplified Guide to Fortran Programming

Daniel Mc Cracken. A thorough first text in Fortran. Covers all basic statements and quickly gets into case studies ranging from simple (printing columns) to challenging (craps games simulation). 278 pp. $\$ 8.75$ [7F]

Understanding Solid State Electronics

An excellent tutorial introduction to transistor and diode circuitry. Used at the Tl Learning Center, this book was witten for the person who needs to understand electronies but can't devote years to the study. $242 \mathrm{pp} . \$ 2.95$ [9A]

Microprocessors

A collection of articles from Electronics magazine. The book is in three parts: device technology; designing with microprocessors; and applications. 160 pp. $1975 \$ 13.50$ [9J]

Microprocessors: Tech-

 nology, Architecture and ApplicationsDaniel R. McGlynn. This introduction to the microprocessor defines and describes the related computer structures and electronic semi-conductor processes. Treats both hardware and software. giving an overview of commercially available microprocessors, and helps the user to determine the best one for him/her. $240 \mathrm{pp} . \$ 12.00$ [7C]

Creative Computing Catalogue

Zany 12-page tabloid newspaper/ catalog lists books, magazines, art prints, and T-Shirts. A conversation piece even if you don't order anything. Free. [5A]

CREATIVE COMPUTING, Dept. B
 P.O. Box 789-M, Morristown, NJ 07960

Please send me the following:
Quan. Cat. Description Price

Books Shipping charge $\$ 1.00$ USA, $\$ 2.00$ Foreign
N.J Residents add 5% sales tax

- Cash, check, M.O. enclosed

TOTAL

Name
Address

BYTE BINDERS and FILES

> Preserve those precious first 16 issues with either a handsome but rugged library file-or a binder-in flag blue Kivar library fabric stamped in gold leaf.

Files: Made to hold the first 16 issues of BYTE. Price per file $\$ 4.95$; three for $\$ 14$; six for $\$ 24$, postpaid.

Binders: Made to hold the first 16 issues of BYTE. Price per binder $\$ 6.50$; three for $\$ 18.75$; six for $\$ 36$, postpaid.
(Add $\$ 1$ each outside USA.)

Send to: BYTE, POB 5120, Philadelphia PA 19141
I enclose check or money order for $\$$
Please send me \qquad BYTE \qquad Files \qquad Binders

Name
(blease print)
Address
City
State \qquad Zip

Satisfaction guaranteed or money refunded, Allow at least four weeks for delivery.

BYTEs Bits

A Computer Oriented Radio Talk Show
Richard Gardner has made some connections in the radio media resulting in a new radio "talk" show for computer people which began $11 \mathrm{am}-12: 30 \mathrm{pm}$ on January 221977 over radio station WBUR in Boston. Guests lined up for the early shows include:

Calvin Mooers, Rockford Research, discussing patent and copyright laws as applied to computer programs, documentation, proprietary software and software security.
A representative of ECD Corpora tion, Cambridge MA, manufacturers of a most interesting and complete computer system with high resolution graphics.
Bill Rosenfeld, MIT Lincoln Labs, a researcher working on topics of speech compression and speech synthesis.
John Carroll, Dynamic Measurement Corporation, who designs power supplies and other electronic equipment professionally, discussing ideas for broadcasting programs and data over the air and how individual users might record this information for personal use.
Arra Avakian, owner of a KIM-1, discussing some of the finer points of using this 6502 based system.
Carl Mikkelson, Intermetrics Inc, talking about the development of the PLM6800 compiler, a language translator for cross compilations using large machines.
Quincy Bent, Shriver Foundation, describing how he has been using a microcomputer kit to build a video tape editing system - in spite of his total lack of familiarity with computers prior to the project.
Karen Brothers and Louise Silver, programming consultants, who have a PDP-8 based home computer system, discussing how they do recipe nutrient analysis so that given a recipe, its nutritional value can be computed. Their data base on nutrition includes everything from reindeer milk to muskrat's tail.
Initial versions of the show have been done using a local radio talk show format over WBUR, the Boston University radio station. Richard reports that he has been discussing the prospect of syndicating the show through the PBS network or commercial radio as an educational and informative program for people who are interested in small computers. We'll have further reports as
time progresses．Richard can be reached by phone at（617）354－1216（leave a message in response to his unusual phone reply tape if he＇s not there）or write him at Box 134，Harvard Sq，Cambridge MA $02138 .{ }^{-}$

Publicity

Our Canadian readers will be inter－ ested to know that there is now a bona－fide computer store in operation in Canada．The store will carry a very broad range of products of interest to all users， from hobbyists to small scale business systems．

The First Canadian Computer Store Ltd is located at 44 Elington Av ， Toronto，Ontario M4R 1A1，（416） 482－8080．

The Southernmost Computer Store
Sunny Computer Stores Inc has moved to a permanent location in the University Shopping Center across from the University of Miami．They offer a full line of computers，components， books，magazines and a complete service center for all products carried．■

Attention Educators
The 1977 Winter Meeting of the Association for the Development of Computer－Based Instructional Systems （ADCIS）will be held in Newark DE， February 22 thru 24 1977．For further information，contact the conference host，Fred Hofstetter，Department of Music，University of Delaware，Newark DE 19711，（302）738－2497．．

The official＂crowd scene＂shot taken with a wide angle camera．

Two candid shots of budding hackers at work．From the looks of things，one is a hardware person and the other a software person．

The maker of the potted palm is unknown，but computer－watchers will identify a rare Memorex MRX－40（an IBM／360 Model 40 look－alike internally）under the palm，with an early DEC PDP－8 at the right．Since the Computer Warehouse store combines all the delights of a surplus house （it＇s the back side of American Used Computer） and a regular computer store，it is definitely a ＂must stop＂on any computer hacker＇s tour of the Northeast．

Computer Warehouse Store Opening

On Thursday，November 18 ，the Computer Warehouse store in Boston held its grand opening celebration．Here is a cross section of pictures supplied by Vic Farmer of the store，showing some of the action．

One of the door prizes being shown to the door by its new owners．

LET YOUR COMPUTER SEE

T．V．CAMERA INTERFACE AND CAMERA FOR ALTAIR／IMSAI

TEACH YOUR COMPUTER TO READ LET YOUR COMPUTER MAKE DECISIONS BASED ON VISUAL INPUT

MAXIMUM VERTICAL RESOLUTION
MAXIMUM HORIZONTAL RESOLUTION
GREY SCALE RESOLUTION
GREYSCALE RESOLUTION
MAXIMUM CONVERSION TIME（SEC．）

PLAY GAMES AND LET YOUR COMPUTER SEE THE BOARD INTERFACE TO THE ENVIRONMENT

INFORMATION STORED IN AVAILABLE MEMORY
ANY TV CAMERA WITH EXT．SYNC． INPUT CAN BE USED
ALL EQUIPMENT FULLY ASSEMBLED
INTERFACE \＆DOCUMENTATION
$\$ 295$.
INTERFACE，DOCUMENTATION \＆CAMERA
$\$ 595$.
$\$ 150$.

MONITOR（VIDEO）
DIGITAL DISPLAY BOARD TO FOLLOW

246	ロINTERFACE \＆DOCUMENTATION	$\$ 295$.
214	ロINTERFACE，DOCUMENTATION，CAMERA	$\$ 595$.
64	ロMONITOR	$\$ 150$.
5	ロSENDMORE INFO．	ロALTAIR

DINTERFACE，DOCUMENTATION，CAMERA
－MONITOR
QSEND MORE INFO．
－ALTAIR
$\$ 150$.
\square IMSAI
NAME
ADDRESS
CITY \qquad
\qquad
OHIO RESIDENTS PLEASE ADD TATE
SEND TO：ENVIRONMENTAL INTERFACES
3207 MEADOWBROOK BLVD．；CLEVE．，OH 44118
（216）371－8482

Whats New?

Take a Look, All Ye
Timesharing Freaks, Microcomputer Users without Terminals

A company called the Computer Conversion Corp, located at 1961 Old Middicfield Way, Mountain View CA 94043, has just introduced this new terminal unit, priced as low as $\$ 595$ for just one of the 40 character by 24 line models, Conversor 4000 . The Conversor 8000 is an 80 character by 24 line model priced at $\$ 695$ for just one. The purchaser has to supply his or her own monitor or converted television to accept the video output of this compact keyboard unit, and the computer interface of the device is RS-232 with switch selectable 110 or 300 baud data rate. To get a timesharing terminal, the unit requires addition of the accoustic coupler option for $\$ 110$. An audio "beeper" option is also available for $\$ 30$. This is a completely assembled unit, available with delivery from 30 to 60 days according to the press release. For further details contact the manufacturer of this fine unit."

PRAMMER?

XYBEK, a new firm with one product at present, makes the "PRAM$M E R$," an EROM programmer with programmable memory buffer and control EROM for the Altair 8800, IMSAI 8080 and other Altair bus compatible computers. This 2 K memory board contains 256 bytes of programmable memory and space for 1792 bytes of 1702 A EROM. One of the 1702A sockets doubles as the 1702 A programming socket. The PRAMMER is not an 10 device, but occupies any 2 K slice of system memory. This kit is complete with its own 80 V power supply, features onboard timing independent of the processor clocks and contains its own microprogram for read and write control. No oneshots are used for timing. The 256 bytes of programmable memory may be
used for a stack, for buffers, save areas, etc, eliminating the need for use of main memory already dedicated to other application programs. Complete standalone software for programming and copying 1702A EROMs is supplied with the PRAMMER kit in a single preprogrammed 1702A. Also included are the complete listings for PRAMSYS, an 11 function development system designed to reside in the 1792 bytes of EROM in the fully populated board and to interface with a Teletype compatible terminal. Also available is a 3 foot extension kit for bringing any of the 1702A sockets to a zero insertion force socket outside your system's cabinet. The introductory price for the PRAMMER kit is $\$ 189$ and the extension kit is $\$ 15$. Address inquiries to XYBEK, POB 1631 , Cupertino CA 95014.

Attention Commercial and Industrial 6502 Users:
A PDP-11 Cross Assembler

is Now Available

COMPAS has developed a PDP-11 based cross assembler for the MOS Technology family of microcomputers. The system is called the MINmic 1165 Cross Assembier and is written entirely in MACRO 11 (assembler language) and runs under the RT 11 operating system. It requires less than 5 K words for a minimal system and can be easily expanded to assemble larger programs if desired.

COMPAS is the firm which developed and supported cross assembly software for MOS Technology's 6502 marketing programs. The MINmic 1165 Cross Assembler is very similar to the FORTRAN based cross assemblers developed by COMPAS and offered nationally by MOS Technology. The system provides listing and memory files which conform to the standards established by, MOS Technology for its products.

The MINmic 1165 Cross Assembler is priced at $\$ 900$. The price includes a year's support. Source code is distributed on disk along with a test deck which verifies correct installation of the software. Further information is available from Mike Corder at (515) 232-8181..
\qquad TV Typewriter Cookbook by Don Lancaster. A complete guide to low cost television display of alphanumeric data, several chapters of which were published ahead of the book in early issues of BYTE magazine. $\$ 9.95$
___._Digital Logic Circuits by Sol Libes. An invaluable tutorial background volume on digital logic, arithmetic, 10 concepts and interfacing to analog devices; written by one of the founders of the Amateur Computer Group of NJ. This book acquaints the reader with much of the terminology and background concepts of digital hardware. $\$ 5.98$.

__Modern Operational Circuit Design by

 John L Smith. An absolutely essential introduction to the use and application of operational amplifier systems. The book contains both theoretical background information and practical circuit suggestions which can be used to advantage by the experimenter. $\$ 16.95$ (hardbound).__Electronic Projects for Musicians by Craig Anderton. "Even if you know nothing about electronics, you can build preamps, ring modulators, mixers, tone controls, miniampls, fuzzes and a dozen other inexpensive musical projects." Furthermore, even if you couldn't care less about about musical applications, you can use this book to gain familiarity with electronic parts, circuit diagrams and construction techniques, using the wealth of illustrations and tips found in an extended introductory chapter for the novice electronicker. $\$ 6.95$.
-. Active Filter Cookbook by Don Lancaster. The chief chef of electronics Cookbooks concocts another gourmet appetizer. Run to this book when you need to find a starting point for the design of a filter for use in an electronic application. \$14.95.

Altair Design developed by Ensor Holiday. __More Altair Design developed by Ensor Holiday. _-Altair Design 3 developed by Ensor Holiday.

Keep the loved ones busy while you use your system... give them any one or all of these computer generated Altair Design books to start them (or yourself) on endless hours of creative coloring. No other coloring books are quite like these unique books. $\$ 2.50$ each.
_._Artist and Computer edited by Ruth Leavit. A visual treat, as you encounter reproductions of numerous works by computer oriented artists and read about these works in their own words. \$4.95.
___Linear IC Principles, Experiments, and Projects by Edward M Noll. From basic principles to complicated systems, from simple amplifier experiments to applications in radio, TV and control systems, this book can improve your knowledge of the way circuitry of the analog world really works. $\$ 8.95$.

Practical Solid-State Circuit Design by Jerome E Oleksy. A self study course in the design of semiconductor circuits from the simple transistor to the complex operational amplifier. \$5.95.

Boolean Algebra by Brice Ward. A background tutorial and study guide for the design and simplification of static networks of logic gates. Learn how to combine those ANDs, NANDs, NORs and ORs to evaluate complicated logical conditions of multiple inputs, electronically. \$5.50.

Projects in Sight, Sound \& Sensation by Mitchell Waite. Dedicated "to all space cowboys," Detailed theory and practice of seven fascinating amateur electronics projects, along with a complete and detailed appendix on how to make PC boards. $\$ 4.95$.

Creativity, Invention, \& Process by John A Kuecken. Practical philosophy and history for the inventor. $\$ 3.50$.
___Security Electronics by John E Cunningham. To catch a thief, apply liberal doses of ingenuity and a modicum of cleverness. Find out what's been tried in conventional alarm systems before you go off computerizing your home security system, though. \$4.95.
__Introduction to Biomedical Electronics by Edward J Bukstein. What's been done in robot doctors? Nothing so far. But in terms of electronic aids to physicians and practices of health researchers, consult this background review of the field of biomedical electronics. \$5.50.

What to Do After You Hit Return of PCC's First Book of Computer Games. This is PCC's first book of computer games, a compendium which includes descriptions of numerous games, and listings of 37 selected BASIC games. $\$ 8$, new second edition.

Send to:
BITS, Inc
70 Main St
Peterborough NH 03458

		Name
Total for all books checked Postage, 25 cents per book bor books	$\$$	$\$$
Grand Total	$\$$	City

A BIT More

When you build a project, you need information. All you find in the advertisements for parts are mysterious numbers identifying the little beasties . . . hardly the sort of information which can be used to design a custom logic circuit. You can find out about many of the numbers by using the information found in these books. No laboratory bench is complete without an accompanying library shelf filled with references.

Order these absolutely essential references from Texas Instruments today:
\qquad The TTL Data Book for Design Engineers, $\$ 4.95$, new second edition.
\ldots The Supplement to the TTL Data Book for Design Engineers, \$1.95.
The Linear and Interface Circuits Data Book for Design Engineers, \$3.95.
_. The Semiconductor Memory Data Book for Design Engineers, \$2.95.
__The Transistor and Diode Data Book for Design Engineers, \$4.95.
The Power Semiconductor Handbook for Design Engineers, \$3.95.
__Understanding Salid State Electronics, \$2.95.
__The Optoelectronics Data Book for Design Engineers, \$2.95.
Designing with TTL Integrated Circuits, edited by Robert L Morris and John R Miller, published by McGraw-Hill, \$24.

-The TTL Cookbook by Don Lancaster, published by Howard W Sams, Indianapolis. Start your quest for data here with Don's tutorial explanations of what makes a TTL logic design tick. 335 pages, $\$ 8.95$.
—Microcomputer Design by Donald P Martin. Edited and published by Kerry S Berland, Martin Research. Purchase vour copy of the definitive source for circuitry and hardware design information on the 8008 and 8080 computers today. Even Intel, the originator of the microprocessor revolution, is hard put to compete with the wealth of information found in Martin Research's new second edition of Microcomputer Design. This is the book which was originally published as an expensive (but quite practical) engineering report in loose leaf form, at about the time the microprocessor technology was first catching on in the form of the 8008. This 388 page second edition of the manual is loaded with detailed information on how to build and use computers based on the 8008 and 8080. \$25.

Check payment method:

Check payment method:
_My check is enclosed
Bill my MC No. \qquad Exp. date \qquad
 \qquad

Name

Address		
City	State	Zip

Signature

[^1]
Potpourri from BITS ${ }^{\text {w }}$

BITS, Inc, is a trademark of BYTE Interface Technical Services, Inc.

It's AImost Too Late...

. . . to snap up bicentennial memorabilia before you have to hunt through the nostalgia shops and pay 100 times the original price-if you're lucky enough to find a bargain-for an item as anachronistic and otherwise remarkable as Robert Tinnev's Computing 1776 picture.
A same-size (16 by 20 inches, 41 by 51 cm) reproduction of Tinney's original oil painting, this poster makes an off-beat gift.
Don't wait for the nostalgia shops to get the last of these posters; get yours now for only $\$ 2.95$. (Do you know what your old Amazing Science Fiction magazines and Superman comics that Mom threw out are worth now?)

Have you ever wondered where to go for a basic starting point in your quest for information about computer applications and uses? Ted Nelson's book, Computer Lib/Dream Machines, is the place for you to begin.

Computer Lib/Dream Machines is for the layman - the person who is intelligent and inquisitive about computers. It is written and self published by a philosopher who is also a self confessed computer fan and an excellent teacher of basic concepts. (For those who have not yet heard, ivory towers are constructed out of real and substantial white bricks.)

Computer Lib/Dream Machines is must reading for the beginner, and is also a refreshing self examination for the old hand at programming and systems work.

BYTE T-shirts

Available in blue heather with blue trim and red letters, or in white with blue trim and red letters. Only \$5, including postage and handling.

Please send me:
\ldots copies of Computer Lib @ $\$ 7$
50 cents postage per copy \qquad
Total \qquad .
posters @ $\$ 2.95$
Total \qquad

70 Main St
Peterborough NH 03458
\qquad T-shirts
\qquad small \qquad large
\qquad medium \qquad extra large

Total \qquad

Check payment method:
_ My check is enclosed
__Bill my MC No. \qquad Exp. date \qquad
__Bill my BAC No. \qquad Exp. date
white, blue trim, red letters @ \$5 ___ blue heather, blue trim, red letters

Grand Total \qquad

Name

Address		
City	State	Zip

[^2]
Add Some BARC to

Your

Listing 1: The BARC Uility Routines. This listing contains the absolute octal code of the $B A R C$ routines. The notation $\langle *\rangle$ is used to indicule the absolute page address of the routines, which are loaded on a page boundary. When (for example) loading the routines at location 010/000, substitute the page address of 010 for the $<>$ every time it is seen in the listing. The code is in octal, for an 8080 computer. Refer to the "legend" box for explanations of some of the mnemonics in the commentary of this listing.

Charles Howerton
 Digital Group Software Systems Inc POB 1086
 Arvada CO 80001

The programming convenience of a computer system is greatly enhanced by using software to extend the functions provided by the basic instruction set of the machine. Software to accomplish complicated functions like moving character strings or doing data conversions help the user to program manipulations of data in an application situation. This article is written to describe and give the code for a set of utility routines for the 8080 which can be used to advantage on any system employing this chip. This set of BARC utility routines is designed to assist the 8080 programmer in developing programs which involve the manipulation and validation of characters and character strings. The acronym "BARC" stands for BAsic Resource Capability. Almost all programs require thesc functions to a greater or a lesser extent if they accept input or generate output in any format other than absolute machine codes.

In all cases these routines are entered using an 8080 call instruction and in most cases the call instruction is immediately followed by a series of parameters which identify the field or fields to be acted upon, the length of the field or fields and in some cases an immediate value which is used in the requested function. The exceptions to this rule are the single character validation functions which require that the argument character be loaded into the accumulator prior to the call. In all cases (except the symbolic move) the user's register contents, with the exception of the program counter

Listing 1, continued:

WARNING
 The BARC routines listed here will not work in read only memory or in write protected memory, since they modify program code as part of execution.

and flags, are returned with the same contents as they held prior to the call; the symbolic move routine returns the length moved in the accumulator with all other registers except the program counter and flags containing their original contents.

These routines all use the stack of the user's program and in the worst case require 14 bytes in the stack including the two bytes used by the call which invokes the function routine.

In every case return is made to the byte immediately following the last parameter value (if any). The return address generated by the call is used as a parameter list pointer

LEGEND:

Throughout this narrative and program comments certain abbreviations have been utilized, hopefully with a high degree of consistency. Most of these abbreviations and symbols are self explanatory; however, in the interest of clarity they are explained below.

A(X)	16 bit address of X.
DB	Data byte, 8 bits, operand is value.
DRXY	Double register pair XY.
DW	Data word, 16 bits, operand is value.
HOB	High order byte of 16 bit address.
ICV	An immediate character value.
LOB	Low order byte of 16 bit address.
PLAD	Parameter list address.
SIZ	The size/length of an operand.
SRX	Single register X .
TOS	Top of stack.
UDRXY	User's double register pair $X Y$ contents.
USRRET	Return point in the user's program.
USRX	User's single register X contents.
$X \rightarrow Y$	Contents of X moved to Y .
$\left.\begin{array}{l} \text { yyy } \\ z z z \end{array}\right\}$	Arbitrary instructions.
<*>	Resident page number of the utility routines.

and is incremented by the function routines to effect a proper return upon completion of the requested function.

In addition to the specific function routines there are several support routines which are used by the function routines for entry and exit logic. These support routines can be used by the programmer in developing his or her own coded function

Name	Address	Function
CLCHR	<* 123	Compare FIELD1 contents to FIELD2 contents;
DASNT	$\left\langle{ }^{*}\right\rangle 010$	Double address plus size function entry routine;
DASXR	<"> 034	Double address plus size function execution support routine;
FRXIT	<*> 062	Function routine exit logic;
MVCHP	<*> 110	Move FIELD2 contents to FIELD1;
MVICH	<*> 207	Fill FIELD with immediate character value;
MVSYM	<343	Move FIELD2 contents to FIELD 1 terminating on stop character:
NCHR	<*> 071	Logical AND MASK to FIELD;
NICH	<* 170	Logical AND immediate character value to all bytes in FIELD;
OCHR	<* 076	Logical OR MASK to FIELD;
OICH	<*> 175	Logical OR immediate character value to all bytes in FIELD;
SASIX	<*> 135	Single address, size and immed function execution support routine;
SASNT	<*> 000	Single address plus size function entry routine;
SWCHR	<*> 115	Swap contents of FIELD1 with contents of FIELD2;
VALAC	<* 247	Validate alphabetic character;
VALAS	<* 244	Validate alphabetic string of characters:
VALFX	<*> 214	\checkmark Validate string function execution support routins;
VALHC	$<*>327$	Validate hexadecimal character:
VALHS	<*> 324	Validate hexadecimal string of characters:
VALNC	<* 266	\checkmark alidate numeric character;
VALNS	<*> 263	Validate numeric string of characters;
VALOC	<*> 301	V alidate octal character;
VALOS	<"> 276	Validate octal string of characters;
VALXC	$<*>314$	V alidate alphanumeric character:
VALXS	<*> 311	\checkmark alidate alphanumeric string of characters;
VALXT	<*> 257	Validate string function exit logic;
XCHR	<*> 103	Logical exclusive OR MASK to FIELD;
XICH	<*> 202	Logical exclusive OR immediate character value to all bytes in FIELD:

routines provided that entry to the user coded function routines is identical in form to the function routine entry logic used in this package.

Whenever one sets out to design and develop a piece of software it is extremely important that the design parameters be defined in advance and that the tradeoffs be understood and evaluated. In the case of the BARC 8080 character and string manipulation utility routines, memory space was judged to be of greater importance than execution time. The design parameters for this software package were:

1. To pack as many functions as possible in as little space as possible regardless of the impact upon execution times.
2. Not to use over 256 bytes.
3. To provide as much flexibility as possible within the requirements of 1 and 2.
4. To provide a high degree of user convenience.

What follows is a description of the function and purpose of every usable function and support routine in the package and how to use each. The routines are described in alphabetical order, by name. Listing 1 gives the code for all the routines, and table 1 summarizes the routines and entry points.

Table 1: Alphabetical listing of BARC utility routines and their entry points. The low order addresses refer to listing 1 .

CLCHR: Compare Logical Characters

The CLCHR utility routine compares two character strings byte by byte from left to right and terminates upon encountering the first inequality. The condition flags are set according to the relationship of the contents of FIELD1 to the contents of FIELD2. The possible combinations are:

FIELD1 $=$ FIELD2	$Z=1$,	$C Y=0$
FIELD1 < FIELD2	$Z=0$,	$C Y=0$
FIELD1 > FIELD2	$Z=0$,	$C Y=1$

Both strings must be of the same length and may be up to 256 bytes long. The calling sequence for this utility routine is:

CALL	CLCHR	Call CLCHR utility routine;
DW	A(FIELD1)	FIELD1 address;
DW	A(FIELD2)	FIELD2 address;
DB	SIZ	Length of fields where 0 means a length of $256 ;$

DASNT: Double Address plus Size,

 Function Entry Support RoutineThe DASNT support routine is used to save the user's register contents and load the parameters following the original user's utility routine call. This routine is called by the function execution routine which was called by the user. The calling sequence for this support routine is:

XTHL UDRHL to TOS; USRRET to DRHL;
CALL DASNT Call DASNT routine;
Upon return from the DASNT support routine the user's registers have been saved on the stack and the working registers contain the following:
DRBC $=$ First address parameter following user's call.
DRDE $=$ Second address parameter following user's call.
SRH = Length parameter.
TOS = True user's return point to byte following parameters.
Exit from a function routine which has used DASNT should only be effected by jumping to the FRXIT routine.

DASXR: Double Address plus Size,

Function Execution Support Routine

The DASXR support routine is used as a generalized execution routine for the various functions which require two address parameters and a size parameter, operate on the data from left to right and replace the contents of the first operand with the result. (Note: Both fields must be of the same length and may be up to 256 bytes long.) DASXR simply controls the execution of the function by performing the housekeeping and looping involved in controlling the execution. DASXR uses DASNT as its entry logic to preserve the contents of the user registers and to load the parameter values into the working registers. On each iteration of the loop in DASXR it loads the next byte of FIELD2 into SRL and the next byte of FIELD1 into SRA (the accumulator) before turning control over to the logic which will operate on the data. DASXR increments the addresses of the fields and loops until the count is consumed or until the calling program terminates its operation. Exit from DASXR is through the FRXIT exit logic which restores the user registers, with the exception of the program counter and flags, to their original contents. Here's an example of the use of DASXR as the controlling logic for an addition routine where the operands are stored least significant byte first:

1. In line coding in user program

CALL	USRTN	Call user written ADD logic;
DW	A(FIELD1)	Address of augend and sum;
DW	A(FIELD2)	Address of addend;
DB	SIZ	Length of fields where 0 means a length of 256 ;

2. Subroutine in user program called by 1 above
USRTN ORA A Clear carry;
CALL DASXR Call DASXR support routine;
$A D C \quad L \quad$ Add $S R L$ and CARRY to accumulator;
DAA (Decimal adjust only if data is decimal);
RET Return to DASXR support routine;
3. If a premature or abnormal termination of the loop is required as in the CLCHR function routine it should take the following form:

USRTN	x \times x	DASXR	Setup instructions, if any;
	CALL		Call DASXR support routine;
	yyy		Function execution instructions
	yyy		as required;
	R(cond)		Conditional return to DASXR to continue;
	zzz		Instructions to be executed if the condition
	zzz		is not met;
	POP	H	Clear return address to DASXR from stack;
	JMP	FRXIT	Jump to the function exit logic for abnormal or premature return;

The calls to DASXR in 2 and 3 are not used as calls to which a return will be made. They are used to pass the address of the function execution instructions which fol low the calls to the DASXR support routine. DASXR stores the passed address of the function execution instructions in the address portion of a call instruction within itself and executes the call within itself once for each iteration of the control loop.

It is very important to realize that the call to DASXR cannot be inline in the coding but must be called by the logic which is called by the inline parameter passing call if it is to function correctly.

FRXIT: Function Routine Exit Logic

The FRXIT routine is used to restore the contents of the original user's registers and to return to the proper address location, following the parameters of the original user's call. FRXIT should always be used when exiting from a function routine which utilized the DASNT or SASNT function entry routines. This logic is entered by jumping to it unconditionally or conditionally when it is desired to return to the original caller. No other commands are required prior to the jump to prime this routine. All registers except the program counter and flags are restored to their original contents prior to returning; the flags are returned to the caller as set by the function execution routine.

MVICH: Move Character Immediate
 Character Fill

The MVICH utility routine will move a specified byte value known as the immediate character value (ICV), to every byte location in a specified field. The specified field may be up to 256 bytes long. The calling sequence for this utility routine is:

CALL	MVICH	Call MVICH utility routine;
DW	A(FIELD)	Address of the receiving field;
DB	SIZ	Length of the field where 0 means a length of 256 ;
DB	ICV	Immediate character value:

MVCHR: Move Characters

The MVCHR utility routine will move a character string up to 256 bytes long from one location to another. The format of the calling sequence for this utility routine is:

CALL	MVCHR
DW	A(DESTIN)
DW	A(SOURCE)
DB	SIZ

Call MVCHR utility routine;
Address of the destination field;
Address of the source field; Length of the fields where 0 is the length code for 256 ;

MVSYM: Symbolic Move

The MVSYM utility routine will move a character string up to 256 bytes long from one location to another and stop moving when one of two conditions is met:

1. A character from the sending area is encountered which is equal in value to the ICV known as the stop character (Note: The stop character is not moved).
or
2. The entire string has been moved according to the specified size and no character was found which was equal in value to the ICV stop character.
In either event when return is made to the user the accumulator (SRA) contains a count of the characters moved. Caution must be exercised when strings of length 256 are moved using MVSYM because if the first character in the string is a stop character, the length moved will be zero and when 256 characters are moved without encountering a stop character, the length moved will also be zero since the size value for 256 is zero; therefore, whenever the length moved for a field which is 256 bytes long is zero, test the first character in the source field to determine if it is a stop character. If it is, then the length moved is really zero, otherwise the length moved is 256 . The calling sequence for the MVSYM utility routine is:

CALL MVSYM Call MVSYM utility routine;
DW A(DESTIN) Address of the destination field;
DW A(SOURCE)
DB SIZ
DB ICV

Address of the source field;
Max length for the move where 0 means a length of 256; The immediate character value is the stop character:

NCHR: Logical AND Character Strings

The NCHR utility routine will logically AND a character string called MASK to another character string known as the FIELD; the result will replace the contents of FIELD. Both strings must be of the same length, which may be up to 256 bytes. The calling sequence for this utility routine is:

CALL	NCHR	Call NCHR utility routine;
DW	A(FIELD)	Address of the field string;
DW	A(MASK)	Address of the mask string;
DB	SIZ	Length of the fields where 0 means a length of $256 ;$

NICH: Logical AND Characters Immediate

The NICH utility routine will logically AND a specified byte value known as the immediate character value (ICV) to every byte location in a specified FIELD. The specified FIELD may be up to 256 bytes long. The calling sequence for this utility routine is:

CALL	NICH	Call NICH utility routine;
DW	A(FIELD)	Address of FIELD;
DB	SIZ	Length of FIELD;
DB	ICV	Immediate character value;

SASIX: Single Address, Size and Immediate Character, Function Execution Support Routine

The SASIX support routine is used as a generalized execution routine for the various functions which require one address parameter, a size parameter for one to 256 bytes, and an immediate character value which is used to operate upon the contents of the field, operate on the data from left to right and replace the contents of the field with the result. SASIX does not actually perform the required function; that is the responsibility of the programmer who is using SASIX. SASIX simply controls the execution of the function by performing the housekeeping and looping involved in controlling the execution. SASIX uses SASNT as its entry logic to preserve the contents of the user registers and to load the parameters into the working registers. The immediate character value is loaded into SRL and retained there until altered by the programmer. On each iteration of the loop in SASIX it loads the next byte of the field into accumulator before turning control over to the logic which will operate on the data. SASIX increments the address of the field and loops until the count is consumed or until the programmer busts out of its control. Exit from SASIX is through the FRXIT exit logic which restores the user registers with the exception of the program counter and flags to their original contents. An example of the use of SASIX as the controlling logic for a routine which translates all the spaces in a field to zeros is as follows:

SASIX, continued

1. Inline coding in user program:

CALL	USRTN	Call user written logic;
DW	A(FIELD)	Address of field to be translated;
DB	SIZ	Length of field to be translated;
DB		Immediate character value of a space;

2. Subroutine in user program called by
the above sequence:

USRTN	CALL CMP	SASIX	Call SASIX support routine;
RNZ		Compare immediate character value (in SRL) to accumulator; Return to SASIX if not equal;	
	MVI	A, 0^{\prime}	Move immediate value of character ' 0 ' to accumulator, replacing occurrence of the immediate character value;
	RET		Return to SASIX;

3. Should an abnormal or premature return be required, for example, in a situation such as in 2 above where it is desired to translate only the leading spaces into zeros and then stop, it should take the following form:

USRTN	XXX		
CALL	SASIX	Setup instructions, if any; Call SASIX utility routine;	
CMP	L	Compare SRL to accumulator; MVI	A, O^{\prime}
Move a character zero to accumulator to replace			
immediate character value;			

The calls to SASIX above are not used as calls to which a return will be made. They are used to pass the address of the function execution instructions which follow the calls to the SASIX support routine. SASIX stores the passed address of the function execution instructions in the address portion of a call instruction within itself and executes the call within itself once for each iteration of the control loop.

It is very important to realize that the call to SASIX cannot be inline in the coding but must be called by the logic which is called by the inline parameter passing call if it is to function correctly.

SASNT: Single Address Plus Size, Function Entry Routine

The SASNT routine is used to save the user register contents and load the parameters following the original user's utility routine call. This routine is called by the function execution routine which was called by the user. The calling sequence for this support routine is:

> XTHL UDRHL to TOS; USRRET to DRHL;
> CALL SASNT Call SASNT support routine;

Upon return from the SASNT support routine the user's register contents have been saved on the stack and the working registers contain the following:

VALAC: Validate Alphabetic Character

The VALAC utility routine tests the character in the accumulator to determine if it is an alphabetic character or a space. Upon return, if the ZERO flag is equal to a 1, the character is valid as tested; if the ZERO flag is 0 , it is invalid. The calling sequence for this routine is:

CALL VALAC Call VALAC utility routine;

DRDE	$=$ Address parameter following user's cal!;
SRH	$=$ Length or size parameter;
TOS	$=$ True user's return point to byte following parameters;

Exit from a function execution routine which has used SASNT should only be effected by jumping to the FRXIT routine which is described above.

SWCHR: Swap Character Strings

The SWCHR utility routine will swap two character strings. The contents of FIELD1 replace the contents of FIELD2 while the contents of FIELD2 are replacing the contents of FIELD1. This routine can be used when writing internal sort routines. Both strings must be of the same length and may be up to 256 bytes long. The calling sequence for the SWCHR routine is:

CALL SWCHR Call SWCHR utility routine;
DW A(FIELD1) Address of one of the fields to be swapped;
DW A(FIELD2) Address of the other field to be swapped;
DB SIZ Length of the fields where 0 means a length of 256;

VALAS: Validate Alphabetic Character String

The VALAS routine tests the characters in a specified string to determine if they are all alphabetic characters or spaces. Examination proceeds from left to right one byte at a time; the routine terminates if an invalid character is found. Upon return, the Z flag is 1 , all characters in the string satisfied the validation requirements; otherwise the Z flag is 0 . The calling sequence for this utility routine is:

CALL VALAS	Call VALAS utility routine;	
DW	A(FIELD)	Address of the string to be tested;
DB	SIZ	Length of the field to be tested;

VALFX: Validate String,
 Function Execution Support Routine

The VALFX support routine is used as a generalized execution routine for the various string validation functions. These functions require a single address parameter for the field to be validated and a size parameter which specifies the length of the field which may be up to 256 bytes long. The contents of the field are not changed. VALFX does not actually perform the required function, for that is the responsibility of the programmer who is using VALFX. VALFX simply supplies the characters in the field one at a time, starting with the lefthand end, in the accumulator and controls the execution of the function by performing the housekeeping and looping involved in controlling the execution. VALFX increments the address of the field and loops until the count is consumed or the character which is invalid to the test is encountered. If the programmer who has coded the test logic returns to VALFX with a Z flag value of 1 , VALFX will supply the next character in the string; otherwise it terminates execution and exits via FRXIT to the calling point with a Z flag value of 0 . If all characters in the string were valid, return is made to the calling point with the Z flag equal to 1 via FRXIT. VALFX uses SASNT as its entry logic to preserve the contents of the user registers and to load the parameters into the working registers: FRXIT is used as the exit logic to restore the user registers, with the exception of the program counter and flags, to their original contents. An example of the use of VALFX as the controlling logic for a routine which validates that all of the characters in a field are letters of the Greek alphabet, as implemented on the Digital Group System, would be as follows:

1. Inline coding in user program:

USRTN	CALL	VALFX	Call VALFX function execution routine;
	CPI	${ }^{\prime}{ }^{\prime}$	Compare accumulator to a Greek alpha;
	RC		Return if accumulator less;
	CPI	's2'	Compare accumulator to an omega, end of Greeks;
*	RZ		Return if accumulator equal to omega, valid;
*	RNC		Return if accumulator greater than omega, invalid
*	CMP	A	Force $Z=1$, if ' α '<= accumulator $<=$ ' Ω '; valid;
	RET		Return to VALFX with valid conditions:

Note: For range of value tests like this one the instructions marked with asterisks (*) above may be replaced by the following instruction which jumps to an identical instruction sequence within the validation utility routines:

JMP VALXT Jump to the validation test logic;
3. If it were desired to determine that the field to be validated contained only Greek alphas and omegas and nothing else, the subroutine in the user program called by 1 above would be as follows:

USRTN	CALL	VALFX	Call VALFX function execution routine;
	CPI	' α '	Compare accumulator to an alpha; RZ
		Return if equal;	

The preceding calls to VALFX are not used as calls to which a return will be made. They are used to pass the address of the function execution instructions which follow the calls to the VALFX support routine. VALFX stores the passed address of the function execution instructions in the address portion of a call instruction within itself and executes that call once for each iteration of the control loop.

It is very important to realize that the call to VALFX cannot be inline in the coding but must be called by the logic which is called by the inline parameter passing CALL if it is to function correctly.

CALL USRTN	Call user written logic;	
DW	A(FIELD)	Address of field to be validated;
DB	SIZ	Length of field to be validated where 0 means a length of 256 ;

2. Subroutine in user program called by 1 above:

VALHC: Validate Hexadecimal Digit Character

The VALHC routine tests the character in the accumulator to determine if it is one of the 16 characters (0 to 9 or A to F) which are used to represent radix 16 (hexadecimal) digits. Upon return, if the $Z \mathrm{flag}$ is 1, the character in the accumulator is a hexadecimal digit; otherwise Z is 0 . The calling sequence for this utility routine is:

CALL VALHC Call VALHC utility routine;

VALHS: Validate Hexadecimal Digit String

The VALHS routine tests the characters in a specified string to determine if they are all valid hexadecimal digits. Examination proceeds from left to right one byte at a time; the routine terminates if an invalid character is found. Upon return, if the Z flag is 1 , all characters in the string were hexadecimal digits; otherwise the Z flag is 0 . The calling sequence for this utility routine is:

CALL	VALHS	Call VALHS utility routine;
DW	A(FIEID)	Address of the field to be validated;
DB	SIZ	Length of the field where 0 means a length of 256

VALNC: Validate Numeric Character

The VALNC routine tests the character in the accumulator to determine if it is one of the digits in the decimal numbering system. Upon return, if the Z flag is 1 , the character in the accumulator is one of the digits 0 through 9 , otherwise the \mathbf{Z} flag is $\mathbf{0}$. The calling sequence for this utility routine is:

CALL VALNC Call VALNC utility routine;

VALNS: Validate Numeric String

The VALNS routine tests the characters in a specified string to determine if they are all valid decimal digits. Examination proceeds from left to right one byte at a time; the routine terminates if an invalid character is found. Upon return, if the Z flag is 1, all of the characters in the field were valid decimal digits; otherwise the Z flag is 0 . The calling sequence for this utility routine is:

CALL	VALNS	Call VALNS utility routine;
DW	A(FIELD)	Address of the field to be validated;
DB	SIZ	Length of the field where 0 means a value of $256 ;$

VALOC: Validate Octal Character

The VALOC routine tests the character in the accumulator to determine if it is one of the digits in the octal numbering system. Upon return, if the Z flag is 1 , the character in the accumulator is a valid octal digit; otherwise Z is 0 . The calling sequence for this utility routine is:

CALL VALOC Call VALOC utility routine;

VALOS: Validate Octal String

The VALOS routine tests the characters in a specified string to determine if they are all valid octal digits. Examination proceeds from left to right one byte at a time; the routine terminates if an invalid character is found. Upon return, if the Z flag is 1 , all characters in the string were found to be valid octal digits; otherwise Z is set to 0 . The calling sequence for this utility routine is:

CALL	VALOS	Call VALOS utility routine;
DW	A(FIELD)	Address of the field to be validated;
DB	SIZ	Length of the field where 0 means a length of $256 ;$

DW A(FIELD) Address of the field to be validated;
DB SIZ Length of the field where 0 means a length of 256;

XCHR: Logical Exclusive OR Characters

The XCHR utility routine will logically exclusive OR a character string known as the MASK to another character string known as the FIELD; the result will replace the contents of the field. Both strings must be of the same length and may be up to 256 bytes long. The calling sequence for this utility routine is:

CALL	XCHR	Call XCHR utility routine;
DW	A(FIELD)	Address of the FIELD and the result;
DW	A(MASK)	Address of the MASK string;
DB	SIZ	Length of the fields where 0 means a length of 256;

XICH: Logical Exclusive OR

Characters Immediate

The XICH utility routine will logically exclusive OR a specified byte value known as the immediate character value (ICV) to every byte location in a specified field. The specified field may be up to 256 bytes long. The calling sequence for this utility routine is:

CALL	XICH	Call XICH utility routine;
DW	A(FIELD)	Address of the field;
DB	SIZ	Length of the field where 0 means a length of $256 ;$
DB	ICV	Immediate character value; $■$

Computeritis: the infection of the imagination with ideas about "what neat things could be done with a computer if only I had access."

At first, personal computing people were very technical types... now we find a sprinkling of lawyers, doctors, kids, retirees, art teachers, tavern owners, and others.

Continued from page 4

were nearly all very technical types engineers, programmers, and electronics buffs. But limes are changing very rapidly in personal computing. Now we find a sprinkling of lawyers, doctors, kids, retirees, art teachers, and tavern owners. Less and less technical expertise is needed. In fact, with computer stores ready 10 help and with assembled kits readily available, one can get by with no hardware expertise. And we all know that BASIC (the programming language most widely available with personal computers) hats been taught widely in high schools so very little in the way of prior background is needed. Rather, what's needed is a little bread and a lot of curiosity about one of the most curious of mankind's inventions.

Why does an individual buy his or her own computer? I think there dre three primary reasons: (1) he or she has a specitic application that he or she wants to implement; (2) he or she is curious and wants to Iearn about computers; and, (3) his of her future job security maly depend on his or her knowing about computers.

Among the people wanting lo implement a specific application are many small, usually one-person, businesses. There is a sprinkling of people with really innowative applications such de devices to provide assistance to a handicapped individal. Among these who want 10 loarn about computers are the maturally very curious people who in the past would have pursued wher electronicsoriented hobbies such as ham radio. Here are a surprisingly large number of perople who can greally increase their job security with a litule howledge of computers even people in licuds seemingly not redated on computers.

Owning the computer does not, by ithelf, provide a person with all that's needed ${ }^{10}$ learn about computers. There is a major educational process that must be "endered." The needed information can be gleaned from many sources without resorting 10 formal education: books, magatimes, and, though clubs and conventions, other people.

One of the primary means of obtaming information has been computer clubs. There are nealy 150 computer clubs in the United Slates and a few in Candad and other countries. Club sizes vary from a handlul to Southern California Computer Society's more than 5,000 members. These clubs de not affiliated in any way with one another except that a lew clubs are regional and have several local chapters.

The primary activity of mose compuner
clubs is the regular meeting. Typically, a club meets with a frequency of from every two weeks to once a month. The object of a meeting may simply be the informal exchange of information by club members. There may be a presentation by a guest speaker, a demonstration of a product or a project, or a workshop on some particular subject. It is not unusual for several people to show up unexpectedly with computer projects to show. Whatever the main objective, some side activities dways take place: Individuals share their experiences and insights - usually with enthusiasm reminiscent of a revival testimonial.

Many clubs publish newsletters which are avidly read by the club members. In lact, some of the newsletters are so good that they have many subscribers outside the club's primary geographic area. The newsletters contain articles on the activities of the club, information on new products, schematics for new widgets, program listings, experiences of club members with various products, and a wealih of other information wanted by personal computing enthusiasts. Although the newsletters vary in production quality from computer listings all the way to glossy magazine format, a typical newsateter is a few Xeroxed pages.

Clubs are beginning to exchange newsletters which may bring about improved commenication and some coordination of activities among clubs. A big question atises ds Whether or not a mational federation of clubs will form. On one hand, a mational lederation could benefit its nembers by providing publications, improved informabion exchange, sponsorship of conferences, encoundgement of product standards, software exchange, and protection of its members in dealing with product suppliers. On the wther hand, many people believe that a formal organization would be counterproducive to the goal of mont computer clubs; namely, the free exchange of information for the benefit of the members. In fact, some clubs, even ver) large clubs, elect no officers, colled the dues, and cham no menbers. The newstenter is funded by passing a hat when the tiedsury gets low.

The personal compuing movement is held logethe mationally by the magazines. There ate a surprising number of high quality publications. Heading the list is BYTE which not only publishes a wide variety of technical articies of interest to personal computing lolks, but also provides a wide assortment of other goodies such as new produce announcemems, book reviews, and news coverage of personal computing conferences. Among several other publica-
tions, each has its own unique orientation. Interface Age, a general hobbyist publication, started as the newsletter of the Southern California Computer Society, but is now published independently. The stated mission of Dr Dobb's Journal of Calisthenics and Orthodontia is to foster the free exchange of software. One has only to look at the creation of Tiny BASIC to realize the incredible success that Dr Dobb's has had in accomplishing its goal. David Ahl's Creative Computing is oriented toward the use of computer games by kids as an educational vehicle. People's Computer Company is published in newsletter format, is largely oriented towards kids, but has significant personal computing coverage. Several other established publications such as Popular Electronics and Radio Electronics feature major sections devoted to personal computing.

Any discussion of the personal computing movement would not be complete without mention of the major conferences. The first major conference was the MITS World Altair Convention held one weekend in March 1976 in Albuquerque NM. Although it was supposedly an Altair users' conference, when one wandered around the lobby of the hotel, the feeling of a big computer club meeting

Owning a computer does not by itself provide a per-

 son with all that's needed to learn about computers. There is a major educational process that must be "endured" in order to reap the rewards of computing in one's personal life.was very strong; and the fact that MITS was the organizer was really incidental. In attendance were nearly 1,000 people from across the country with a few international visitors.

The next major milestone was Personal Computing 76 held during August 1976 in Atlantic City NJ. The conference was organized almost single handedly by John Dilks, with major contributions provided by Dave Jones and Jim Main. The conference started as a project of a ham radio club but soon outgrew all expectations, probably simply because a conference was needed. The very successful confcrence drew 88 exhibitors with 110 booths and nearly 5,000 attendees.

Several conferences will probably be held over the next year. One "must" coming event for personal computing enthusiasts is the 1977 National Computer Conference Personal Computing Fair and Exposition

LOOKING FOR...?

- IMSAI
- Polymorphic Systems
- Technical Design Labs (TDL)

FOR YOUR IMSAI / ALTAIR
How About...

- A Video Interface which provides 16×64 characters, upper and lower case, graphics and a parallel input port for a keyboard. all on one board!
- 1ok RAM on ONE CARD. Super low power - 500 ma for 16k!! Super fast power - 500 ma for $16 k$!! Super fast
access -200 ns!! Start with only $4 k, 8 k$ access -200 ns!! Start with on
or 12 k then expand to 16 k later.
or 12 k then expand to 16 k later.
- LOW. LOW PAICES on all products. Write or call us for information and complete price list
YOUR MAILORDER COMPUTER SHOP: Call: (315) 637-6208
computer enterprises
P.O. Box 71 - Fayetteville, N.Y. 13066

TURN ON WITH COMPTEK

Now your micro can control AC power outlets with COMPTEK's NEW PC3200 Power Control System.

- 1 to 32 independently addressable control channels
- Remote power control units no AC power on logic board
- Optically isolated, current limited, low voltage control lines
- Accessible through most BASIC's
- ALTAIR and IMSAI compatible Write today for more details!

camptek

"Real World Electronics"
P. O. Box 516

La Canada, CA 91011

COMPUTALKER

CT-1 SPEECH SYNTHESIZER

High Quality Volce Output Altair/IMSAI/Polymorphic plug-In Nine Acoustic Control Parameters Includes 8080 Interface Software 5395.00 plus shlpping

Order a demonstration cassette S2.95 postage paid

Write for informative literature
Calif. residents add 6% sales tax COMPUTALKER CONSULTANTS
P.O. Box 1951, Dept. B, Santa Monica, CA 90406 circle reader number 140

Soon we will be waiting only for some clever and well financed company to package the Home Information Processing Center and thus create the consumer demand for this next major home appliance concept.

Expert guidance is usually available from the computer store... it is a place to turn for local help and instruction.
scheduled for June 13-16 in Dallas TX. The National Computer Conference is the world's largest computer conference, attracting over 250 exhibitors with more than 1,000 booths and drawing more than 25,000 attendecs. Major personal computing activitics are planned for the 1977 NCC including a Personal Computing Fair, a special exhibit area for personal computing products, a program of paper and panel sessions, and a Computer Club Congress.

Now let's turn our attention to the manufacturers who started and support the personal computing movement. What types of companies are producing personal computing products? Until very recently, the typical personal computing product manufacturer was a rather small company whose only product lines were in the personal computing area; for example, IMS Associates, Polymorphic Systems, Processor Technology and Cromemco. Companics that don't quite fit the personal computing specialization are MITS, Southwest Technical Products, and iCOM. Recently, several larger companies have been seen making moves into the personal computing market; namely, Texas Instruments, Intel, and Digital Equipment Corporation.

Although at first nearly all personal computing products were sold by mail order direct from the manufaclurer, we see now an important new institution emerging - the retail computer store. Presently, there are over 250 computer stores in the United States/based on the number of BYTE's direct dealer sales outlets/. A computer store is not an electronics store or greenhouse that happens to stock computers. The best computer stores offer a wide variety of products and services for the computer hobbyist and small business, including several lines of computers, parts, peripherals, prototyping equipment, books, magazines, sofiware, repair service, custom interfacing, and consulting. The typical computer store has on display several demonstration computing systems so that an individual can see and try before buying. The computer store concept offers several advantages to the purchaser over buying directly from the manufacturer at no additional cost. The
purchaser need not deal with several manufacturers in order to reap the benefits of cost and feature comparisons. Expert guidance is usually available from the computer store. Local service is provided as well as answers to the myriad of questions sure to materialize when a person takes home his/her first computer.

Now that we have characterized the personal computing movement in terms of the people, their clubs and conventions, the magazines they read, and the manufacturers of personal computing products, let's turn our attention to the impact of personal computing and its future. Most importantly, personal computing is the leading edge of the sharing of computing power by large corporations and government with the people. Soon our homes will be full of computers quietly improving many types of consumer goods, including: ovens, sewing machines, stereos, televisions, automobiles, sprinkler systems and security systems.

More significantly, however, the Home Information Processing Center is emerging from the efforts of personal computing enthusiasts to use the computer to improve the quality of their everyday activities. The Home Information Processing Center will provide a central coordination facility for other home appliances, assistance in a myriad of personal business and record keeping tasks, interface with external systems such as bank electronic funds transfer systems and retail stores, endless entertainment with computer based games, individualized learning through computer assisted instruction for us and our children, partial replacement for the mail with a home to home telcphone-based communication system, remote access by telephone to home control functions, and each home with clerical assistance such as text editing.

The public is being primed now for acceptance of the Home Information Processing Center. On the other hand, as mentioned before, many consumer goods are incorporating microprocessors as control components, so the public will start to think of the microcomputer as a rather ordinaly device. On another front, video games are beginning to physically appear a lot like the Home Information Processing Center. Specifically, the games are using the television as an output device, some of them are using simple keyboards as input devices, and some use audio tape cassettes as a means of storing programs. From this video game to the Home Information Processing Center is a seemingly small step. The Home Information Processing Center would have the keyboard, the television, and the tape cassette in

JESM DEvELOPAENT LABS

P. O. Box 2345
W. Lafayette, IN 47906
(317) 463.7167
${ }^{1} 4$ watt carbon film resistors.... $\$ 0.03$ 5 percent, 50 per value min.
watt carbon comp resistors... $\$ 0.02$ 10 percent, 50 per value min.

No-Nik wire strippers............... $\$ 16.00$ $10,12,14,16,18,21,23,25,28,31$
$34,37,44$ or 54 thousanths
wire diameter
Carbide PC board drills
wire size: $55+65$.
55 - 65 $\$ 2.88$
71 . 75................................... $\$ 3.06$
76-78................... $\$ 3.60$
79 . 80....................... $\$ 3.60$
Spec sheets are available.
We would be pleased to send you a 'GOODIES' catalog listing all kinds of hard to find products including: Molex, Bishop Graphics, AMP, CDC manuals and forms, PC drills and mills, elec. tronics tools, PC board manufacturing supplies, resistors, and semiconductors.

NEW IN

PHOENIX

Bits \& Bytes

COMPUTER SHOP

6819-C N. 21st Ave.
Phoenix, Az. 85015
(602) 242-2507

Featuring:

EPA Micro-68 System
Micro Term-Act 1 Keyboard Video Monitors
Books, Magazines

ELEEAD, LELE

7338 Baltumore Ave. Suite 200 Clege Park, Maryland 20740 Joint venture
GROUP OEM BUYS
IMSAI made kits \& assembled utits Tec-9900 SS-UF, 16 but Tl9900 microp. 32 bit $1 / 0$. haroware mul o div. buffered bus. 20 ma of RS 232.8 TEC 9900 - 32 KB sock
EC. 9900 -32KB 32 K bytes memory EC-9900.PP nower supply $\$ 125.00$ SHERE k Is ε assembled SWTPCkns 8 assembled units $\quad 10 \%$ OFF LIST CROMEMCO KIIS \& Z I._10\% OFF LIST SANYO IV Moritor
TDL ZPU \& Z16K
SEALS 8 k bat backug Mem _ 10% OFF LIST ERASCI Dual flopoy e intelligent controllet 18270 OFF LIS
SHUGART MINI.FL.OPPY__ $\quad \$ 1395.00$
AMD FACTORY PRIME TESIED IO MIL STO $883 C$ $91 \mathrm{LO2} 50 \mathrm{Ms} \quad \$ 1.90 \quad 9102500 \mathrm{nis} \quad \$ 1.85$

8080 PPI

 2708 Eprom —_ $\$ 66.00 \quad 2102450$ ns ——— $\$ 1.75$
ADM-3K + CAT $\&$ addressable cursor $\$ 92500$ Inst $\$ 825.00$ AXIOM 80 col , $160 \mathrm{char} / \mathrm{sec}$ primter, Daraltel intertace Nat. Multiplex Dignal Jane recorders $\&$ kis 10% OFF LIST MSi floppys $b \mathrm{k}$ its Pennywhistle motem ___ 5% OFF LIS TI "silent 700" model 743, pinter $\$ 1395$ list 5\% OFF LIST ASTRAL 2000 kks Send $\$ 200$ for newsletter \& lists other chips 2900 senies, 4 K mens atc
18 pin socket $\&$ cab for memory chup 25
tull miyment for discounts. add 4%, min 400
tul pryment ior tiscounts. add 4%, min 4,0
lownst oiscount on OEM Group buys prices subject to change without notice

SOUTH CAROLINA

Now has a BYTE SHIP

2018 Greene St. (5 Points)
Columbia, SC 29205
(803) 771-7824

PROGRAMIMING COURSE

Free description and outline of Modu-Learn TM Home Study Course in microcomputer programming. Hundreds of pages of text with examples, problems and solutions. Prepared by professional design engineers using the best software design techniques from structured programming and practical experience with microcomputers. Presented in a modular sequence of 10 lessons oriented for the new programmer. Extensive reference material you will use long after you become an accomplished microcomputer software designer. Much of the information in the course has been available only through costly seminars. Now you can purchase this complete home study course for under $\$ 50.00$. Send for free descriptive brochure now.

711 Stierlin Rd, Mountain View, CA 94043
(415) 965-8365
addition to mass stordge, such as a floppy disk, a hard copy output device, not very different from the ordinary bypewriter, and be interfaced to the telephone line. The hardware technology for a low cost Home Information Processing Center exists. The application and software technology will grow from the personal computing movement. Soon we will be waiting only for some clever and well-financed company to package the product and create the consumer demand for this next major home appliance. When the Home Information Processing Center has become commonplace, personal computing will have grown to maturity.

What started as a hobby could well grow into a "necessity" of life.

Names and addresses of some of the publications mentioned in this editorial:
Interface Age published by McPheters, Wolfe \& Jones, 6515 Sunset Blvd, Suite 202, Hollywood CA 90028 (monthly).
Dr Dobb's Journal of Computer Calisthenics and Orthodontia, published by People's Computer Company, POB 310, Menlo Park CA 94025 (monthly).
Creative Computing, published by Ideametrics, POB $789-\mathrm{M}$, Morristown NJ 07960 (every two months).
People's Computer Company, published by People's Computer Company, POB 310 , Menlo Park CA 94025 (published several times during the school year).
Popular Electronics, published by Ziff-Davis, widely available on newsstands (monthly).
Radio Electronics, published by Gernsback Publications inc, widely available on newsstands (monthly).

The Word "Byte" Comes of Age. . .
We received the following from W Buchholz, one of the individuals who was working on IBM's Project Stretch in the mid 1950s. His letter tells the story.

Not being a regular reader of your magazine, 1 heard about the question in the November 1976 issue regarding the origin of the term "byte" from a colleague who knew that I had perpetrated this piece of idrgon /see page 77 of November 1976 BYTE, "Olde Englishe" 1 . I searched my files and could not locate a birth certificate. But I am sure that "byte" is coming of age in 1977 with its 21 st birthday.

Many have assumed that b;te, medning 8 bits, originated with the IBM System/360, which spread such byles far and wide in the mid-1960s. The editur is correct in pointing out that the term goes back to the earlier Stretch computer (but incorrect in that Stretch was the first, not the last, of IBM's second-generation transistorized computers to be developed).

The first reference found in the files was contained in an internal memo written in June 1956 during the early days of developing Suech. A byie was dencribed is consisting of any number of parallel bits from one to six. Thus a byte was assumed to have a length appropriate for the occasion. Its first use was in the context of the inputoutput equipment of the 1950s, which handled six bits at a time. The possibility of going to 8 bit bytes was considered in August 1956 and incorporated in the design of Stretch shortly thereafter.

The first published reference to the term occurred in 1959 in a paper "Processing Data in Bits and Pieces" by G A Blaauw, F P Brooks Jr and W Buchholz in the IRE

Transactions on Electronic Computers, June 1959, page 121. The notions of that paper were elaborated in Chapter 4 of Plaming a Computer System (Projecl Stre(ch), ediled by W Buchholz, MeGraw-Hill Book Company (1962). The rationale for coining the term was explained there on page 40 as follows:

Byte denotes a group of bits used to encode a character, or the number of bits transmitted in parallel to and from input-output umits. A term other than chatracter is used here because a given character may be represented in dirferent applications by more than one code, and different codes may use different mumbers of bits (ie, different byte sizes). In input-output transmission the grouping of bits may be completely arbitrary and have no relation to actual characters. The term is coined from bite, but respelled to avoid accidental mulation lo bil.)
System/360 look over many of the Suretch concepts, including the basic byte and word sizes, which are powers of 2 . For economy, however, the byte sice was fixed at the 8 hit maximum, and addersing at the bit level was replaced by byic addresing. Since then the 1 erm byte has generally meant 8 bits, and it has thus passed into the general vocabulary.

Are there any other terms coined especially for the computer field which have found their way into general dictionaries of the English language?

W Buchholz
24 Edge Hill Rd
Wappingers Falls NY 12590

THE

COMPUTER CORNER

Lower Hudson Valley
Southern Connecticut

- IMSAI 8080
- POLY-88
- Teletype supplies
- Full line of magazines
- Processor Tech
- Computer Book Service
- Magnetic tapes \& disks
- Brain Games \& Puzzles

THE COMPUTER CORNER
White Plains Mall 200 Hamilton Avenue White Plains, N.Y. 10601
Tel: (914) 949-DATA

10-6 Daily \& Saturday 10-9 Thursday

HEY, ALTAIR... GOT THE TIME?

If not, you need COMPTEK's NEW CL2400 Real-time Clock.

- Self-contained hardware clock
- Can be set and read by BASIC
- Programmable interrupts
- Top quality board, components, and I.C. sockets
- ALTAIR and IMSAI compatible
- Uses: 24 hour clock

Software timer Event timer

KIT - \$98 ASSEMBLED - \$135
comptrek
"Real World Electronics"
P. O. Box 516 La Canada, CA 91011

Circle A 207

South Florida

Across from the University of Miami University Shopping Center 1238 A South Dixie Highway Coral Gables, FL 33146 (305) 661-6042

Sunny Computer Stores. Inc South Florida's First Computer Store

We Carry

- IMSAI, COMPUCOLOR, VECTOR, SOUTHWEST, C.S.C., CROMEMCO
- Books, Magazines, Newspapers
- Sockets, IC's, Printers
- Digital Cassette Equipment
- Debugging Equipment

We offer Classes, Friendly Advice and Service
Hours: Monday - 12 Noon to 9 P.M. Tuesday through Saturday -

10 A.M. to 6 P.M.
the microcomputer

an introduction to reality
now in canada:
imsai
processor
cromemeo
tdl
and more

The Computer Place 186 Queen St. W
Toronto M5V 1Z1
416-598-0260

Focus Scientific 160 Elgin St. Ottawa K2P 2C4 613-236-7767

ALDELCO COMPUTER CENTER

2281 Babylon Turnpike
Merrick, Long Island, N.Y.
Open Mon. thru Sat. 9:30 to 5
Books, Magazines,
Computer Boards and Kits
7400 IC's, CMOS, LINEARS, MEMORIES, $6800 \& 8080$ Support Chips, Rectifers Diodes, IC Sockets, Electronic Parts
OK battery operated wire wrap
tool $\$ 34.95$
OK hand operated wire wrap
tool
\$ 5.95
National's SC/MP Kit only $\$ 99.95$
COMPUTER CONSULTATIONS SATURDAYS 9 to 5
Evenings by appointment

CALL US AT 5163784555

OFF LEASE EQUIPMENT Teletype ASR 33

\$809 each

F.O.B. Your local AJ service center.

Modems and Couplers also available.

A ANDERSON JACOBSON

521 Charcot Ave, San Jose California 95131
(408) 263-8520 \mathscr{P} ersonal Computer People: Here are some of the manufacturers we know, use, sell, stock and service.

About the Cover - Venus de Plotto

The unique drawing seen on this month's cover is an entry in the recent art contest, contributed by Arthur C Taber, 560 Rockdale Dr, San Francisco CA 94127. This piece of art was produced on equipment which is not exactly in the price range of the personal budget: Arthur does his art at the San Francisco State University computer center. The output device used to draw the figure was a CALCOMP 563 drum plotter which has a 30 inch (76 cm) drum and a resolution of 200 steps per inch (79 steps per cm). The computer used was a CDC 3150 which has 32 K 24 bit words. The 3150 can perform floating point calculations
(eg: multiply or divide) in about 5 us, so the 9 ms per point which he timed on a wall clock represents 1800 equivalent floating point multiply operations per point.

The program used was an engineering simulation program which can be described metaphorically as "a highly distorted picture of four random rocks being thrown into a target whose viscosity varies from the center outward." In terms of the actual model, it is a high level language equation which describes a linear combination of damped harmonic oscillators in two dimensions, which is then rotated through a third dimension to produce a surface. The equation involved has two cosine terms, a square root term, and two exponential terms

SOFTWARE - HARDWARE

IMSAI NATIONAL MULTIPLEX COMPUCOLOR SWT PRODUCTS

SOFTWARE - HARDWARE PACKAGE
With each order for IMSAI 8080 National Multiplex 2SIO(R) board and CC7A recorder receive free Assembler, 8K BASIC, 3 Games; all on cassette (requires 12 K memory).
This is the fast system, load 8 K BASIC in 17 seconds instead of $41 / 2$ minutes as on other cassette systems or 20 minutes with punched tape.
Users of National Multiplex system: Send $\$ 20.00$ for cassette containing 3 games.
For fast service send certified check or money order in full with order (Pa. residents include 6% tax). Shipping is prepaid to your door.

For Dental, Medical, and business applications call:

Dr. L.A. Lombardi LOMBARDI ELECTRONICS 110 Ludwig Road
New Castle, PA 16105
(412) 652-3241

Professional Repair

We repair S-100 style computer kit boards. $\$ 20$ per hour. Send us your boards and we will mail you a labor estimate. (Phoning estimates is $\$ 1$ extra.) If estimate is refused, we charge a $\$ 10$ estimate fee. If you ok the estimate, the estimate is free. Repaired boards returned UPS collect. Send the manuals with the boards and be specific about the problem.

FREE

Send stamped self-addressed envelope for a free copy of our list of $\mathrm{S}-100$ bus compatible computers and peripheral boards.

Action Audio Electronics Westlake Shopping Center 323 South Mayfair Avenue DALY CITY. CALIFORNIA
94015, (415) 756-7440
for damping. The plotting of this three dimensional surface was accomplished using a modified version of $A C M$ algorithm number 483 for hidden line elimination with a masking array of 10,000 words and the addition of some finesse. Finesse is defined as a random pen wiggle with an amplitude of several plotter steps, used to give texture and roughness to the lines in the original.

Can This Type of Art Be Done at Home (for Less than a Megabuck)?

The answer to the question is a qualified yes - this type of work can be done at home if the experimenter is willing to put together some of the required hardware, put up an Altair compatible machine with perhaps 16 K to 32 K of memory, and add a mass storage device such as a Phi-Deck or floppy disk which can be automatically run. In addition to this more or less "standard system" the would-be artist must acquire a plotter such as the $\$ 750$ plotter kit described on page 85 of January 1977 BYTE, manufactured by Sylvanhills Laboratory Inc and a fast floating point unit such as the North Star Computers FPB, Model A, described on page 75 of January 1977 BYTE. Assuming the limiting factor is the floating point calculation speed, here is a quick feasibility estimate for the computation of Venus de Plotto.

1. The original took a total of $1800 \times$ $250,000=450$ million calculations.
2. Allowing 111 us per floating multiply, the raw time requirement is:
$450 \times 10^{6} \times 111 \times 10^{-6}=49,950$ seconds These numbers are very approximate, for they assume little 10 was done in the original run, that all parts of the program would scale in the same way as the floating point multiply time, etc. However, with a personal computer, one has time to "burn" as it were. The liberating effects of the computer are quite obvious here: For this kind of art, one would (for example) set up the plotter and program some fine morning, go out and get the day's exercise (bicycling, cross country skiing, jogging, etc, depending on where you live and when), go to work, rendezvous with an intimate friend for dinner, check on the finished results, then spend a few minutes to modify the design parameters of the plot before retiring for the night with that smug self-satisfying feeling that comes from living a good life.■

SC/MP, the Microprocessor kit from National

 Semiconductor includes everything you need to build a completely functional microprocessor system - featuring the National SC/MP microprocessor - the low cost microprocessor for every application: Text Systems and Instrument Control; Machine Tool Control; Small Business Machines; Word Processing Systems; Educational Systems; Multiprocessor Systerns; Proces Controllers; Terminal Control: Laboratory Instrumentation: Sophisticated Games; Automotive Controller and Appliance Controllers.The kit, neatly packaged with all the com-
 ponents and literature you need, in a looseleaf binder, includes: The SC/MP Microprocessor - a single-chip Central Processing Unit in a 40 . pin, dual in-line package. Features static operations, forty-six instruc. tion types; single-byte and double-byte, software controlled interrupt structure, built in serial input/output ports; bidirectional 8 -bit TRI. STATER' bus, parrallel data/port and latched 12-bit TRI.STATER address port. ROM -512 bytes (8 -bits/bvie) of pre-programmed Read-Only-Memory containing KITBUG-a monitor and debugging program to assist in the development of vour application programs, KITBUG provedes teletypewrite input/output routines and allows examination, modification, and controlled execution of your programs. RAM-256 bytes of static read/write memory for storage of your application programs. Transfers of data to and from RAM are controlled by SC/MP and KITBUG. Teletvpewriter Interfact including buffer and drive capability for a 20 MA current loop interface. Voltage Regulator. Data Buffer-providing interface between memory and bidirectional data lines. All the literature you need, including schematics and programming manuals. Timing Crystal-providing 1.000 MHz liming signal. Plus all the passive components and circuit board with 72 pin edge connector required to build and interconnect vour microprocessor system with external hardware

ASC II KEYBOARD

(Reg. \$58.85)
$\$ 53.00$
This 63 key ASC II Encoded Keyboard kit was designed and manufactured by Electronics Warehouse Inc. Features: single 5 volt D.C. supply, utilizing only TTL logic elements (no MOS devices to blow), TTL drive capability (each of the eight bits of ASC II output will drive the equivalent of ten standard TTL inputs without external buffer drivers), de-bouncing, upper and lower case fully ASC II, 8 bit parallel output. In addition to the alpha-numeric and symbol keys available on a regular keyboard, the following keys are utilized: escape, back-space, tab, line-feed, delete, control, shift-lock, shift•(2 keys), here-is, control-release.
Kit includes: 63 key keyboard, P.C. board, all required components and assembly manual with ASC II code list.
Optional: 1. Parity bit - add $\$ 1.00 \quad$ Aluminum enclosure $\boldsymbol{\$} \mathbf{3} \boldsymbol{9} .-$
2. Serial output - add $\$ 2.00$

Note: If you already have this teletype keyboard you can have the kit without it for $\$ 36.00$ (reg. $\$ 39.85$). Dealer inquires invited.

National's new Keyboard Kit now gives SC/MP Kit users a low-cost input/output capability. This new kit replaces the Teletype* normally required by the SC/MP Kit and allows users to evaluate the SC/MP CPU and to develop a variety of application software.

The heart of SC/MP Keyboard Kit is a ROM firmware package (512 bytes) called SCMPKB. The SCMPKB ROM replaces the "Kit Bug" ROM originally supplied with the SC/MP Kit and allows the effective use of the hexadecimal keyboard, to execute programs, to examine or modify the contents of memory and the SC/MP registers, and to monitor program performance.

There is a hole pattern for additional integrated circuits on the SC/MP Kit PC card. By following the simple instructions in the SC/MP Keyboard Kit users manual, one can add buffers, decoders, drivers, multiplexers, etc. Simply replace the Kit Bug ROM (supplied in the SC/MP Kit) with the new SCMPKB ROM, connect the preassembled Keyboard cable connector to the kit card, and you are ready to go!

National's Keyboard Kit comes complete with manual, all required integrated circuits, resistors, keyboard display cable connector assembly, wire wrap connectors, precut wires-even a hand-held wirewrap tool.

MINIMUM ORDER $\$ 5.00$

Shipping \& Handling:

KEYBOARD or SC/MP - $\$ 3.00+\$.50$ Insurance

all others - $\$ 1.00$
California residents add 6% sales tax.
ELECTRONICS WAREHOUSE Inc.
1603 AVIATION BLVD.
REDONDO BEACH, CA. 90278
TEL. (213) 376-8005

ROCKER SWITCH

SPST normally open contact rating 6A 250VAC
solder $\quad \$.50$ ea $\$ 2.00$ per 6

BRIDGES		T		100499	50.999
\%ois		smo	\%	\%	${ }_{4}^{3}$
yoes	${ }_{3}^{3}$	cosy	,	\%	\%
			,	${ }_{6}^{6}$	\%
	${ }_{2 \times 4}$	zomo		2\%	,
кевс 7 о6	${ }_{8}{ }^{\text {a }}$	uso	225	\%	10

POWER SUPPLY: SPECIAL OFFER

Sinceial buy on DEM Tyue Power Supary
\qquad

"Glever buyers request our free flyer" All items below are while they last and aubject to prior sale.

 and subject to SUBMIRI PC MOUNT SLIDE SWITCH Center off SPDT. Only $5 / 8^{\prime \prime}$ by${\text { tal with pins on } 1 / 8^{\prime \prime} \text { centers. }}^{\text {w }}$, t" with pins on
A VERY GOOD BUY $10 / \$ 2$

- This

VECTOR!

accessories we've seen. It accepts virtually any size IC package has a power and ground plane on opposite sides of the board for extra capacitance. Room for 4 regulators, 1 heat sink provided with board. By the way, the sockets are shown only for illustration, but they get the point across that you can stuff a lot of ils on here --- implement your own

UNIVERSAL PROTOTYPE BOARD \Rightarrow - $\boldsymbol{E} \$ 19.95$

25 PIN RS-232 CONNECTORS

Submini D type
Male plug comes with plastic hood.... $\$ 3.95$ Order part \#DB25P
Female jack., .. \$3. 95 Order part \ddagger DB25s

"EconoRom"

$\$ 19.95$
ALTAIR $8800 /$ IMSAI PLUG-IN COMPATIBLE. This is a 4 K by 8 EROM board... the ideal place for putting software, be ${ }^{1 t}$ assines. Additionaliy, this board may expand to routines. Additionally, this board may expand 8 K 8 by simply adding more sockets and EROMs; also available is a $2 \mathrm{~K} \times 8$ version if you don't need a full 4 K . LOW POWER: 8 K board requires $\frac{1}{2} \mathrm{~A}$ ($5 \mathrm{~V}, 5$ 150 ma \& -12 V . Buffered addresses for lightest loading, buffered outputs for maximum drive. Kit includes sockets, double-sided quality PC board, on board regulators, logic print, and instructions. Program it yourself, or have us do the programing. $8 \mathrm{~K} \times 8$ BOARD $\$ 269.95 \quad 2 \mathrm{~K} \times 8 \mathrm{BOARD} \$ 135.00$

8080 Soiturre Board S189.95

We took our ECONOROM board kit, but instead of including blank EROMs, these are programmed with assembler, editor, \& monitor routines for the 8080 . This is a valuable first step if you're trying to get away from machine language prograning. There's not really enough room here to fully describe all the functions of the software...but if you send us $\$ 2.95$ (refundable with order), we'll send you our software packet that in cludes instructions listing, schematic, and assembly data.

CAVE

 grax
We Now Distribute Knowledge!

We are happy to carry the Adam Osborne $\&$ Associates se-
ries of books on microcomputers, as Iucid and complete a treatment of the subject as we've seen to date. a treatment of the subject as we ve seen to date. All books postpaid in the USA; set of all three books available for only $\$ 25.00$
voL 1 "An Introduction to Microcomputers" Order book \$2001. Gives the basics of uP based systems.....\$7.00
VOL 2 This recent addition gives up-to-date information on microprocessors---equivalent to hundreds of pages of data sheets. Order book \#3001.......... $\$ 12.50$ VOL 3 "8080 Progranming for Logic Design" $\ddagger 4001$ \$7.50

CONORAN
 in kit form
 $\$ 99.95$
 plus postage

We took everything we learned from selling $4 \mathrm{~K} \times 8$ RAM boards for the past year, added some of this year's circuit tricks, and came up with ECONORAM-..-a memory board that is even more remarkable due to its low price. We've engineured this with the user in mind, giving you several benefits

* 3 regulators to share power load, plus optimized thermal design, means a cooler running microcomputer
* Typical current consumption of under 750 ma gives your power supply a break
* Fast --- Zero wait states
* All TTL support ICs are latest Low Power Schottky types
for reliable and unambiguous data transfer, all addresses, data lines, and outputs are buffered for minimum loading and maximum outpul capability
* Power-on clear included

Nll these features are packed on to an Altair-sized, industrial quality double-sided PC board, with sockets for all ICs, 7 tantalum capacitors for power supply decoupling, and plenty of bypass capacitors---39 of them, in fact, as well as a logic print
also available assembled \$129.95
Our popular ECONORAM $4 \mathrm{~K} \times 8$ RAM board is now available assembled, tested, and warranteed for one year. Plug it in to your Altair or IMSAI and enjoy the same performance that has made the kit such a success-- fu uaranteed zero wait states and current drain of 750 mA
or less; on buard regulation, easy address selection or less; on buard regulation, easy address selection,
and lots more.

for postage (excess refunded)

Tokeoff

Hit the deck in shorts and a tee shirt. Or your bikini if you want.
You're on a leisurely cruise to remote islands. With names like Martinique, Grenada, Guadeloupe. Those are the ones you've heard of.
A big, beautiful sailing vessel glides from one breathtaking Caribbean jewel to another. And you're aboard, having the time of your life with an intimate group of lively, funloving people. Singles and couples, too. There's good food, "grog", and a few pleasant comforts...but there's little resemblance to a stay at a fancy hotel, and you'll be happy about that.
Spend ten days exploring paradise and getting to know congenial people. There's no other vacation like it.
Your share from $\$ 245$. A new cruise is forming now. Write Cap'n Mike for your free adventure booklet in full color.

Windjammer Cruises.

Name

Address
City State \quad Zıp

Phone
P.O. Box 120, Dept. 121

Order Minimum $\$ 10.00$. Add $\$ 1.00$ shipping and handling charge per order. California residents add 6° 。 sales tax. All orders shipped First Class within 24 hours.
Order the famous lasis 6 volume Programmed Learning Course "Microcomputer Design is a Snap" for $\$ 99.50$ and receive a special $\$ 10.00$ credit on any group of IC's.
C.O.D. Orders: Phone (day or night) 408/354-1448
 PO BOX 2542
Sunnyvale, CA 94087
Mrmim 7400 NTLL
EAIRCHILI TECHNOLOGY KITS EAIRCHILO
WIRE WRAP CENTER

－Packaged tor WALL DISPLAY APPEARANCE
－Dealer＇s Inquires Invited－Price Lisi Available

on back of each kit PLAY APPEARANCE

 20. DISCOUS AVAILABLE ON REOUEST

CLIPLTEE	
为	

CORDLESS
HOBBY－WRAP TOOL－BW－630
－Battery Operated（Size C）
－Weighs ONLY 11 Ounces
Wraps 30 AWG Wire onto
Standard DIP Sockets $(.025$ inch）
\＄34．95 Compiete with buth－in bit and sleeve

WIRE WRAP TOOL WSU－30 －WIRE WRAP WIRE－ 30 AWG 25 ft ．min．$\$ 1.25$ 50ft．$\$ 1.95 \quad 100 \mathrm{ft} . \$ 2.95 \quad 1000 \mathrm{H}$.
SPECIFY COLOR－White－Yellow ．Ped 5.00 $\frac{\text { SPECIFY COLOR－White－Yellow－Red－Green－Blue－Black }}{\text { THUMBWHEEL SWITCHES }}$

$$
1
$$

 Digits

 Cormiviluan Auturete D

苗

 RCUISS
Cutcul
well heo

LEDS

वानT| ZENERS－DIODES－RECTIFIERS | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| IYPE | volis | W | price | type | vatrs | W | PRICE |
| 119／45 | ： 1 | － dosma $^{\text {a }}$ | 41 to | 1，mits | coo fo | 1 m ＇st＇ | （1）－bi |
| 14，30， | $5:$ | 200： | 1100 | H：Hub | 800 P\％ | －4n\％ | 14.10 |
| 1Nis？ | 56 | ． 100 m | 4100 | \＄n：u1： | 1000 胜 | ： \％ $\mathrm{skr}^{\text {P }}$ | 111） lm |
| 1N／23 | 6 ？ | 400 m | 4100 | 1wibne | 50 | ＂ロハ｜ | 419 |
| 16iss | 68 | ，480｜ | 4100 | 18．4．16 | － | | |
| 111959 | 83 | 400m | A1 1 （1） | 12．14．4 | \％ | 16） | 1．＇1 110 |
| 14.9655 | 15 | 200m | 410 | inn．05 | － | \cdots | ，Il 1 tul |
| 1N52．22 | 56 | 500 m | | Mn．isd | 56 | ｜＊ | \％ |
| 1 N 593 | 6 | 500 m | 28 | 1 12．7．J5 | 52 | 1w | \％ |
| 14.575 | 68 | 500 m | | 1N：3 | ${ }_{68}$ | is | ， |
| 13539 | ：3 | 300 m | 23 | Mw：\％ | a | 1% | \cdots |
| 10．5ib | 35 | 4071 | $\because 100$ | 1845 | 12 | 14＊ | r |
| 1N．58 | 154 | ；at | －190 | 1w？ | 12 | is | S |
| 1N：485A | 180 | 10 m | 6100 | 1N118． 1 | 50 Pl | bamp | 100 |
| 1 Nallor | 50 Pr | 1 map | $1 \% 100$ | 14188．4 | 100 FH | \％mp | 1% |
| 12：4007 | 100 相 | 12 AL | $\because 10$ | 121185 | 150 Pr ： | －48 | $1: 1$ |
| 1m：003 | 200 PL | 1 map | $\therefore 100$ | 11，15：40 | ：00 \％ | $\cdots \mathrm{Ma}^{\prime}$ | \cdots |
| Pricus | 400 Pl | 1 AMP | $1: 300$ | 1\％188 | ：00 Plis | Sn， | ， |
| SCR AND FW BRIDGE RECTIFIERS | | | | | | | |
| C．361 | | 15 A （0． | | | SCA | | 519 |
| C． 184 | | 35 A （a） | | | SCH | | 195 |
| 2N：328 | | 16 A （a） | 300 | | SCR | | 0 |
| WIIA 980 | | 12A cal | | | fw mringi | \％hec | 195 |
| MIa 980 | | tos | | | nw brima | 1 REC | 191 |

CA

Than six Tix TRANSISTORS

Z-80 CPU CARD KIT FOR IMSAI/ALTAIR

\$149."

From the same people who brought you the $\$ 89.954 \mathrm{~K}$ RAM kit. We were not the flrst to introduce an IMSAI/ALTAIR compatible Z-80 card, but we do feel that ours has the best design and quallty at the lowest price.

The advanced features of the $Z-80$ such as an expanded set of 158 instructions, 8080 A software compatibility, and operation from a single $5 V D C$ supply, are all well known. What makes our card different is the extra care we took in the hardware design. The CPU card will always stop on an M1 state. We also generate TRUE SYNC on card, to insure that the rest of your system functions properly. Dynamic memory refresh and NMI are brought out for your
e. Belleve it or not, not all of our competitors have gone to the extra trouble of doing this.
bly. Because of our past experlence with our 4 K kit we suggest that you order early. All orders will be shipped on a strict first come basis. Dealers inquiries welcome on this Item.

Kit shipped with 2 MHZ crystals for existing 500NS memory. Easily modified for faster RAM chips when the prices come down.

Z-80 Manual - \$7.50 Separately.

Kit includes Zilog Manual and all parts.

$$
\begin{array}{lc}
\begin{array}{l}
\text { JUMBO } \\
\text { LED } \\
\text { CAR } \\
\text { CLOCK }
\end{array} & \$ 16.95 \\
\text { KIT }
\end{array}
$$

You requested it! Our first DC operated clock kit. Professionally engineered from scratch to be a DC operated clock. Not a makeshift kluge as sold by others. Features: Bowmar 4 digit .5 inch LED array, Mostek 50252 super clock chip, on board precision time base, 12 or 24 hour real time format, perfect for cars, boats, vans, etc. Kit contains PC Board and all other parts needed (except case). 50,000 satisfied clock kit customers cannot be wrong!

FOR ALARM OPTION ADD \$1.50
FOR XFMR FOR AC OPERATION ADD $\$ 1.50$
60 HZ CRYSTAL TIME BASE FOR DIGITAL CLOCKS S.D. SALES EXCLUSIVE!

KIT FEATURES:

A. 60 HZ output with accuracy comparable to a digital watch.
B. Directly interfaces with all MOS Clock Chips.
C. Super low power consumption. (1.5 ma tyo.)
$\$ 5.95$ or
D. Uses latest MOS 17 stage divider IC.
E. Eliminates forever the problem of $A C$ line glitches.
F. Perfect for cars, boats, campers, or even for portable clocks at ham field days.
G. Small Size, can be used in existing enclosures.

KIT INCLUDES CRYSTAL, DIVIDER IC, PC BOARD PLUS ALL OTHER NECESSARY PARTS \& SPECS

50HZ CRYSTAL TIME BASE KIT - \$6.95
All the features of our 60 HZ kit but has 50 HZ output. For use with clock chips like the 50252 that require 50 HZ to give 24 hour time format.

THIS MONTH'S SPECIALS! 300.00 KHZ CRYSTAL - $\$ 1.50$

8080A - CPU CHIP by AMD - $\$ 19.95$ 82S129-256 x 4 PROM - $\$ 2.50$ N.S. 8865 OCTAL DARLINGTON DRIVERS 3 for \$1.00
Z-80 - CPU by ZILOG - \$69.95 MM5204 - 4K EPROM - \$7.95
Prices in effect this month ONLY!

4K LOW POWER RAM BOARD KIT THE WHOLE WORKS - $\$ 89.95$

Imsai and Altair 8080 plug in compatible. Uses low power static 21L02-1 500ns. RAM's, which are included. Fully buffered, drastically reduced power consumption, on board regulated, all sockets and parts included. Premium quality plated thru PC Board

$7400-19 c$	$7411-29 c$	$7451-19 c$
$74 L S 00-49 c$	$7413-50 c$	$7453-19 c$
$7402-19 c$	$7416-69 c$	$7473-39 c$
$74 L S O 2-49 c$	$7420-19 c$	$7474-35 c$
$7404-19 c$	$7430-19 c$	$74 L 574-59 c$
$74 L 04-29 c$	$7432-34 c$	$7475-69 c$
$74 S 04-44 c$	$7437-39 c$	$7476-35 c$
$74 L S 04-49 c$	$7438-39 c$	$7480-49 c$
$7406-29 c$	$7440-19 c$	$7483-95 c$
$7408-19 c$	$7447-85 c$	$7485-95 c$
$7410-19 c$	$7448-85 c$	$7486-45 c$
TTLINTEGRATEDCIRCUITS		

STICK IT!

 in your clock in your DVM, etc.!Huge Special Purchase Not Factory Seconds As sold by others!

with colons and AM/PM Indicator)

BUY 3 for $\$ 10$.
BOWMAR 4 DIGIT LED READOUT ARRAY
The Bowmar Opto-Stick. The best readout bargain we have ever offered. Has four common cathode jumbo digits with all segments and cathodes brought out. Increased versatility since any of the digits may be used independently to fit your applications. Perfect for any clock chip, especially direct drive units like 50380 or 7010 . Also use in freq. counters, DVM's, etc. For 12 or 24 hour format.

UP YOUR COMPUTER!

21L02-1 1K LOW POWER 500 NS STATIC RAM

 TIME IS OF THE ESSENCE!And so is power. Not only are our RAM'S faster than a speeding bullet but they are now very low power. We are pleased to offer prime new 21L02-1 low power and super fast RAM's. Allows you to STRETCH your power supply farther and at the same time keep the wait light off. 8 for $\$ 12.95$
\$12.95
S.D. SALES EXCLUSIVE!
$\$ 12.95$
40 PIN DIP. Everything you ever wanted in a counter chip. Features: Direct LED segment drive, single power supply (12 VDC TYP.), six decades up/down, pre-loadable counter, separate pre-loadable compare register with compare output, $B C D$ AND seven segment outputs, internal scan oscillator, CMOS compatible, leading zero blanking. 1 MHZ . count input frequency. Very limited aty.

WITH DATA SHEET

FAIRCHILD BIG LED READOUTS
A big . 50 inch easy to read character. Now available in either common anode or common cathode. Take your pick. Super low current drain, only 5 MA per segment typical.
FND 510 Common Anode FND 503 Common Cathode PRICE SLASHED! 59c each TERMS:
Money Back Guarantee. No COD. Texas Residents add 5\% tax. Add 5\% of order for postage and handling. Orders under $\$ 10$. add 75c. Foreign orders: US Funds ONLY!

SLIDE SWITCH ASSORTMENT
Our best seller. Includes miniature and standard sizes, single and multiposition units. All new, first quality, name brand. Try one package more. SPECIAL 12/\$1.
MOTOROLA POWER DARLINGTON
Back in Stock!
Like MJ3001. NPN 80V. 10A. HFE 6000 TYP. TO-3 case. We include a free 723 C volt reg, with schematic for power supply. SPECIAL-\$1.99
CALL YOUR BANK AMERICARD OR MASTER CHARGE ORDER IN ON OUR CONTINENTAL UNITED STATES TOLL FREE WATTS:

1-800-527-3460 Texas Residents Call Collect 214/271-0022
S.D. SALES CO.
P.O. BOX 28810 B Dallas, Texas 75228

F8 EVALUATION BOARD KIT WITH EXPANSION CAPABILITIES

A fantastic bargain for only

with the following features:

- 20 ma of RS 232 interface $\$ 990$ - Built in clock generator
- 64 K addressing range
- 64 Byte register
- Program control timers
- Built-in priority interrupts
- 1 K off on board static memory
- Documentation

GENERAL PURPOSE COMPUTER POWER SUPPLY KIT

This power suppy kit features a high frequency torroid transformer with switching transistors in order to save space and weight. 115 V 60 cycle primary. The outputs with local regulators are +5 V at $10 \mathrm{~A},-5 \mathrm{~V}$ at $1 \mathrm{~A}, \pm 12 \mathrm{~V}$ at 1 A .

UNIVERSAL $4 \mathrm{~K} \times 8$ MEMORY BOARD KIT

This memoryboard kit can be used with most microcomputers. Some of the outstanding features are:

32-2102-1 static RAM's, 16 address lines, 8 data lines in, 8 data lines out, all buffered. On board decoding for any 4 of 64 pages.

4K F8 Basic $\$ 25.00$

touch tone generator by MOSTEK．MK 5086N produces the dual－tone multi－frequency telephone dialing signals os used in $T T$ phones and auto parches．Uses inexpensive crystal，I resistor and 1 capacitor． Both tones are internally mixed and buffered to a single output－simple iwo additional output switches can control timers，transmitter，mute re－ ceiver，enable audio amp，etc．Use our Chomerics keyboard．Comes in 16 pin plastic DIP． MK ：5086N．．．．．．． 58.95 ．．．Crystal for MK 5086N．．．．．$\$ 1.90$ 5 pecs for MK 5086N 80c．
kit of parts including etched and driller P．C．board and one of our Chomerics keyboards． .519 .95

MCI 44I2 UNIVERSAL MODEM CHIP

MC14412 contains a complete FSK modulator and de－mod－ viator compatible with foreign and USA communications． 0－600 BPS
features：

On chip crystal oscillator

Echo suppressor disable tone generator
Originate and answer modes
Simplex，half－duplex，and full duplex operation
On chip sine wave
Modem self test mode
－Selectable data rates：0－200 $0-300$
$0-600$
Single supply
$V D D=4.75$ to $15 V D C$－FL suffix YDD－4 75 to 0 VDC－VL suffix
TYPICAL．APPLICATIONS：
．Sonia clone－loan speed modems
．Built－in low speed modems
Remote terminals，acoustic couplers
MC14412FL．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．$\$ 28.99$
MC14A1？VL．
6 pages of data．．．．．．．．．．．．．．．．．．．．．．．．．．．
Crystal for the above．．．．．． 54.95

MC 1A411 BIT RATE GENERATOR．

Single chip for generating selectable frequencies for equip－ mont in data communications such as TTY，printers，CRT s or microprocessors．Generates 14 different standard bit rates which are multiplied under external control to $\mid X$ ， $8 x, 16 x$ or $64 x$ initial value．Operates from single 5 volt supply．MC14411
4 pages of dato．．．．．．
Crystal tor the above．． 50
REMOTF CONTROL TRANSMITIER．MCI 4422R is a？ channel utro－sonic remote control transmitter I．C．CMOS uses little power and only of frow external passive common－ cents．Applications include TV receivers，security controls， toys，industrial contra：and lacks．It pin DIP olastir pkg．

PRECISION REFERENCE AMP

$\mathrm{LH} 0070-1 \mathrm{H}$ provides a precise 10.0 volts for use in BCD to D converters or meter calibrators．Typical initial accuracy is .3 ，$\therefore .03 \mathrm{~V}$ ．Comes in $\mathrm{T} 0-5 \mathrm{con}$ ． LIH0070－11H．．．．．．．．．．．．．．．．．．．．．．．．．ith specs．
SIPPER ACCURATE VERSION．
LHOOTO－2H has -0.05° ，max error at 25 C．wíspec 510.55

SOLID STATE RELAy

Teledyne P＇N 601－101000 is n heavy duty solid state malay module operating up to 10 A at up to 250 VDC ． All brand new modules！！Still in original factory package
\qquad

3 DECADE BCD．COUNTFP CHIP

MC145．53BCP consists of 3 negative edge triggered synchronous counters， 3 quad latches and self scan multiplexed，TTL compatible outputs． MC1．4553BCP．

LM 1889 TV VIDEO MODULATOR

The LM1889 is designed to interface audio，color difference， and luminance signals to the antenna terminals of o TV re－ ceiver．It consists of a sound subcarrier oscillator，chroma subcarrier oscillator，quadrature chroma modulators，and R．F oscillators and modulators for two low－VHF channels． The LM1889 allows video information from VTR＇s，games， test equipment，or similar sources to be displayed on black non white or color TV receivers
LM 1 889 with 16 pages of data $\$ 9.95$ ，data only，$\$ 1.00$

AMPREMII

 SaysOOPS！！－－－Were going to have six more minutes of winter in Glendale－but don＇t let those projects get grounded and hag your time and money．Let us help brighten your day with quality parts from TRI－TEK

EMOS UAR

M6402CPL is a CMOS UART for interfacing CPU to serial dato channel．Only 10 mW power．Operates from 4 to 11 V and up to 200 K 8AUD！！Comes in 40 pin DIP package． and up to 200 K ，word length of 5,7 or 8 bit with even or odd Dato word length of $5,6,7$ ，or 8 bit with even or odd
parity，or parity check con be inhibited．Here＇s the wo parity，or parity check con be inhibited．Here＇s the way to speed up your terminal and reduce the power require－
ments． $1 \mathrm{M} 6402 \mathrm{CPL} \mathrm{w} /$ specs．．．．511．55 Specs only， 60 C

INCANDESCENT LIGHT DELAY．

Small module designed to fit directly behind your wall switch－plate．Turn switch off and＂LITE－OFF＂keeps light of half power for 15 seconds before turning off， allowing you to get from where you are to where you ain＇t with out breaking a leg．Up to 500 W ！！
LITE－OFF Model 100 w／instrucrions．．．．．．．．．．．．．．．．． 52.15
MIDGET PUSH BUTTON SWITCH CI I
Flat shaped plastic body push button DPST－NO momentary switch． $1 / 4^{\prime \prime}$ bushing mount．Body only $1.4^{\prime \prime} \times 1^{\prime \prime} 2^{\prime \prime} X$ $3 / 4^{\prime \prime}$ long．CPB－0201P．．．．．．．．．．．．．．．．3／51．00， $10^{\prime} 53.00$

Cons
 に目に！T臣 COMBINATION LENS AND MOUNTING DEVICE FOR T $13 / 4$ LED
 REQUIRES NO TOOLS

snap cliplite

INSERT LED
available in transparent redo green amber clear \＆yellow
CLIPLITE
Combination lens and mounting device for $11-3 / 4$ LED． The CLIPLITE combines the benefits of the present $\angle E D$ display panel mounting methods and eliminates their def－ iciencies．Requires no special tools and installs in 6 seconds in ．250＂hole．Simple two－step installation．Just snap CLIPLITE，insert LED．Available in transparent red，green， amber，clear and yellow．Specify color，any mix． $5 / 51.00,10 / 51.90,20 / 53.50,50 / 57.50,100 / 513.50$

NEW NATIONAL．BOOK－－－LINEAR APPLICATIONS VOL II Tokes up where Vol I left you－－All the latest linear devices． Along with Vol I you have a great source of application data on the most widely used devices as well as new types
just appearing
INTRODUCTION TO MICRO COMPUTERS
New book from OSBORNE
The first edition of this classic was a huge success．Now，
due to the growth of information on the subject Osborne has expanded the work into 2 volumes．Vol 1 covers basic
concepts，Vol Il discusses real world micro computers
IMC－002 Vol I．
＇MOTHER NEW BOOK FROM OSBORNE．
＂ 8080 PROGRAMMING FOR LOGIC DESIGN＂explains how an assembly language program within a microcomputer system con replace combinatorial logic－－－－for logic de－ signers，programmers or anyone who is interested in real and powerful applications of the ubiquitous 8080 ．
powerful op
PLD－4001．
tRI－t EK，Inc．
f522 north 13 R avenue．
glendale，arizona 85301 phone dot－931－4949

We pay surface shipping on all orders over $\$ 10$ US，$\$ 15$ foreign in US funds Please add extra for first class or air mail．Excess will be refunded．Orders under $\$ 10$ ，add $\$ 1$ handling．Please add $50 ¢$ insurance．Master charge and Bank America ards welcome，（ $\$ 20$ minimumi．Telephone orders may be placed 10 AM to 5：30PM daily，Mon thru Fri．Call 602－931－4528．Check reader service card or send stamp for our latest flyers ancked with new and surplus electronic components．

COMPUTER WAREHOUSE STORE

DEPT. B, 584 COMMONWEALTH AVE. BOSTON, MA 02215 617/261-2701
 AT 1000 BPI. READ WRITE SPEED 5 IPS RECORDING BIT SERIAL. BIPHASE ENCODED WITH VARIABLE BLOC.K LENGTHS UNDER PROGRAM CONTROL
TECHTRAN $4100 \quad \$ 595$
TAPE CASSETTE DRIVE $+\$ 35$ SHIPPING U.S. VERSATILITY PLUS IS YOURS WITH THIS ORIGINAL COST $\$ 3200$ DRIVE. JUST PLUG IT IN RS232. CAN RUN DIRECTLY FROM TERMINAL INDEPENDENT OF CPU. FULL EDIT CAPABILITY, ALL FUNCTIONS UNDER SOFTWARE CONTROL. LIMITED QUANTITY AVAILABLE

TALLY T132

7×8 DOT MATRIX IMPACT PRINTER HAS A SINGLE LINE DYNAMIC MEMORY AND A UNIVERSAL INTERFACE TO ACCEPT PARALLEL DATA, FORMS
 TO 14-7/8 IN. SIDE, SIMPLE PRINTING MECHANISM USES 132 SOLENOID HAMMERS AND TWO STEPPER MOTORS FOR 100 LPM, 132 COLUMNS, 64 CHARACTERS
$\$ 950+$ SHIPPING 150 lb .

COMPONENTS FOR S Y S TEMS

FEATURES OF THE MONTH GREEN PHOSPHOR VIDEO MONITOR
TOP QUALITY CRTS FROM A MAJOR VENDOR NOT JUST A REWORKED TV SET. STANDARD IV $\$ 150$ P TO P COMPOSITE VIDEO INPUT, 10 MHZ BAND 25 SHIPPING WIDTH, RASTER SCAN $12 \times 12 \times 13 \mathrm{IN}$. , WITH POWER SUPPLY VIDEO AMPLIFIER, DRIVING CIRCUITRY, VENTILATION MUFFIN FANS, 7×9 IN. HORIZONTAL VIEWING AREA UP TO 24 LINES $\times 80$ CHAR., ANTIGLARE $\frac{1}{4}$ IN. ETCHED GRADIENT DENSITY FACE PLATE, P39 GREEN PHOSPHOR FOR BETTER VIEWING EASE, ON/OFF BRIGHTNESS CONTROLS, $115 \mathrm{VAC}, 60 \mathrm{~W}$. (SPOT SIZE . 015 IN. NOMINAL) ... TRULY A COMMERCIAL UNIT BUILT TO WORK IN A DEMANDING ENVIRONMENT. WE'VE RUN THREE OF THESE OFF OUR SWTPC TERMINAL KIT AT ONCE FOR DEMONSTRATIONS.

ALLanASR 33 is and MORE!
WE'VE SOLD OUT 3 TIMES ON THIS HEAVY-DUTY TELETYPEWRITER. THIS SHIPMENT IN GREAT CONDITION OFFERS RS232 INTERFACE, QUIET OPERATION, 10 CPS BUILT-IN PAPER TAPE PRINTER/PUNCH, ELECTRIC TYPEWRITER KEYBOARD WITH ADDITIONAL 10 KEY NUMERIC PAD, YOUR CHOICE OF FRICTION OR SPROCKET FEED, LIGHTED PLATEN AREA FOR EASY READING STANDARD PAPER AND TAPE, SUPPORTED BY OLIVETTI, IMPACT PRINTER GOES UP TO 6 + SHIPPING 165 lbCOPIES, VERTICAL SPACING ADJUSTABLE.

DATAPOINT 3300-200

THERMAL PRINTER

SURPRISING LITTLE THERMAL PRINTER USES WELL RESPECTED AND FIELD PROVEN NCR EMT-1-AE PARALLEL PRINTER WITH ADDITIONAL CIRCUIT BOARDS TO PROVIDE SERIAL RS232 INTERFACE, PRINTS UP TO 30 CPS. 110 VAC PS. USES WIDELY \$475 AVAILABLE NCR PAPER, 96 CHAR. ASCII, 80 COL., $+\$ 25$ CRT COMPATIBLE 5×7 DOT MATRIX, SOLID STATE SHIPPING U.S. WITH LESS THAN 25 MOVING PARTS.

DATAPOINT CASSETTE

3300-300 \$195 + $\$ 25$ shipping u.s.
Small stylized cassette recorder serves
as adjunct be tween crt terminal and cpu. on line storage, OFF LINE MESSAGE PREPARATION, 450,000 CHAR. PER CASSETTE, NO POWER SUPPLY, I/O UP TO 2400 BPS.

KLEINSCHMIDT $311 \mathbf{2 5 0}$
THIS 30 CHAR/SEC DRUM PRINTER SITS IN A SOUND-PROOF ENCLOSURE, 64 CHAR. PARALLEL INPUT, 80 CHAR/LINE, ORIGINAL PRICE $\$ 2100$ WITH ENCLOSURE

DIGITRONICS D507

Paper tape transmitter
BEAUTIFUL. 5' ENCLOSED CABINET
PROVIOES TREMENDOUS SUPPLY OF GOODIES INCLUDING DIGITRONICS 2500 PHOTOELECTRIC PAPER TAPE READER, HEAVY DUTY POWER SUPPLY, 3 MUFFIN FANS, POWER CONTROL PANEI, CIRCUIT BOARDS, RELAYS, CABLES. SOME HAVE PAPER TAPE HANDLERS, ALL ON CASTERS

$\$ 95$ + SHIPPING 400 Ib.

DATAPOINT SERVO PRINTER IN DESK CONSOLE

\$395 + SHIPPING 285 lb.
IDEAL UNIT TO buILO A SYSTEM AROUND. BOTH UNIVAC AND SINGER BUILT THESE PRINTER MECHANISMS WHICH OPERATE AT 30 CPS FROM A ROTATING WHEEL. 65 CHAR. USES STANDARD PRINTOUT OR TYPEWRITER PAPER. PINWHEEL IS INTERCHANGEABLE.
UNIVAC 0769-06 PRINTER MECHANISM ONLY... $\$ 295$

WHEN ORDERING BY MAIL PLEASE WRITE CLEARLY, ADD SHIPPING COSTS, AND $8 E$ SURE TO WRITE YOUR ADDRESS DOWN. SHIPMENT IN ONE DAY ON KIT ITEMS SUBJECT TO AVAILABILITY AND CHECK CLEARANCE ... BANK CHECK ORDERS HANDLED WITH PRIORITY.

Thinly disguised affiliates of KO Electronics and Surplus, S.L.O., CA 93401

EDGE CONNECTORS

80 Pin WW . 125" used $\$ 1.50$ ea. 10/12.50 86 Pin Soldertail . $156^{\prime \prime} \$ 3.75$ ea. $10 / \$ 32$ 100 Pin spec WW or Soldertail both fit IMSAI or SSM Mother Bd $\$ 5.00$ ea $10 / \$ 44$

82506	2.00	82S126	3.50	74C200	5.50
82S07	2.00	82S129	3.50	8573	4.50
82S 11	2.00	82S130	3.95	8574	5.50
82S 12	2.00	82S131	3.95	8575	4.50
82S17	2.00	74S206	2.10	8576	4.50
82S23	2.50	745412	4.00	8577	3.50
82S123	3.00	745301	3.50	8578	4.00

7400	. 16	7473	35	74164	1.10
7401	. 16	7474	. 35	74165	1.10
7402	. 21	7475	50	74166	1.25
7403	16	7476	30	74170	2.10
7404	. 18	7480	50	74173	1.50
7405	. 24	7483	. 70	74174	1.95
7406	. 20	7485	. 90	74175	. 95
7407	. 29	7486	40	74176	90
7408	. 25	7489	2.00	74177	90
7409	. 25	7490	45	74179	90
7410	. 18	7491	. 75	74180	95
7411	30	7492	50	74181	2.50
7413	. 45	7493	50	74182	. 95
7414	. 70	7494	80	74184	1.95
7416	. 35	7495	75	74185	2.20
7417	. 35	7496	90	74190	1.15
7420	. 20	74100	1.00	74191	1.25
7423	. 37	74107	40	74192	90
7425	. 30	74109	90	74193	90
7426	30	74121	40	74194	125
7427	. 35	74122	50	74195	75
7430	25	74123	70	74196	1.25
7432	. 30	74125	60	74197	90
7437	. 27	74126	60	74198	1.75
7438	27	74132	1.00	74199	1.75
7440	. 15	74141	1.15	74200	4.95
7441	85	74145	1.15	74251	1.75
7442	. 60	74147	2.35	74284	4.95
7443	75	74148	2.00	74285	4.95
7444	. 75	74150	1.00	74365	90
7445	. 75	74151	80	74367	. 75
7446	. 80	74153	90	74368	90
7447	70	74154	1.00	MH0025	2.50
7448	. 80	74155	1.00	MH0026	2.95
7450	25	74156	1.00	95H90	9.95
7451	. 25	74157	100	2102-1	165
7453	. 25	74160	1.25	32	50.00
7454	. 20	74161	1.00	64	96.00
7460	20	74162	1.50	1488	1.50
7470	. 45	74163	100	1489	1.50
7472	. 40				

90 Day Guarantee on SSM Products. Kits MB-2. MB-3 (2K OR 4K). MB-4, MB-6. 10-2 video board and mother board with connectors may be combined for a discount of 10% in quantities of 10 or more. This supercedes the flier of 13 Sept. 1976.

KITS BY CYBERCOM A DIVISION OF SOLID STATE MUSIC

UNIVERSAL POWER SUPPLY
A unique plug-in supply by Panasonic. Usefuı for calculators, small radios, charging many \& various small NiCad batteries. Adjustment screw plug on the side changes output voltage to $4 \frac{1}{2}, 6,7 \frac{1}{2}$, or 9 volts DC at 100 MA . Output cord with plug, 6 ft long.

No. SP-143C \$4.50 3/\$12

REGULATED LOGIC SUPPLY

New from Data Control, 115 volt AC input, output of 20 volts DC 5 amps positive and 20 volts DC 15 amps negative. (2 voltages) Highly regulated and filtered with "pot" adjust 10\% higher or lower. Fully enclosed in steelcase. Shipping wgt. 75 lbs.
$\$ 75.00$

CLOCK KIT \$14.00

Includes all parts with MM5316 chip, etched \& drilled PC board, transformer, everything except case.

SP-284 \$14.00 each 2/\$25.00

PARITY DETECTOR

New packaged, made for RCA, detects even or odd parity, baud rate 110, 150 or 134.46. Built-in logic supply for the IC's, operates from standard 115 vac. Control panel allows manual or automatic reset mode of operation. Aluminum enclosure (not shown), covers the electronics. TTY compatible.

Ship wgt. 10 lbs. $\$ 12.50$

COMPUTER DISPLAY TUBE
New Sylvania 9 inch CRT, 85 degree deflection, with tinted faceplate. Same as used in Viatron systems (buy a spare). With complete specs.

Ship wgt. 5 lbs. $\$ 15.00$
LINEAR by RCA, brand new, gold bond process

301	$\$.60$	747	$\$.82$	MM5314	$\$ 3.00$
307	.52	748	.50	MM5316	3.00
324	1.80	1458	.96	7001	8.00
339A	1.60	3401	.80		
741	.50	555 timer	.60		

MEMORY SYSTEM \$125.00

New memory system by Honeywell, small ... measures only $9 \times 4 \times 1$ inches. 1024 core memory, 1024 words with 8,9,10 bits/word. Random access, with all logic, register, timing, control, core select and sense functions in one package. New, booklet of schematics and data. Looks like a good beginning for a mini-computer. Limited supply on hand.
Ship wgt 3 lbs. \#SP-79
\$125.00

COMPUTER GRADE LOGIC SUPPLY CAPS, BRAND NEW

3 Power supplies, transistorized \& regulated. Made by TRANSISTOR DEVICES
15 volts DC 5 amps $\$ 25.00$
30 volts DC 2 amps 25.00
15 volts DC 4.5 amps 25.00

47,000 Uf	25V	$\$ 2.00$	ST	1,000	50	.90	AL
32,000	25	1.75	ST	3,300	35	1.25	AL
160,000	10	2.00	ST	1,600	20	.60	AL
66,000	10	2.00	ST	8,000	16	1.25	AL
1,000	60	.90	AL	500	6	.35	AL
2,000	55	1.00	AL	"ST" screwtop... "AL" axial			

Please add shipping cost on above.
PHONE 617-595-2275
FREE CATALOG SP-8 NOW READY
MESHNA PO Bx 62 E. Lynn Mass. 01904

To get further information on the products advertised in BYTE, fill out the reader service card with your name and address. Then circle the appropriate numbers for the advertisers you select from this list. Add a 9 cent stamp to the card, then drop it in the mail. Not only do you gain information, but our advertisers are encouraged to use the marketplace provided by BYTE. This helps us bring you a bigger BYTE.

Aesder Services

* Reader service inquiries not solicited. Correspond directly with company.

Reader
 Service
 Number

* Action Audio Electronics 146

Advanced Data Sciences 143
75 Advanced Microcomputer Prods 148
168
173
142
149
4

126 Cheap Inc 143
127 Comptek 141
207 Comptek 145
140 Computalker 141
161 Computer Corner 145
143 Computer Enterprises 141
Computer Faire 110
Computer Mart NY, LI 113
56 Computer Place 145
141 Computer Room 109
208 Computer Shack 101
138 Computer Warehouse 157
87 Creative Computing 125
41 Cromemco 1
178 Cybercom 53
189 Cybersystems 67
185 DAJEN Electronics 113
97 Data Domain 146

Reader
 Service
 Number

Reader
 Service
 Number

Digital Group 21
Digital Systems 117
Electronic Control Tech 113
Electronic Warehouse 147
E\&L Instruments 99
Eltron 151
Godbout 149
lasis 56, 57, 59
IMSAI 49
INTERFACE AGE 120
James 152, 153
JGM Development Labs 143
Kentucky Fried Computers 103
Logical Services 143
Lombardi Electronics 146
McGraw-Hill 15
Meshna 159
MicroGRAPHICS 113
Microware 121
Midwestern Sci Inst 47
Mikos 158
MiniTerm 69
MITS CIV, 17
mpi 121
171 Mulien 111
National Multiplex 71
187 National Semiconductor 22,23
155 North Star Computers 31

40 Ohio Scientific Inst 65
OK Tool 85
Oliver Audio Eng 113
Parasitic Eng 115
Penninsula Marketing 77
PerCom Data 80
194 Peripheral Vision 87
Polymorphic Systems 75
24 Processor Technology 5, 6, 7, 8, 9, 10
26 Scelbi 33
Scientific Research 11
27 SD Sales 154
169 Smoke Signal Broadcasting 117
59 Solid State Sales 155
29 Southwest Tech CII
30 Sphere CIII
99 STM 43
164 Sunny Computer Stores 145
96 Synchro-Sound Enterprises 45
121 Tarbell Electronics 111
82 Technical Design Labs 79
136 Technical Systems Consul 119
192 Tec Mar 127
Tri Tek 156
United Tech Publications 55
US Robotics 113
137 Vector Graphic 60, 61, 103
35 Windjammer 150

BOMBS Away for Nelson, Buschbach

On BOMB Card, Article No.

ARTICLE

PAGE
Nico: Sweet Auto Line 12
Rampil-Breimeir: Digital Cassette Subsystem, Part 1 24
Welles: Build This Economy Floppy Disk Interface 34
Bain: Color Displays on Black and White TV Sets 44
Murphy: Serial Storage Media 50
Douds: Audible Interrupts for Humans 54
Burhans: Cub 54, Where Are You? (Mini-O) 62
Lomax: Impossible Dream Cassette Interface 82
Baker: Microprocessor Update: The F8 System 88
Rathkey: A MIKBUG Roadmap 96
Hoegerl: Calculator Keyboard Input 104Tomalesky: TTL Loading Considerations122
Howerton: Add Some BARC to Your 8080 132

The results of the November BOMB analysis were as follows: First prize of $\$ 100$ goes to Peter Nelson for his article "Build the Beer Budget Graphics Interface," second prize of $\$ 50$ goes to Thomas R Buschbach for his article "Add This Graphics Display to Your System." This prize is a monthly award based on your votes as a reader. Fill out the handy card between pages 128 and 129 with your evaluation of this month's articles and you'll help determine who wins February's contest as will be announced in the May BYTE. For this issue, the Ides of March is the cutoff date: All February BOMB evaluations must be received at our office by March 15 1977.■

When we decided to redesign our already successful Disk Operating System, we asked ourselves how we would want it done. Based on a year of solid experience building, shipping and supporting a good DOS, we decided we would want our new DOS to be able to:

- provide a complete Editor usually found only with minis
- offer a full-blown Assembler (not just a small mnemonic set)
- handle variable-length files
- recognize and handle both stream and block-oriented files
- deal with multiple devices of several types
- operate on both our 300 and 500 systems.

So, we designed the all-new Sphere DOS, and we have a lot of good reasons for calling it a tiger! It is a truly remarkable DOS . . . worth checking into. Once you do, we think you'll find it easy to make the decision to

PUT THIS TIGER ON YOUR TEAM!!!

DOS SPECIFICATIONS

LANGUAGE
STORAGE REQUIREMENT
OPERATING ENVIRONMENT
CONVENIENCE PROGRAMS PROVIDED

PERIPHERALS SUPPORTED STRUCTURE

Motorola M6800 Assembler
5K Bytes
Sphere 300 and 500 Series Systems
Editor, Debugger, Assembler, Set of File-manipulating Commands (macrolike operations)
CRT, Keyboard, Floppy Disk Drive, TTY
Uniform, interrupt-driven I/O

940 North 400 East North Salt Lake, Utah 84054 • (801) 292-8466

Now you can buy an Altair" 8800 b or an Altair 680 b computer right off the shelf. Altair plug-in boards, peripherals, software and manuals are also available. Check the list below for the MITS dealer in your area.

RETAIL COMPUTER STORE, INC. Tim \& Susanne Broom
410 NE 72 nd St .
SEATTLE, WA 98115
(206) 524-4101

COMPUTER KITS (S. F. area)
Pete Roberts
1044 University Ave
BERKELEY, CA 94710
(415) 845.5300

THE COMPUTER STORE
(Arrowhead Computer Co.)
Dick Heiser
820 Broadway
SANTA MONICA. CA 90401
(213) 451-0713

GATEWAY ELECTRONICS, INC.
George Mensik
2839 W .44 th Ave
DENVER. CO 8021
(303) 458-5444

COMPUTER SHACK
Pete Conner
3120 San Mateo NE
ALBUQUERQUE, NM 87110 (505) 883-8282. 883-8283

GLOBAL ENGINEERING CO 5416 South Yale
TULSA, OKLA. 74145
(918) 452-2567

COMPUTER PRODUCTS UNLIMITED
Harry \& Margarel Mohrmann
4216 West 12th
LITTLE ROCK, AR 72204
(501) $666-2839$

GATEWAY ELECTRONICS. INC. Harry \& Margaret Mohrmann Lou Elkins. Stuart Bartield 8123.25 Page Blvd.

ST. LOUIS, MO 63130
(314) 4276116

CHICAGO COMPUTER STORE Lou Van Eperen
517 Talcoti Rd
PARK RIDGE, IL 60068
(312) 823.2388

THE COMPUTER ROOM 3938 Beau D'Rue Drive Eagan. MN 55122
Dale Hagert. Bob Raemer (612) 452 -2567

BYTE'TRONICS
John \& Stan Morrow
Suite 103
1600 Hayes St
NASHVILLE, TN 37203
(615) $329-1979$

THE COMPUTER SYSTEMCENTER
Jim Dunion. Rich Stafford
Jim Dunion. Rich Stafiord,
3330 Piedmont Road
ATLANTA. GA 30305
(404) 231-1691

THE COMPUTER STORE, INC.
Sid Halligan
120 Cambridge St.
BURLINGTON. MA 01803
(617) 272-8770

Jelf Feldman, Service Dept.
THE COMPUTER STORE OF NEW YORK Bob Arning
55 West 391h St.
NEW YORK, NEW YORK 10018 (212) 221.1404

THE COMPUTER STORE, INC. (Hartford area)
George \& Susan Gilpatrick
63 South Main Street
WINDSOR LOCKS, CT 06096
(203) 627-0188

MICROSYSTEMS (Washington. D.C.)
Gloria \& Russell Banks
Gloria \& Russell Ban
6605A Back hick Rd.
SPRINGFIELD. VA 22150
1703) 569-1110

THE COMPUTER STORE
Stephen Payne
1114 Charleston National Plaza CHARLESTON. W. VA. 25301 (304) $343-4607$

MARSH DATA SYSTEMS
Don Marsh
5405 B Southern Comiort Bivd.
TAMPA, FL 33614
(813) 886.9890.

THE COMPUTER STORE OF
Peter Blond ANN ARBOR
310 East Washington Street
ANN ARBOR, MI 48104
(313) 995.7616

[^0]: $+5 \mathrm{~V}, 800 \mathrm{~mA}$ for each drive
 $-5 \mathrm{~V}, 75 \mathrm{~mA}$ for each drive
 $+24 V+/-2 V, 1.4 \mathrm{~A}$ for the first drive, 0.1 A more for each additional drive

[^1]: You may photocopy this page if you wish to leave your BYTE intact. Please allow six weeks for delivery.

[^2]: Signature

