

Performance and capabilities never before possible are now available to you in the SWTPC S/09. Computer System. The S/09 uses the Motorola MC6809 processor, the most powerful 8 -bit general purpose MPU available. It features more addressing modes than other 8-bit MPU's and an optimized consistent instruction set enhanced by powerful 16 -bit instructions. This, plus 24 indexing submodes, promote the use of modern programming techniques like position independent code, re-entrancy and recursion.

The 20-bit address bus makes possible direct addressing of up to 768 K of memory without any slow or clumsy processes such as bank switching. RAM memory is designed with independent control and array cards for economical expansion of memory. The DMA and the processor boards can access memory independently for different tasks.

Multiuser capability is "built-in". No additional hardware is required to operate additional terminals. A dynamic memory management system can allocate available RAM in as small as 4 K blocks to the various users or tasks.

The dual-bus motherboard design used in the $\mathrm{S} / 09$ makes adding I/O ports to the system quick and economical. I/O address decoding for all I/O slots is supplied with the system. All serial I/O cards may be quickly programmed to run at standard baud rates from 110 to 38,400 .

Both multiuser and multitasking/multiuser operating systems are available for the S/09. BASIC, PASCAL and an Assembler are immediately available. Editor and Debug programs are also available for use in system development.

S/09 complete as shown with 128K bytes of RAM memory, one parallel and two serial I/O ports. . $\$ 2,995.00$ 128K memory expansion card . $\$ 1,995.00$

Circle 356 on inquiry card.

Low-cost hard disk computers are here

11 megabytes of hard disk and 64 kilobytes of fast RAM in a Z80A computer for under \$10K. Two floppy d ves, too. Naturally, it's from Cromemco.

It's a reality. In Cromemco's new Model Z-2H you get all of the above and even more. With Cromemco you get it all.

In this new Model Z-2H you get not only a large-storage Winchester hard disk drive but also two floppy disk drives. In the hard disk drive you get unprecedented storage capacity at this price- 11 megabytes unformatted.

You get speed-both in the 4 MHz Z80A microprocessor and in the fast 64 K RAM which has a chip access time of only 150 nanoseconds. You get speed in the computer minimum instruction execution time of 1 microsecond. You get speed in the hard disk transfer rate of 5.6 megabits $/ \mathrm{sec}$.

EXPANDABILITY

You get expandability, too. The high-speed RAM can be expanded to 512 kilobytes if you wish.

And the computer has a full 12-slot card cage you can use for additional RAM and interface cards.

BROADEST SOFTWARE SUPPORT

With the Z-2H you also get the broadest software support in the
microcomputer field. Software Cromemco is known for. Software like this:

```
- Extended BASIC
- FORTRAN IV
- RATFOR (RATional FORtran)
- COBOL
- Z80 Macro Assembler
- Word Processing System
- Data Base Management
``` with more coming all the time.

SMALL, RUGGED, RELIABLE
With all its features the new Z-2H, including its hard disk drive, is still housed in just one small cabinet.

Hard disk drive at lower left can be interchanged just by sliding out and discomecting plug. Seven free card slots are available. Z-2H includes printer interface card.

Included in that cabinet, too, is Cromemcoruggedness and reliability. Cromemco is time-proved. Our equipment is a survey winner for reliability. Of course, there's Cromemco's all-metal cabinet. Rugged, solid. And, there's the heavy-duty power supply (30A @ 8V, 15A @ +18 V , and 15A @ -18 V) for circuitry you'll sooner or later want to plin into those free ca. d slots.

\section*{CALL NOW}

With its high performance and low price you KNOW this new Z-2H is going to be a smash. Look into it right now. Contact your Cromemco computer store and get our sales literature. Find out when you can see it. Many dealers will be showing the \(\mathrm{Z}-2 \mathrm{H}\) soon-and you'll want to be there when they do.

\section*{PRESENT CROMEMCO USERS}

We've kept you in mind, too. Ask about the new Model HDD Disk Drive which can combine with your present Cromemco computer to give you up to 22 megabytes of disk storage.

280 BERNARDO AVE., MOUNTAIN VIEW, CA 94040 • (415) 964-7400

\section*{The single card computer with the features that help you in real life}

\section*{COMPLETE COMPUTER}

In this advanced card you get a professional quality computer that meets today's engineering needs. And it's one that's complete. It lets you be up and running fast. All you need is a power supply and your ROM software.

The computer itself is super. Fast 4 MHz operation. Capacity for 8 K bytes of ROM (uses 2716 PROMs which can be programmed by our new 32 K BYTESAVER \({ }^{\text {© }}\) PROM card). There's also 1 K of on-board static RAM. Further, you get straightforward interfacing through an RS-232 serial interface with ultra-fast speed of up to 76,800 baud - software programmable.

Other features include 24 bits of bidirectional parallel I/O and five onboard programmable timers.

Add to that vectored interrupts.

\section*{ENORMOUS EXPANDABILITY}

Besides all these features the Cromemco single card computer gives you enormous expandability if you ever need it. And it's easy to expand. First, you can expand with the new Cromemco 32K BYTESAVER PROM card mentioned above. Then there's Cromemco's broad line of S100-bus-compatible memory and I/O interface cards. Cards with features such as relay interface, analog interface, graphics interface, optoisolator input, and A/D and D/A conversion. RAM and ROM cards, too.

32K BYTESAVER PROM card

\section*{EASY TO USE}

Another convenience that makes the Model SCC computer easy to use is our Z-80 monitor and 3K Control BASIC (in two ROMs). With this optional software you're ready to go. The monitor gives you 12 commands. The BASIC, with 36 commands/functions, will directly access I/O ports and memory locations and call machine language subroutines.
Finally, to simplify things to the ultimate, we even have convenient card cages. Rugged card cages. They hold cards firmly. No jiggling out of sockets.

\section*{AVAILABLE NOW/LOW PRICE}

The Model SCC is available now at a low price of only \(\$ 450\) burned-in and tested (32K BYTESAVER only \$295).

So act today. Get this high-capability computer working for you right away.

\section*{Foreground}

FREQUENCY ANALYSIS OF DATA USING A MICROCOMPUTER by F R Ruckdeschel Application of the Fast Fourier Transform (FFT)

ADD NONVOLATILE MEMORY TO YOUR COMPUTER by Steve Ciarcia Using electrically alterable read-only memory as a "read-mostly" memory

54
FASTER AUDIO PROCESSING WITH A MICROPROCESSOR by William J Dally Selected hardware circuits make possible higher-fidelity processing systems

ANALYSIS OF POLYNOMIAL FUNCTIONS WITH THE TI-59 CALCULATOR by Pierre Chancé A hand-held approach to numerical analysis

MINIMIZING CURVE-PLOTTING CALCULATION by Timothy \(G\) Bowker Curve-plotting routine for the Hewlett-Packard 9825A computer

NONITERATIVE DIGITAL SOLUTION OF LINEAR TRANSFER FUNCTIONS by Bryan Finlay The analysis of the response of dynamic systems

\section*{Background}

TEXT COMPRESSION by James \(L\) Peterson
Decrease necessary storage space with Huffman codes
A USER'S LOOK AT TINY-C by Christopher O Kern
Commentary on tiny-c
SOME NOTES ON MODULAR ASSEMBLY PROGRAMMING by James Lewis
Modular programs aid design and implementation
TWENTY-FOUR WAYS TO WRITE A LOOP by W D Maurer
Dr Maurer takes you through a loop
MORSE CODE TRAINER by Mark Bernstein
Use your computer to train with Morse code recognition
THIRTY DAYS TO FASTER INPUT by Arthur Armstrong Improve your touch typing skills

page 88

\section*{Nucleus}

Editorial, On the Importance of Casting Abstractions . . . 6 Letters, 78
Technical Forum, 82 Programming Quickies, 87
Languages Forum, 88
BYTE's Bits, 100

BYTE's Bugs, 102, 210, 249
BYTE News, 103
Event Queue, 228
What's New? 252
Unclassified Ads, 287
Reader Service, BOMB, 288

Cover Art: Numerical Analysis by Robert Tinney

\footnotetext{
BYTE is published monthly by BYTE Publications Inc, 70 Main St, Peterborough NH 03458, a wholly-owned subsidiary of McGraw iHil, Inc. Address all mail except subscriptions to above address: phone (603) 924-7217. Address subscriptions, change of address, USPS Form 3579, and fulfilment questions to BYTE Subscriptions, PO Box 590 , Martinsvilie NJ 08836. Second class postage paid at Peterborough NH 03458 and at additional malling offices-USPS Publication No. 102410 (ISSN 0360-5280). Subscriplions are \(\$ 18\) for one year, \(\$ 32\) for two years, and \(\$ 46\) for three years in the USA and its possessions. In Canada and Mexico, \(\$ 20\) for one year, \(\$ 36\) for two years, \(\$ 52\) for three years. \(\$ 32\) for one year aif delivery to Europe. \(\$ 32\) surface delivery elsewhere. Alr delivery to selected areas at additional rates upon request. Single copy price is \(\$ 2.50\) in the USA and its possessions, \(\$ 2.95\) in Canada and Mexico, \(\$ 4.00\) in Europe, and \(\$ 4.50\) elsewhere. Foreign subscriptions and sales should be remitted in United States funds drawn on a US bank. Printed in United States of America.

Address all editorial correspondence to the editor at the above address. Unacceptable manuscripts will be returned if accompanied by sulficient first class postage. Not responsible lor lost manuscripts or photos. Opinions expressed by the authors are not necessarily those of BYTE. Entire contents copyright © 979 by BYTE Publications inc. All rights reserved.
BYTE* is available in microform from University Microfims International, 300 N Zeeb Rd, Dept PR, Ann Arbor MI \(48106, U S A\) or 18 Bediord Row, Oept PR, London WC1R \(4 E d\) ENGLAND.
}

\section*{About the Cover}

This month's cover features artist Robert Tinney's concrete realization of the theme for several articles in this issue: today's tools of analysis and design are computers, both as calculating-engines and as nontraditional symbol-manipulators. By implication, if Leibniz were alive today he would be employing a friendly desk-top computer as a tool for examination of concepts ranging for beyond the calculus he helped shape.

\section*{}

The Fast Fourier Transform (FFT) is a unique algorithm that is necessary for the analysis and reproduction of signal waveforms. However, performing a complex mathematical derivation of the concept is not necessary. Fred Ruckdeschel has formulated a nonrigorous mathematical treatment of the FFT and demonstrates how it may be applied to synthesize a variety of waveforms in the Frequency Analysis of Data Using a Microcomputer.

Page 10

Does data evaporate from your compúter's volatile programmable memory when you turn the power off? Perhaps you could benefit from having some nonvolatile memory in your machine. Steve Ciarcia explores the useful properties of
electrically alterable read-only memory as he tells how to Add Nonvolatile Memory to Your Computer.

Page 36

After finding softwareintensive approaches to audio processing too slow for high fidelity sound, William J Dally set out to develop a system that uses hardware to speed up processing of audio signals. He explains his ideas in Faster Audio Processing with a Microprocessor.

Page 54

Huffman code is a method for compressing text characters by exploiting their relative frequency of occurrence in text. Space savings of up to \(50 \%\) can be realized using this technique.

James Peterson discusses the advantages and tradeoffs involved in this and other types of Text Compression.

Page 106

Numerical analysis techniques are quite often simplified by the use of powerful number handling algorithms available on large computer systems. A reasonable alternative to such analysis for the small-scale computer user lies in the utilization of the hand calculator. Small calculators continue to expand their capabilities as proven by Pierre Chance in his investigation of Analysis of Polynomial Functions with the TI-59 Calculator.

Page 120

Most methods of estimating a particular function and plotting it require an analysis involving calculus. Timothy Bowker has written a program that performs a simple trigonometric analysis of a function which will yield an accurate approximation of the function and then print the curve on a HewlettPackard 9872A plotter. See his article entitled Minimizing Curve-Plotting Calculation.

Page 134

In the analysis of system response, the utility of the transfer function is immeasurable. The transfer function will convert a time domain relationship into a frequency domain relationship, a manipulation that can prove to simplify the solution process. Bryan Finlay presents a clear picture of the concepts involved in a Noniterative Digital Solution of Linear Transfer Functions.

Page 144

The usefulness of microcomputers is increasing as more powerful and varied programming languages are implemented. Christopher Kern provides A User's Look at Tiny-c, one of the more recent languages to appear.

Page 196

Some Notes on Modular Assembly Programming presents several examples of well-written assembler programs. James Lewis feels that a structured approach to program writing helps both the design and implementation processes.

Page 222

Many people use loops in computer programs without really thinking about how they work. In Twenty-four Ways to Write a Loop, W D Maurer illustrates the endless variety of program loops and shows you how to get the most out of them.

Page 241

If you're interested in using your computer to learn Morse code, Mark Bernstein's Morse Code Trainer can help you to practice. His program translates plain text into Morse code and then outputs it through a speaker.

Page 247

Does it take you ten minutes to enter twenty lines of code at your terminal? Are your index fingers worn out from hours of hunting and pecking? Why not use your own computer to learn the useful art of touch typing. Read Arthur Armstrong's article, Thirty Days To a Faster Input.

Page 250
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{6}{*}{\begin{tabular}{l}
Publishers \\
Virginia Londoner Gordon R Williamson Associate Publisher John E Hayes Assistant Jill E Callihan
\end{tabular}} & \multirow[t]{6}{*}{\begin{tabular}{l}
Production Director \\
Nancy Estle \\
Production Editors \\
David William Hayward \\
Ann Graves \\
Faith Hanson \\
Warren Williamson
\end{tabular}} & \multirow[t]{3}{*}{Advertising Director Patricia E Burgess} & \multirow[t]{4}{*}{\begin{tabular}{l}
Comptroller \\
Kevin Maguire Assistant Mary E Fluhr
\end{tabular}} \\
\hline & & & \\
\hline & & & \\
\hline & & Ruth M Walsh & \\
\hline & & Marion Gagnon & \\
\hline & & Eileen Kindl Adv/Prod Coardinator & National Advertising Sales Representalives: \\
\hline \multirow[t]{3}{*}{Editorlal Director Carl T Helmers Jr Executive Editor Christopher P Morgan} & \multirow[t]{2}{*}{Robin M Moss Anthony \(J\) Lockwood Art Director} & Thomas Harvey & \({ }_{\text {Easi }}{ }_{\text {Hajar Associates Inc }}\) \\
\hline & & Advertising Biling & 280 Hillside Av \\
\hline & Eilen Bingham & Don Bardsley & Needham Heights MA 02194 \\
\hline \multirow[t]{2}{*}{Editor in chief
Raymond G A Cote} & Production Art Wai Chiu Li & \multirow[t]{2}{*}{Circulation Manager} & 521 Fifth Av \\
\hline & \multirow[t]{3}{*}{Christine Dixon Holly Carmen LaBossiere Deborah Porter} & & New York NY 10017 \\
\hline Raymond G A Cote
Senior Book Editor & & Gregory Spitzfaden Assistants & (212) 682-5844 \\
\hline Blaise W Llffick & & Pamela R Heaslip & \\
\hline \multirow[t]{2}{*}{Richard S Shuford
Gregg Williams} & Typographers & Melanie Bertoni & Suite 1010 \\
\hline & \multirow[t]{2}{*}{Cheryl A Hurd
Debe L Wheeler} & Barbara Ellis & Chicago IL 60611 \\
\hline \multirow[t]{2}{*}{Assistant Editor
Bob Braisted} & & Dealer Sales & (312) 337-8008 \\
\hline & \multirow[t]{2}{*}{Sherry McCarthy} & Ginnie F Boudrieau & West, Southwest \\
\hline Sob Braisted & & \multirow[t]{3}{*}{Anne M Baldwin Receptlonist Jacqueline Earnshaw} & 1000 Elwell Ct \\
\hline \multicolumn{2}{|l|}{Editorial Assistants Kathy Becker} & & Suite 227 \\
\hline \multicolumn{2}{|l|}{Faith Ferry} & & \multirow[t]{2}{*}{\begin{tabular}{l}
Palo Alto CA 94303 \\
(415) 964-0706/(714) 540-3554
\end{tabular}} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{New Products Editor Clubs, Newsletters}} & Jacqueline Earnshaw & \\
\hline Charles Freiberg & & \multirow[t]{2}{*}{Traffic Department Mark Sandagata Thomas Yanni} & \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{drafting}} & & \\
\hline & & & \\
\hline
\end{tabular}

Officers of McGraw-Hill Publications Company: Paul F McPherson, President; Group Vice Presidents: R Bernard Alexander, Gene W Simpson, and Daniel A McMillan; Group Vice President-Planning and Development: James E Boddorf; Senior Vice President-Editorial: Ralph R Schulz; Vice Presidents: Robert 1 日 Doll, Circulation; James E Hackett, Controlier; William H Hackett, Controlier; Wilfiam H
Hammond, Communications; Hammond, Communications; Edward E Schirmer, International.
Officers of the Corporation: Harold W McGraw Jr, President, Chief Executive Officer and Chairman of the Board; Robert \(F\) Landes, Senior Vice President and Secretary; Ralph J Webb, Treasurer.

\section*{Altos Computer Systems \\ 2378-B Walsh Avenue}

Santa Clara, CA 95050

Apple Computer
10260 Bandley Dr.
Cupertino. CA 95014

Commodore Business Machines, Inc.
3330 Scott Boulevard
Santa Clara. CA 95050

Digital Microsystems Inc.
(Formerly Digital Systems) 4448 Piedmont Ave.
Oakland. CA 94611

Industrial Micro Systems
633 West Katella. Suite L
Orange, CA 92667

North Star Computer
2547 9th Street
Berkeley, CA 94710

Polymorphic Systems
460 Ward Dr.
Santa Barbara, CA 93111

\section*{Problem Solver Systems \\ 20834 Lassen Street \\ Chatsworth, CA 91311}

Processor Applications Limited
2801 E. Valley View Avenue
West Covina. CA 91792

Technico Inc.
9130 Red Branch Road
Columbia, MD 21045

\author{
Texas Electronic Instruments \\ 5636 Etheridge \\ Houston. TX 77087
}

\section*{Thinker Toys}

1201 10th Street
Berkeley, CA 94710

\title{
On the Importance of Casting Abstractions in Concrete
}

\author{
Carl Helmers
}

We human beings are a conceptual species. While firmly planted in our animal evolutionary roots, our chief distinguishing characteristic is a degree of development of our mental powers. This characteristic allows us to recursively reflect upon the degree of development of our mental powers,among other things. The idea of a computer as a mental amplifier fits well within this conceptual side of human nature. In part, this explains the intellectual fascination of computing technology, which is available on a widespread basis as the modern personal computer. As a thought recording and amplification device, the computer deals with abstractions admirably. But there is also another side to the human fascination with computing which should not be ignored: the casting of abstractions in concrete forms which are understandable and emotionally gratifying. Here we find the animal side of our evolutionary heritage interacting with the cerebral side, producing a positive human value for an otherwise sterile activity.

Conceptualization exists in human beings. We do it all the time, for it is a part of our nature. Some do it better than others. Like any ability, it varies from individual to individual. Within individuals this ability varies over the course of a lifetime of growth, development and aging.
The content of our thoughts can be explicit models closely bound to the real world as perceived by human senses, abstractions like those of mathematics which are less obviously bound to real-world roots, or even total fantasies such as stories of science fiction, novels, plays, paintings and other forms of art. All innovation and progress start out as a conceptual fantasy, whether or not the fantasy is based on real-world inputs. But, if the fantasy is to be imparted to someone or made into a real-world object, it must be figuratively "cast in concrete" as a tangible and specific item. I make the claim that one tie with our evolutionary past is partly demonstrated by the emotional experience of pleasure derived by seeing concrete and specific results come from efforts directed by an abstract plan.
This is the phenomenon of emotional feedback from intellectual activites, made "real" in some way as a specific action. As I write these words at a keyboard, I am illustrating the phenomenon in the pleasure I derive from formulating my words into an essay. The concepts are certainly in my own mind. I am translating them through specific actions into a concrete form: the words printed on a piece of paper in the form of a draft I send to our copy editors.
In an analogous way, a writer of a science fiction story is a spinner of tales. Such tales are but dreams bottled up in a mind unless they are cast into a concrete form signifying meaning: as an oral or written account transmitted to another mind. We only know that the science fiction spinner of tales exists at all because of this concrete form of his or her fantasy abstractions.

For the fascination of computing, there is ample opportunity for casting abstract concepts into concrete form. Here we get the emotional feedback and confirmation of our understanding about the way a system of concepts works in a specific example. The importance of game programming on computers as a way of learning to write programs and learn about interactive sequences cannot be underestimated.

"After working all day with the computer at work, it's a kick to get down to Basic at home. And one thing that makes it more fun is my Shugart minifloppy \({ }^{\mathbb{M}}\). We use Shugart drives at work, so when I bought my own system I made sure it had a minifloppy drive
"Why? Shugart invented the minifloppy. The guys who designed our system at work tell me that Shugart is the leader in floppy design and has more drives in use than any other manufacturer. If Shugart drives are reliable enough for hard-working business computers, they've got to be a good value for my home system.
"When I'm working on my programs late at night, I can't wait for cassette storage. My minifloppy gives me fast random access and data
transfer. The little minidiskettes \({ }^{\text {TM }}\) store plenty of data and file easily too.
"I made the right decision when I bought a system with the minifloppy. When you lay out your own hard-earned cash, you want reliability and performance. Do what I did. Get a system with the minifloppy.'

\title{
If it isn't Shugart, it isn't minirloppy A.Shugart \\ 435 Oakmead Parkway. Sunnwale, California 94086
}

The act of defining a game as a program and making a specific implementation is this very act of casting an abstraction (the game) into concrete form (the program which allows one to interact with that abstraction).
Just as I cannot partake of the science fiction writer's tale without a concrete form of sensible representation, I cannot play some adventure game in someone else's head. I can play the game only in the concrete form of its traditional letter correspondence mode (a la Dungeons and Dragons) or the computer automated forms of a specific program (with names like Adventure, Zork, etc). This abstraction which is the concept of the game cannot be perceived emotionally except in this form of a specific implementation.

The pleasure of seeing an abstract concept transformed into a concrete representation is one of the key motivations of the experimenter. The experimenter is the person who works creatively with a technology - be it oil paints on canvas or bit patterns in memory - and sees the results at first hand. It is the spirit of the scientist as much as of the artist.
Why should I sit down and design a computer, then build it, then design my own particular style of system software? There are numerous wheels in the computer world which at first sight I do not need to reinvent in various ways. But the way to thoroughly understand an art, science or technology is to participate in it. Thus, I spend effort designing and building computer systems from time to time; I spend effort now and then designing and implementing text editors; I spend effort from time to time designing and implementing simple interactive application programs for mundane tasks. I do not do this without a return on my efforts in the form of the emotional satisfaction and pleasure which come from seeing my abstract concepts implemented in concrete form.
I partake of the pleasure of exploring the possible concepts of a design, settling on one, then working out its hidden implications and feeding that knowledge back into the design. This is the challenge of understanding which motivates our curiosity in any field. It is made quite explicit by the demands of the computer field. Programming a computer is a very abstract concept, yet when that computer program abstraction turns on a
motor in a robot arm, or sounds a note on a music synthesizer in a progression of some fugue, the program has a very real and concrete way of interacting with our senses and emotional evaluations.

This, then, is the true importance of experimentation and the resultant casting of abstract ideas into concrete form: it provides us with emotional confirmation via pleasure of an otherwise valueless thought. The human value of pleasure, or happiness, in turn feeds back into our thought processes, and the cycle continues. The act of translation, from abstract to concrete, aids us in our understanding of the world and our perceptions of it.

> Progress Report: The 6809 Project
> At this writing, September 26 1979, my 6809's central processor card design is complete in the form of a wiring diagram spread over four large sheets of drafting vellum. I have not yet begun to wire the processor, due to a heavy travel and speaking schedule in late summer and early autumn of this year. Once I have finished the actual implementation of the card, readers can expect to see photographs, wiring diagram, and hand-assembled machine language primitives for a terminal-oriented operating system. Timing? As noted earlier, I continue with this project at the sufferance of a 24-hour day. So, the next installment will come when it is ready, and no sooner. ...CH

\section*{Articles Policy}

BYTE is continually seeking quality manuscripts written by individuals who are applying personal computer systems, designing such systems, or who have knowledge which will prove useful to our readers. For a more formal description of procedures and requirements, potential authors should send a large (9 by 12 inch, 30.5 by 22.8 cm), self-addressed envelope, with 28 cents US postage affixed, to BYTE Author's Guide, 70 Main St, Peterborough NH 03458.

Articles which are accepted are purchased with a rate of up to \(\$ 50\) per magazine page, based on technical quality and suitability for BYTE's readership. Each month, the authors of the two leading articles in the reader poll (BYTE's Ongoing Monitor Box or "BOMB") are presented with bonus checks of \(\$ 100\) and \(\$ 50\). Unsolicited materials should be accompanied by full name and address, as well as return postage.

8086 Boards
CPU with \(\$ 650\). Vectored Interrupts
PROM-I/O
RAM
8 K \(\times 16 / 16 \mathrm{~K} \times 8\)

ANALOG Boards
A/D 16 Channel, \(\$ 495\). 12 Bit, High Speed
D/A 4 Channel, \$395. 12 Bit, High Speed

VIDEO
DIGITIZATION
Real Time Video \(\$ 850\). Digitizer and Display Computer Portrait System \(\$ 4950\).

\section*{S-100 Boards \\ Video and/or Analog Data Acquisition Microcomputer Systems}

The High Performance S-100 People TECMAR, INC.
23414 Greenlawn - Cleveland, OH 44122 (216) 382-7599

\title{
MORE CAPABILITIESTHAN ANY OTHER PERSONAL COMPUTER UNDER \$1,000*
}

Compare the built-in features of the ATAR1 \({ }^{\circ} 800^{34}\) with other leading personal computers. Whether you program it yourself or use pre-programmed cartridges or cassettes, the ATARI 800 gives you more for your money.

Run your own programs? Easy. Just plug in the 8K BASIC or optional Assembler language cartridge, and go. Theyre ROM based. That means more RAM for your programs.
Also included with the ATARI 800 is an internal speaker and four separate sound channels, FCC approval, a built-in RF modulator, the ATARI 410" Program Recorder and a high speed serial I/O.

Peripherals? Add up to 48 K of user installable RAM. Or up to four individually accessible floppies.

A high-speed printer. And more to come. Graphics programs? No problem. The ATARI 800 offers 128 color variations: 16 colors in 8 luminance levels. Plus 29 keystroke graphics symbols and 8 graphics modes. All controlled from a 57 character ASCII keyboard. With upper and lower case.

Or, program it our way. There are exciting programs available and many more on the way for the ATARI 800. Business programs. Home Management programs. Entertainment. And with the 410 audio/digital recorder, you can add Atari's unique Talk \& Teach" \({ }^{\text {w }}\) Educational System cassettes.

Your way or our way,you'll find that the ATARI 800 is probably the most powerful computer that \$999.99* can buy.
And with that power, you get dependability. Dependability built inio Ałari's custom designed and fully-tested LSI circuity and lower component count, (less components, less chance for failure).
But if anything ever does go wrong, you'll find a complete network of computer-connected Atari service facilities waiting for you throughout the country.

Make your own comparison. Hands on. Anywhere computers are sold. Or,
send for a free chart that compares the features of the ATARI 800 to other leading fully-programmable computers.
-Suggested retail price \(\$ 999.99\), includes compurer console, program recorcer and BASIC language cortridge.

\title{
Frequency Analysis of Data Using a Microcomputer
}

\author{
F R Ruckdeshe \\ 773 John Glen Blvd \\ Webster NY 14580
}

\section*{Introduction}

People involved with digital electronics often deal with signals in which the voltage or current changes with time. When a pulse is distorted, its shape is generally expressed in terms of overshoot or rise time.

In the design of analog electronics equipment such as audio amplifiers, great emphasis is placed on frequency response and phase shifts. The performance of consumeroriented audio systems is not normally specified in terms of pulse rise time or pulse delay. However, such a specification would characterize the system's basic response to the zeroth order. The zeroth order qualifier is necessary because rise time is only an approximate (but very useful) description of a system's response to a stepped input. A complete description would be possible through comparative plots of input and output waveforms.
In communications theory both the real-time (signal versus time) and frequency (signal content versus frequency) representations are applied somewhat interchangeably since the object is to transmit real-time signals, such as pulses, over channels having bandwidth and noise limitations. The Fourier transform is used to aid in such analyses. To exercise this analysis technique it is assumed that the system response is linear. That is, if the input signal level is halved, so is the output signal, along with no change in signal shape. It is thus apparent why most digital engineers do not use Fourier transforms; their systems are highly nonlinear, and work well because of the nonlinearity. It is also apparent why audio engineers are heavily dependent on frequency analysis; their systems are highly linear.
The choice of the Fourier transform for electronics analysis is based on the properties of its "basis" functions, sinusoids. For example, in electronic systems which are composed of ideal inductors, resistors and capacitors, sinusoids have the unique property that if a pure sinusoid of a particular frequency is inserted anywhere into a circuit, examination of any other location in the circuit will show a pure sinusoid of the same frequency, though perhaps changed in amplitude and phase. There is no mode conversion. In real systems, however, nonlinea-
rities in response can lead to harmonic distortion, which is another way of saying mode conversion.

Vital to the application of sinusoids in Fourier analysis is a property called linear independence. That is, it is not possible to generate a sinusoid of angular frequency \(w_{1}\), from the addition (a linear operation) of two other sinusoids having frequencies \(w_{2}\) and \(w_{3}\left(w_{1} \neq w_{2}, w_{3}\right)\). A nonlinear operation such as multiplication is required for this to occur.

Mathematically speaking, the sinusoidal functions used in Fourier analysis form a complete, continuous, and infinite set of orthogonal functions spanning the space of all real numbers. This should be compared with the analogous digitally-oriented Walsh functions (See "Walsh Functions," September 1977 BYTE, page 190). The Walsh functions form a complete, discrete (but infinite) set of orthogonal functions, also capable of spanning all real space.

Having discussed the basic utility of the functions which compose the Fourier transform, we will now take a brief look at the mathematical structure that will eventually be encoded into a program to calculate frequency transforms.

\section*{The Fourier Transform}

The basic definition of the Fourier transform operation is:
\[
\begin{equation*}
F(w)=\int_{-\infty}^{+\infty} f(x) e^{-i w x} d x \tag{1}
\end{equation*}
\]
where:
\(F(w)=\) the frequency transform
\(f(x)=\) the function to be transformed
\(w=\) the frequency variable (eg: radians/second)
\(x=\) the spatial variable (eg: time in seconds)
\(\mathrm{i}=\sqrt{-1}\)
The transform is performed using complex coordinate \((\sqrt{-1})\) algebra and integration. \(F(w)\) is thus in the complex domain and is only a mathematical construct. However, \(|F(w)|\), the absolute value (or modulus of \(F(w)\), is a measurable value. It is defined as:

A perfect chess opponent, the Challenger \({ }^{(i)}\) can play against you at infinite levels of skill, from beginner to expert. And. . . it speaks to you. . .calling out all moves, catching error's and announcing game progression. The Challenger \({ }^{\text {® }}\) is also a superb teacher and it will even suggest your \(\cdot\) best move. Be warned, however, that the Challenger \({ }^{(\pi)}\). has 1200 classic book-opening moves and can analyze over three million board positions stored in its tiny computer brain. So, it can be very tough. It is so sophisticated, it is available in either English, Spanish, German or French language.
Other challenging computer games from Fidelity include. . BRIDGE ...CHECKERS. . . and BACKGAMMON. At fine stores everywhere.

FIDELITY ELECTRONICS, LTD.
Miami, Florida 33178
The world's largest manufacturer of self-contained, microprocessor based, board games.
\[
\begin{equation*}
|F(w)|^{2}=F^{*}(w) F(w) \tag{2}
\end{equation*}
\]

The * operator stands for conjugation (reversing the signs of the imaginary terms). We note that:
\[
F^{*}(w)=\int_{-\infty}^{+\infty} f(x)^{*}\left(e^{-i w x}\right)^{*}(d x)^{*}
\]

If \(x\) and \(f(x)\) are real (as we will now specify), then we have \(x^{*}=x\) and \(f(x)^{*}=f(x)\), giving:
\[
F^{*}(w)=\int_{-\infty}^{+\infty} f(x) e^{+i w x} d x=F(-w)
\]

Thus:
\[
\begin{equation*}
F(w)=\sqrt{F(-w) F(w)}=F(-w) \tag{3}
\end{equation*}
\]

Note that, in principle, when performing the integration called for in equation (1), all values of \(w\) should be considered, both positive and negative. But since equation (3) indicates that \(F(w)\) is symmetrical about \(w=0\), we need only consider (and plot) the function for \(w \geq 0\).
\(|F(w)|\) is called the amplitude or modulus of the transform. There is also a phase term in the transform which complements the modulus description. For the purposes of this article, however, the phase term will not be considered.

To calculate \(|F(w)|\), we observe that:
\[
\begin{equation*}
|F(w)|^{2}=\{\operatorname{Re} F(w)\}^{2}+\{\operatorname{Im} F(w)\}^{2} \tag{4}
\end{equation*}
\]

\section*{Tremendous Savings on Refurbished AJ Couplers/Modems}

Your chance to buy the best from the world leader in data communications. We have a variety of couplers and modems-formerly on lease to our customers -fully refurbished. This is a rare opportunity for you to have the same models used by the largest companies in the world.
- Some models under \(\$ 100\) !
- 30-day parts/labor warranty
- Nationwide AJ service network
- Fast delivery
- Variety of models-up to 1200 baud
- Limited quantities
- Use your Visa or Master Charge

Act now. First come, first served. Write Anderson Jacobson, Inc., 521 Charcot Ave., San Jose, CA 95131. Or call your nearest AJ office:
\begin{tabular}{lll}
San Jose, CA & Rosemont, IL & Hackensack, NJ \\
(408) 946-2900 & (312) 671-7155 & (201) 488-2525
\end{tabular}

The \(R e\) and \(I m\) operators denote that the real and imaginary part of \(F(w)\) are to be taken respectively. These are:
\[
\begin{align*}
& \operatorname{Re} F(w)=\int_{-\infty}^{+\infty} f(x) \cos (w x) d x \tag{5a}\\
& \operatorname{Im} F(w)=\int_{-\infty}^{+\infty} f(x) \sin (w x) d x \tag{5b}
\end{align*}
\]

To finally arrange the above equations into a structure suitable for computer calculation, we consider \(f_{i}=f\left(x_{i}\right)\) to represent the data value (perhaps from an equation or experiment) at position \(x_{i}\). For simplicity we consider the data points to be equally spaced; \(x_{i+1}-x_{i}=\Delta x\).

We also consider \(f_{i}\) to exist only over the interval \(x_{1}\) to \(x_{N}\). Outside that interval, \(f_{i}\) will be defined to be zero. Combining the above considerations into a programmable form we have:
\[
\begin{equation*}
\left|F\left(w_{j}\right)\right|^{2}=\left\{\Sigma_{i=1}^{N} f_{i} \cos \left(w_{j} x_{i}\right) \triangle x\right\}^{2}+\left\{\Sigma_{i=1}^{N} f_{i} \sin \left(w_{j} x_{i}\right) \Delta x\right\}^{2} \tag{6}
\end{equation*}
\]

Equation (6) is the basis for the present computer calculation of the Fourier transform of the function represented by \(\left\{\mathrm{f}_{i}\right\}\). The computer program shown in listing 1 performs this calculation and plots the results.

Note that the number of input data points is \(N\). For an equivalent, but not redundant frequency space description, \(N / 2\) transform points are required. From an inspection of equation (6) it is apparent that the number of calculations increases by \(N^{2}\) if a numerical implementation of the integration is applied. Thus, if the number of data points is doubled, the computing time roughly quadruples. The Fast Fourier Transform (FFT) algorithm reduces this dependence. For limited data sets (less than fifty data points), the routine shown in listing 1 takes on the order of fifteen minutes or less in North Star BASIC on an IMSAI, which is acceptable when compared to the large programming complexities associated with implementing an FFT for an arbitrary length data set. The trade-off is between available programmer's time and processor time; my computer lost in the trade-off.

For those interested in further investigation of Fourier transform techniques, an excellent book on the subject is The Fast Fourier Transform by E O Brigham, published by Prentice-Hall. Brigham not only presents FFT algorithms, but also reviews continuous transform theory, as well as the errors (particularly at high frequencies) associated with discrete transforms such as the one used here. He also considers reconstruction of the original data set using the calculated frequency transform.

\section*{The Discrete Fourier Transform Program}

The computer program presented in listing 1 is written in North Star BASIC and is user-oriented. It allows the scale of the automatic data and frequency plots to be adjusted to fit the available terminal width. All plots are shifted and scaled such that they use the maximum terminal width established by the user. Thus, even the owner of a thirty-two-character wide videu display can use this program.

The program requires the beginning and ending coordinates (\(X_{1}\) and \(X_{2}\) respectively) of the data set as well as

\section*{Is your "Pencil" getting dull? \\ Then you need}

\section*{The Pencil Sharpener}

\section*{from MicroDaSys}
"Personalizing Form Letter Package" for your Electric Pencil Pencil \(11^{T M}\) under \(\mathrm{CP} / \mathrm{M}^{T M}\)

You:
- Create your letter or announcement using the EP II
- "Key" insertion items throughout the text
- Set up the insertion data file using EP II, BASIC, or other software
- Or use existing files (Accounts Payable, Mailing list, etc.)
- Identify the particular letter and insertion data file and RUN THE PENCIL SHARPENER

The Pencil Sharpener:
- Uses your version of the Electric Pencil II
- Loads in the designated letter
- Inserts all designated data for the appropriate "keys"
- Prints the letter using the EP If "Print Sub-System"
- Personalizes and prints letter after letter, replacing key words

SAVE TIME - FOLLOW UP OLD BUSINESS - CONTACT NEW BUSINESS

The PENCIL SHARPENER runs on all versions of Electric Pencil II under CP/M. Soon available TRS-80 version and "star brightener" for Word Star. Cenerous Dealer Discounts!

\section*{GET THE POINT? . . . GET THE PENCIL SHARPENER!}

CP/M is a trademark of Digital Research. The Electric Pencil II is a trademark of Michael Shrayer Inc

\section*{MicroDaSys, P.O. Box 36051, Los Angeles, CA 90036 (213) 935-4555 TWX 9103212378}

Please send me \(\qquad\) copies of the PENCIL SHARPENER at \(\$ 195\) each. Payment terms:
\begin{tabular}{r}
[Check/M.O. Enclosed \\
Card No. \\
\hline\(\quad\)] C.O.D. Exp. [] Charge Card
\end{tabular}

Name
Company
Address \(\qquad\)
City/State \(\qquad\)
Zip \(\qquad\) Telephone 1 \(\qquad\))

Listing 1：This program will input and plot the data set，then determine the transform and display it graphically．The pro－ gram is written in North Star BASIC，but features particular to this BASIC were avoided so that the software may be run on most BASIC interpreters．

```

EOFEN F. FOLKDEGHEL G上Uは,
FSFIHT, FFIHT FFEI IGT

```

```

56 F'FIIT FF IIdT

```

```

TG FRIHT"EDUFL IFHFEMERT IIRTA INTO "
ETFINT"FFEDIEHE'G SFACE "

- HE FIHT FFIHT
160 FF:JHT "THE IREE: IHFITS THE : IHETITHE"

```

```

1EE FEIHT"HITH THE INIVEEF OF IHTH FGIHTS "

```

```

14 FE INT"THE IIHTH ANII ITS : FEEGFOM"
150 FF: It 4 TFF'IHT
1EG FEN IHITIFLIEATIOH
170 FFINT "INFUT TEFNINHL WIIIH: ":
1010 INFUIT L

```

```

EGE IrAFIT $\because 1$
E1G FF:IHT "EHIIHG CODFIIHFTE: ",
EEGIHFIT

```

```

E4G IHFUTT H

```

```

EG IrAPUT I
2ry IF I\& 1 THEN GOTO ex
EnE IIN II IH!

```


```

316 W=WE~(1)-1)
3EG FEM IIFTA I IVFIIT
EEG FF:IHT "IFFFIT IAFTA"
$346 \mathrm{FE} \quad \mathrm{I}=1 \mathrm{TO} \mathrm{H}$
EA FFEINT I: IHFIIT IIII
SE HE:T J
GB $\mathrm{E}=6$
2G FEN SHIFT IATTH TO HOH-HEGHIDE
3GEGE $\mathrm{I}=1 \mathrm{~T} \mathrm{H}$
406 IF SYIGI) THEH E=III!
410 TNET I
406 FIF: $I=1$ TO
4 ITII=IIII-E
446 HE T I
$46 \mathrm{E}=\mathrm{HE}(\mathrm{E}=$

```

```

4 FEM F IPHI MFN. IIFTH UFLIIE
$40 \quad \bar{T}=6$
4 FDF $\mathrm{A}=1$ TG C
GE IF T\&III! THEH T=IIC!
SIE HENT I
GU PEA FLOT IHTH
$5 \mathrm{~S}=\mathrm{L} \cdot \mathrm{T}$
$54 E=E$
E5 FP:IHTVF:IHT
SEE FFIHT " OFTTF FLIT UHOFNHLIZEIJ"
ETFFIM FFINT
EGT FFINT "a1= ", "i
cos Ginus 116
Bin fore $I=1$ TO it
ElG IF GOIIく1 THEN GOTG EOG
Sog JF Gillici THER FEIPT ";"

```

```

046 IF SBE 1 THEN GOTG EGB
G5 FEIHT THE(E), ": "
GE HETT I
GTG GOGUE 12GU

```

```

GOU FEM ETHFT FDILPIER TFAHEFOFM
PGE IIM F [H]

```

P10 FOF： \(\mathrm{I}=1 \mathrm{TaH}\)

746 FOR \(M=1\) TO H

\(770 \mathrm{C}=\mathrm{C} 1+\mathrm{I}(\mathrm{M}) \mathrm{COE}(\mathrm{G})\)

TGU NEMT M

E10 IFI＝1 THEN GUSUE 1EG
gev HEST I

E46 FRINT PFEINT

BTU FEIAT＂
－－－－－－－－－－－－－－
EnCOR I＝1 TO H

916 TEMT I
Ges FRINTVFRINT
S30 FEEM TEHNSFOFW FLUT

956 FRINT \(\backslash F R I N T\)
960 FRINT IMT（10616\％ \(1+\) ． \(51 / 1006\) ，
970 FRINT＂FHIIIANE SECOHII＂，

GOE FRINT＂HERTZ（CicLESEECOHTH＂
1016 COGIE 1EG0
1020 T＝0
10G6 FOR \(I=1\) TOH
1046 IF T＜F（I）THEN T＝FiI！
165 E NE T I
\(1060 \mathrm{E}=\mathrm{L}\)／ T
1076 FOR：I＝1 TO H
16EGIF GOF（I）＜1 THEN GOTO 1696
1096 IF Eif iIl＜1 THEN FFINT＂：＂

1116 FFINT＂．＂，THE（L－1），＂．＂
\(110 . \mathrm{HEMT}\) I
1130 GOEUF 120 E

1150 FRINT＂FADIFIESAEECDHD＂，

1176 FFINT＂HERTE（CGLES／SECOHI）＂
11ETV ENI
119 GEEM EOARIER LIHE PLOT

1E16FFINT＂\％＂
1EEG NEWT I
1E36 FFEIAT
1246 RETIIFH
1250 REM DOREECT IIC UFLIE FOR IHTH：HIFT

12E6 FETIIRH
FEFIIT
number of data points，\(N\) ，as initial inputs．It then asks for a frequency scale factor（to be discussed shortly）． After receiving this information it then asks for the \(N\) data values，\(f_{i}\) ．These are plotted，and the computer subsequently enters the Fourier transform calculation， which may take several minutes．At the end of this calcu－ lation，the \(N\) frequency data points are printed out．This is where the effect of the frequency scale factor becomes evident．With a scale factor of unity，the Nyquist sam－ pling criterion is used to determine the maximum fre－ quency to be used in the transform calculation．The fre－ quency range is divided into \(N-1\) intervals，and the fre－ quency space data points are plotted at the associated \(N\)

\title{
We're looking for the most original use of an Apple since Adam.
}

What in the name of Adam do people do with Apple Computers?

You tell us.
In a thousand words or less.
If your story is original and intriguing enough, you could win a one-week all-expense paid trip for two to Hawaii. Which is the closest we could come to paradise.

\section*{Win fabulous prizes for creative writing.}

To enter, drop by your nearest Apple dealer and pick up an entry blank. Fill it out. Then write an article, in 1000 words or less, describing the unusual or interesting use you've found for your Apple.

A jury of independent judges will cast the deciding vote for the grand prize: a week for two, airfare included, in Hawaii.

The judges will also choose 16 additional winners, two each from eight categories:
graphics/music, entertainment, home, business, education, scientific, professional, and industrial. And each winner will choose from a long list of longed-after Apple peripherals-from Apple Disk II's to Graphics Tablets to printers. Or you can take a \(\$ 250\) credit towards the purchase of any Apple product.

The contest ends March 31,1980. All winners will be notified by May 15.

Entry forms are available at your participating Apple dealer. Call 800-538-9696, (800-662-9238 in California), for the one nearest you.

Mail the entry blank, your article and any photos to: Apple Computer, "What in the name of Adam" contest, 10260 Bandley Drive, Cupertino, CA 95014.
And may the juiciest application win.
comp
FOURIER SPECTRUM ANALYZER
THIS PROGRAM TRANSFORMS EQUAL INCREMENT DATA INTO FREQUENCY SPACE

THE USER INPUTS THE STARTING AND ENDING COORDINATES, ALONG WITH THE NUMBER OF DATA POINTS THE PROGRAM WILL THEN PLOT THE DATA AND ITS SPECTRUM

INPUT TERMINAL WIDTH: ?51
BEGINNING COORDINATE: ? 0
ENDING COORDINATE: ?6.28
NUMBER OF DATA POINTS: ?17
INPUT SCALE FACTOR:?1
INPUT DATA
1 ? 0
\(2 ? .38\)
\(3 ? .71\)
4?.92
\(5 ? 1\)
\(6 ? .92\)
\(7 ? .71\)
\(8 ? .38\)
9 ? 0
10?-. 38
11?. 71
12?-92
13?-1
14?.92
15?-. 71
16?-. 38
\(17 ? 0\)
Figure 1: Initializing routine for a seventeen-point approximation of a one-period sine wave. The period chosen was \(2 \pi\). Thus, the characteristic frequency associated with this sine wave is one radian per second.
boundaries. With an inputted scale factor greater than unity, the maximum frequency is reduced correspondingly. This gives better resolution for examining low frequency components. Scale factors less than unity are not permitted.

A sample run for a seventeen-point approximation of a single period of a sine wave is shown in figures 1,2 , and 3. We expect to see no "power" at \(w=0\) on the frequency plot because the average value of the data set is zero. Such is the case, since the signal approximated is a discrete truncation of a continuous sine wave having a frequency of one radian per second. However, because the wave has been truncated, there are many other frequency components present which not only spread out the power around the one radian per second point, but also appear to shift the frequency spectrum maximum towards a lower frequency. The same features are apparent in figure 4 where the frequency resolution has been increased three-fold.

\section*{Truncated Sine Waves}

The plots presented in the last section demonstrated that, although we intuitively expect a peak in the frequency spectrum at the sine wave frequency, none is apparent. If figure 4 is viewed with a little imagination, however, it is possible to see that the complete spectrum is composed of two parts, with one part having a peak at the sine wave frequency, thus causing the small bump at \(f=1\) radian per second in figure 4.

Since we have a computer program that allows easy evaluation of frequency spectra, consider the approxi-

Figure 2: Computer responds with a plot of the data set. For added clarity, lines have been drawn between the plotted points on this and all subsequent figures.
mate square-wave data set shown in figure 5 . The corresponding frequency plots are shown in figures 6 and 7. Mathematically we expect to see a "sinc" function, (\(F(z)=\sin z / z\)), frequency response, with the exception of having a zero at \(w=0\). The next zero is expected to be at 2 radians per second. From the frequency plots we see the expected characteristic shape, but with a zero at 1.9 radians per second; the input square wave is not ideal. A direct comparison of figures 3,4 , and 6, 7 indicates that the single-period sine wave has a spectrum similar to that of the single-period square wave, with the important difference that there appears to be more high frequency content in the square-wave spectrum. This is not surprising since there are sharp edges in the square-wave truncation which should lead to more high frequency components than with the sine-wave truncation.

Since the spiked-spectrum characteristic of an infinitely long wave is not very evident in the single-period wave truncation example given above, the question arises: how many sine wave periods are required before the frequency content that is characteristic of the single-period square wave is sufficiently reduced to allow the spiked spectrum to become evident? Again, we can experiment using the computer by entering a thirty-three data point representation of a two-period sine wave and observing the resulting frequency plot (see figure 8). As expected, the infinite sine-wave characteristic is much more evident

\title{
The easy way to learn about computers: BUILD ONE.
}

\section*{FREE catalog}

For complete descriptions of Heathkit Computers and nearly 400 other electronic kits for your home, business or pleasure, send for the latest, free Heathkit Catalog.

If Coupon is missing write: Heath Co.,
Dept. 334-600, Benton Harbor, MI 49022
Heathkit Products are also sold and serviced at Heathkit Electronic Centers (units of Schlumberger Products Corp.) throughout the U.S. See your white pages. DEC is a registered trademark of Digital Equipment Corporation.
\begin{tabular}{|c|c|}
\hline 1 & \(\square\) \\
\hline ．5 & 4.728 \\
\hline 1．E1－1 & 二．16 \\
\hline J． 5 嗢 1 & 2．5F \\
\hline E． & ． 3 O \\
\hline \(E .511\) & ． 84 \\
\hline Э，或家 & －3\％ \\
\hline 3 －5以 & －5e \\
\hline & ． yc \\
\hline 4．5120 & ． 3 E \\
\hline 5． & ． 393 \\
\hline 5，506\％ & － 3 \\
\hline E，터N & －39\％ \\
\hline E，509 & ． 149 \\
\hline 7．5－14 & ． \\
\hline －5064 & ． 17. \\
\hline E． 819 & ． 393 \\
\hline
\end{tabular}

Figure 3：The program outputs a table of transformed data，as well as a frequency space plot．
because the term which appears to be related to the trun－ cation has collapsed two－fold in the frequency span．

To those familiar with Fourier transforms of signals which have been＂windowed，＂the first low frequency zero shown on figure 8 （other than that at \(w=o\) ）is direct－ ly related to this＂window function．＂This function may be considered as multiplying an infinite sine wave to give the observed truncation，thus the frequency spectrum of the resulting signal is the convolution（see convolution theory in The Fast Fourier Transform by Brigham）of the perfect sine wave spectrum with the spectrum of this win－ dow function，the latter having a functional form defined by \((F(z)=\sin z / z)\) ．As the window becomes relatively

 FEFHI＇r＇

\section*{FINALLY，Apple II \({ }^{\text {is }}\) software for the discerning computerist， and the not－so－discerning beginner}

\section*{AppleAids \({ }^{\text {™ }}\)}

\section*{Little Tricks \({ }^{\text {™ }}\)}

A series of carefully explained subroutines containing a potpourri of useful programming techniques in Integer Basic and Applesoft，such as specific key stroke identification，timing loops，disappearing question marks on input，no question marks on input，and many more． Cassette（16K）．．．．．．．．． 14.95 Disk（32K）
19.95

\section*{Scroll Control \({ }^{\text {M }}\)}

Have you ever wondered why you cannot list an integer Basic or Applesoft program one screen－page at a time？So have we，and we did something about it！Our machine language Scroll Control，hidden in RAM so as not to＂bump＂into your program，can be engaged or dis－ engaged at a flick of the keyboard．Why be frustrated when instead you can control the scroll？Cassette ．．．．．． 9.95 Disk．．．．．． 14.95

\section*{Compulaw \({ }^{\text {＂TM }}\) Series}

\section*{Alitax Estimator \({ }^{\text {™ }}\)}

This Applesoft program，prepared under the supervision of an attorney， estimates disposable income after alimony and child support payments and federal taxes．For use by laymen and attorneys． 1980 tables．
Cassette（24K）．．．．．．．．．． 9.95 Disk（32K）．

\section*{＊Pensionner \({ }^{\text {TM }}\)}

A companion to Alitax Estimator in Applesoft designed to calculate the present value of a pension in states in which a pension is subject to division in marital dissolution cases．
Cassette（ 24 K ）．．．．．．．．．． 9.95 Disk（32K）
14.95

\section*{Form－li－Out \({ }^{\text {M }}\)}

A series of routines in Integer Basic and Applesoft containing detailed explanation and examples of programming techniques necessary to professionalize your screen output．Included are right and center justi－ fication，windowing，tabbing，cursor positioning among others． Cassette（16K）．．．．．．．．． 14.95 Disk（32K）．．．．．．．．．．．．．．． 19.95

\section*{Track \＆Sector List \({ }^{\text {m }}\)}

This is the ultimate disk utility．Instead of a catalog，have you ever seen those dreaded words＂I／O ERROR＂？Is all lost？NO！Now your disk may be saved．Also you can eliminate bad sectors，remove control characters imbedded in file names，change the disk volume number，and more．This machine language program is supplemented by extensive tutorial documentation worth its weight in gold．Disk only（ 32 K ）
24.95

\section*{Hex and Decimal Learning Tree \({ }^{\text {IM }}\)}

\section*{My ABC＇s \({ }^{\text {™ }}\)}

An early learning Integer Basic program using over one hundred and fifty high resolution graphic letters and pictures in a drill－and－practice format designed to develop identification of capital and small tetters，and association of letters with pictures．Scoring capability allows monitoring． Child tested and teacher recognized．Cassette（48K） 14.95 Disk 19.95

\section*{Now I Can Rhyme \({ }^{\text {TM }}\)}

A companion to My ABC＇s in Integer Basic．The child selects those high resolution pictures which rhyme．Score－keeping capability allows monitoring．Incorporates progressive levels of difficulty． Cassette（ 48 K ）．．．．．．．． 14.95 Disk（ 48 K ）
19.95

\section*{N．J．res．add \(5 \%\) sales tax}

\section*{ALTOS COMPUTER SYSTEMS PROUDLY ANNOUNCES}

\section*{SUn-5n \(008000-6\)}

\section*{ALEOS \\ \\ THE VERY FIRST} \\ \\ THE VERY FIRST}

Double Density Z80 Micro-Computer plus Twin \(8^{\prime \prime}\) Floppies plus 14.5Mb Winchester Disk for under \(\$ 9,500\) !
And more! 4 user \(\mathrm{CP} / \mathrm{M}^{\circledR}\) for under \(\$ 12,000\) !
- CP/M is a registered trademark of Digital Research, inc

\section*{ALTOS COMPUTER SYSTEMS, LEADER IN SINGLEBOARD TECHNOLOGY} DOES IT AGAIN WITH ITS SINGLEBOARD ACS8000-6. TOTAL BUSINESS COMPUTER

\section*{HIGH TECHNOLOGY ACAIN}

The new ACS8000-6 single board computer is packed with ultra-high technology: Z80 double-density computer, up to 208 Kb of high speed RAM, Floppy-disk and Winchester Hard Disk controllers, DMA, up to 6 serial/2 Parallel I/O, optional 32 bit floating point processor . . . All on One Board, fully socketed, fully documented reliable and maintainable.

\section*{ADVANCED MULTI-USER SOFTWARE} Our new ALTOS Multi-User Executive (AMEX) supports four independent CP/M compatible programs in any of six languages: Basic, Fortran. Cobol, Pascal APL, C, and a wealth of complete business application packages.

ALEOS

\section*{COMPUTER SYSTEMS}

2338-A Walsh Avenue Santa Clara, Ca. 95050

\section*{WINCHESTER MASS STORAGE}

We're staying with Shugart for both floppies and Winchester hard disk. Why? Simple, low price, solid reliability and theyre our next door neighbor. Our single board computer supports up to 4 Mbytes of floppies and 58 Mbytes of Winchester running under AMEX.

MINI PERFORMANCE FOR \(1 / 2\) COST
Prices you will love. Entry level ACs8000-6 Hard Disk System \(\$ 9,450\) 2 users \(\$ 10,670,4\) users \(\$ 11,960\). AMEX separate at \(\$ 250\).

\section*{AVAILABLE NOWI Circle 6 on inquiry card.}

Call for your nearest Altos dealer. (408) 244-5766. Telex 171562 ALTOS SNTA.

FFEOUEACY PLOT IORIHL:ZEI?

Figure 4: Same frequency plot as shown in figure 3, but with a 3.0 scale factor condition (three-fold increase in frequency resolution).
wider,the sine function increasingly takes on a delta (or impulse) function characteristic which eventually leads to a spiked spectrum for the resulting transform. Figures 9 and 10 demonstrate this for approximations of four- and eight-period sine waves. The latter plot definitely shows the narrow band spectrum element that is expected for a sine wave. Note, however, that the spread in power around the sine wave frequency still remains.

\section*{Frequency-Shift Keying}

One of the techniques used to encode digital information for transmission or recording is frequency-shift keying (FSK). In this method a frequency \(f_{0}\) is associated with the logic state 0 , and a frequency \(f_{1}\) is associated with the logic state 1 . Thus a message consists of a sequence of sine wave bursts, each having a characteristic frequency \(f_{0}\) or \(f_{1}\). It is apparent that the ideas and plots developed in the previous section may be directly applied to the consideration of FSK encoding.
If the data-signal center frequency is 2100 Hz (which is equal to (\(f_{o}+\mathrm{f}_{1}\))/2), and if the desired data-transfer rate is 300 bits per second, then one may expect to see (and subsequently decode) many bursts of seven-period sine waves having frequency spectra similar to that shown in figure 10, though scaled in frequency. Obviously, if the two chosen encoding frequencies are very close together it will be difficult to reliably sort out the signals using a

Figure 5: Plot of the seventeen-point data set used to approximate a square wave having the same period as the sine wave examined in figures 2 and 3.
filter technique. If a linear filter approach is taken, then it is apparent by examination of figure 10 that a minimum frequency separation of about \(\left(f_{o}+f_{1}\right) / 8\) is called for. For a 2100 Hz center frequency, a 500 Hz frequency separation is required. This gives encoding frequencies of approximately 1850 and 2350 Hz . More will be said about the significance of those frequencies later.
The above frequency separation requirement was obtained by considering several factors. These considerations included the decoding technique, filtering, and determining whether or not the frequency spectra are sufficiently separated to allow filter detection (using many dB per octave roll off). Another approach, which is more accurate, is to count sine wave periods or zero crossings. If periods are used, the minimum required frequency separation is that which gives a one-period difference (eg: seven periods versus eight periods). In this case, the required frequency separation comes out to be 300 Hz . This can be reduced to 150 Hz using zero crossings. To get better discrimination than this, a technique such as phase-locked loops must be used, and the results are highly hardware-design dependent.
For the sake of comparison, consider some of the frequencies used in the real world. The standard modem frequencies are separated by \(200 \mathrm{~Hz} ; 2025 / 2225 \mathrm{~Hz}\) and \(1070 / 1270 \mathrm{~Hz}\). For standard modem encoding frequencies, you must do more than simply decode by filtering.

Small business systems complete for under \(\$ 200\) a month. Business software such as Inventory Control, Accounts Receivable and Word Processing available now.

The Chieftain 6800 microcomputer series with capabilities that surpass the \(\mathrm{Z}-80\) is made for business systems.

Smoke Signal's quality-packed Chieftain 1.5 features two doublesided 5.25 -inch mini-floppy drives and Chieftain III features two 8 -inch doublesided floppy drives.

Both microcomputers provide 32 K static memory, two serial I/O ports, a 2 MHz processor board, a 2K RAM monitor, a nine-slot motherboard with built-in baud rate generator and gold connectors for high reliability. The Chief-

tain's stylish leather-grained enclosure has its own cooling fan and regulated power supply.

And they're expandable up to 128 K memory with up to 4 megabytes floppy disk storage.

The Chieftain series is noted for extremely high reliability as well as ease of operation.

So see your nearest SmokeSignal dealer, he'll be glad to show you how to get your wampum's worth. Systems start at \(\$ 2,595\).
\(\square\) Send information on your Chieftain microcomputer
\(\square\) Send name of nearest dealer
Name
Address
Company \(\longrightarrow\)
City \(\qquad\)
State/Zip \(\qquad\)
Dealer inquiries invited.

31336 Via Colinas. Westlake Village. California 91361, (213) 889-9340

\section*{Hail to the Chieftain}

 F'EFIIG'

Figure 6: Frequency space plot of the square wave approximated by the seventeen-point data set shown in figure 5.

The MITS 88 -ACR audio cassette record interface was originally designed to work at the upper modem frequencies. Difficulty in reliability ensued, and the two frequencies were subsequently changed to 1850 and 2400 Hz . These frequencies are curiously close to those that were derived from the frequency spectrum separation consideration above, and perhaps indicate that the 88-ACR has a poorly operating phase-locked loop combined with some tape flutter. This suspicion is based on the fact that the \(88-\mathrm{ACR}\) center frequency is derived from a control voltage which is obtained from dividing down a power supply voltage. Therefore, supply noise/ripple can cause trouble.

One cassette interface board exists which is advertised as able to use preset filters for decoding. Its encoding frequencies are 1200 and 2400 Hz . From figure 9 (fourperiod sine wave) and figure 10 (eight-period sine wave) it is apparent that sufficient separation should exist between the 1200 Hz signal spectrum (which is the troublemaker; large spread plus harmonics) and the 2400 Hz spectrum to allow for reliable filter detection.

The above has demonstrated how, with a little experimentation using the Fourier transform program, insight can be gained into some important communications principles without going deeply into mathematics.

 FEHI'H'

Figure 7: Same waveform as in figure 6, but with a frequency scale factor of 3 .

\section*{Noise}

In the laboratory the situation will often arise in which the signal of interest is buried in noise. In this section we consider an example in which an eight-period raised sinusoid is covered by uncorrelated noise having roughly the same amplitude as the sine wave. Figure 11 shows a 65 point approximation to a raised sine wave packet having the following form:
\[
\begin{equation*}
f_{i}=2+\sin \left(x_{i}\right) \tag{7}
\end{equation*}
\]

The data set may be conveniently generated by insertion of the following statements into the program shown in listing 1 :
\begin{tabular}{ll}
181 & \(\mathrm{X} 1=0\) \\
182 & \(X 2=50.3\) \\
183 & \(\mathrm{~N}=65\) \\
184 & \(\mathrm{FOR} I=1\) TO N \\
185 & D(I) \(=2+\operatorname{SIN}\left((\mathrm{I}-1)^{*} \mathrm{X} 2 /(\mathrm{N}-1)\right)\) \\
186 & NEXT I \\
187 & GOTO 250
\end{tabular}

The corresponding frequency space plot is shown in Text continued on page 26

\title{
"Our inventory is our existence. Think we'd trust it to anything less than Scotch Brand Diskettes?"
}

Don Stone, President, Mass. Auto Supply Company, Inc., Boston, Mass.

Scotch Diskettes are the diskettes you can depend upon with the information your business depends upon.
Each one is tested and certified error-free before it leaves our factory. Because we know nothing less than perfection is acceptable for your vital business data.

Scotch Diskettes are available in regular or mini sizes, compatible with almost any system.
To find out where you can purchase Scotch Diskettes, call toll free: 800-328-1300. (In Minnesota, call collect: 612-736-9625.) Ask for the Data Recording Products Division. In Canada, write 3MCanada Inc., London, Ontario, N6A 4T1.

If it's worth remembering, it's worth Scotch Data Recording Products.

\section*{HOWhOMma}

Figure 8: Frequency plot of a two-period sine wave approximated by a thirty-three-point data set. A frequency scale factor of 3 was used.

Text continued from page 22:
figure 12. Observe that there is a large value at \(w=0\) which dwarfs the power at the characteristic sine-wave frequency. A high pass filter would remove the \(w=0\) term.

WH89
All-in-One Computer

\section*{WH19}

Smart Video Terminal

WH14 Serial Printer

Figure 10: Frequency space plot of an eight-period sine wave approximated by a sixty-five-point data set. Normal resolution.

Observe that the average value of the noise is zero and that the noise added is uncorrelated because a new "seed" for the random number generator is chosen at each data point. This noise is not "white" or Gaussian, but rather is linearly distributed between -0.5 and +0.5 .

Figure 11: Eight-period sine wave as approximated by a sixty-five-point data set.

The sine wave hidden in figure 13 is not very evident, although you might guess (perhaps from an oscilloscope trace) that a repetitive signal is present.

Figure 14 shows the frequency transform of the noisy data from figure 13. Observe that, although there is noise

\section*{New from SSM.}

\section*{80 Character Video}

With 80 characters per line our VB3 is the perfect video interface for word processing. It produces a standard \(80 \times 24\) display of upper and lower case characters or as much as \(80 \times 51\) for a full page of text. The matrix for graphic display goes up to \(160 \times 204\). And with optional EPROM, as many as 256 user programmed characters or symbols can be produced.

VB3 is memory mapped for rapid screen updating. But it occupies memory only when activated. So one or more VB3s can be located at the same address with a full 65 K of memory still available to the user.

It generates both U.S. and European TV rates and meets the new IEEE S-100 standard. Other features include keyboard input, black on white or white on black, one level of grey, underline, strike thru, blinking char., blank-out char., and programmable cursor. Software includes a CP/M compatible driver and a powerful terminal simulator.

VB3 is available in several configurations. Retail prices start at \$375 kit, \$440 assembled.

Z-80 CPU
We spent over a year designing the CB2 to assure that it will be the most fully S-100 compatible Z-80 CPU on the market.

It operates at 2 MHZ or 4 MHZ by DIP switch selection and includes two sockets for 2716/2732 EPROMs or TMS 4016 2K RAMs. Memory sockets can be disabled. Separate run/stop and single step switches allow system evaluation without the benefit of a front panel.

CB2 also features an MWRITE signal, firmware vector jump, and an output port to control 8 extended address lines (allowing use of more than 65 K of memory). Jumper options generate the new IEEE S-100 signals to insure future S-100 compatibility.

Retail price- \(\$ 210 \mathrm{kit}\), \$275, assembled.

Our line. CPU, Video, I/O, RAM, EPROM, EPROM Programmer, Music, Prototyping, Terminator, Extender, and Mother boards. Available assembled or as kits.

\section*{8080 CPU}

Our new CB1A is identical to our popular CB1 with the exception that the on-board RAM has been increased from 256 bytes to a full 1 K .

It also features an optional 2K of 2708 EPROMs, power-on/ reset vector jump, MWRITE, parallel input port with status and DIP switch addressing.

Retail price- \(\$ 159\) kit, \$219 assembled.

2116 Walsh Avenue Santa Clara, CA 95050 (408) 246-2707 Send for our free brochure and find out why SSM has become the favorite of discerning Hobbyists and OEMs.

\title{
Why not kill two birds with one stone?
}

If you have an Apple* and you want to interface it with parallel and serial devices, we have a board for you that will do both. It's the AIO.' \({ }^{\text {m }}\)

\section*{Serial Interface.}

The RS-232 standard assures maximum compatibility with a variety of serial devices. For example, with the AIO you can connect your Apple* to a video terminal to get 80 characters per line instead of 40 , a modem to use time-sharing services, or a printer for hard copy. The serial interface is software programmable, features three handshaking lines, and includes a rotary switch to select from 7 standard baud rates. On-board firmware provides a powerful driver routine soyou won't need to write any software to utilize the interface.

\section*{Parallel Interface.}

This interface can be used to connect your Apple* to a variety of parallel printers. The programmable I/O ports have enough lines to handle two printers simultaneously with handshaking control. The users manual includes a software listing for controlling parallel printers or, if you prefer, a parallel driver routine is available in firmware as an option. And printing is only one application for this general purpose parallel interface.

\section*{Two boards in one.}

The AIO is the only board on the market that can interface the Apple to both serial and parallel devices. It can even do both at the same time. That's the kind of innovative design and solid value that's been going into SSM products since the beginning of personal computing. The price, including PROMs and cables, is \(\$ 135\) in kit form, or \(\$ 175\)

\section*{Beautiful "Computer Chess" Reproduction—only \$4.95!}

This dramatic reproduction of the October '78 Byte cover art has been produced with the same care and quality as limited edition prints-yet it is available for the price of a poster.

The overall size is \(18^{\prime \prime} \times 22^{\prime \prime}\), which includes a \(11 / 2^{\prime \prime}\) border. It is printed on heavy, 80 lb ., matte finish, coated stock, excellent for the finest framing if desired.

The price of this quality reproduction is \(\$ 4.95\), plus \(\$ 1.00\) for mailing tube, handling, and postage. In addition, the artist, Robert Tinney, will select the 100 finest prints from this first edition for his personal signature and number. These 100 signed and numbered prints will be sold on a strictly first-come basis for \(\$ 24.00\) plus \(\$ 1.00\) postage and handling.

See coupon below for ordering.

Figure 13: Same waveform as in figure 11, but with noise added.
ing a Gaussian noise distribution) many times. If this is done each time using new random number generator seeds so that there is no correlation between data sets, then the noise will on the average appear to be uniformly distributed along the frequency axis. At the sine-wave frequency that I have chosen, you can expect to see an average noise power \(\left(\left|F_{n}(w)\right|^{2}\right)\) of some value \(N_{\mathrm{B}}\). If we

Figure 14: Frequency space plot of the transform of the noisy data set shown in figure 13.
measure the power \(\left(\left|F_{s}(w)\right|^{2}\right)\) at the sine-wave frequency, we can expect to see an average value \(S_{8}\). The amplitude signal to noise ratio \((\mathrm{S} / \mathrm{N})\) is then:
\[
\begin{equation*}
(S / N)_{8}=S_{8} / N_{8} \tag{9}
\end{equation*}
\]

If we had instead looked at a sixteen-period raised sine wave having the same characteristic frequency and the

\section*{Pue find]iy GOInc a DeISODRA It's not surprising CODDDUTEE IRESDCCt. get excited about the Compucolor Il.} It's a totally-integrated 808()A system CompucolorII. with full color graphics display, built-in 51 K mini-disk drive, and the best cost performance ratio available in a personal computer.

The complete system is only \(\$ 1595\). And that price includes 8 K user RAM, RS-232C compatibility and random access file capabilities.

Our 8 foreground and background colors will boost your comprehension, while introducing you to an exciting new dimension in BASIC programming. The vector graphics have 16,484 individually-accessible plot blocks. And the \(13^{\prime \prime}\) diagonal measure screen gives you 32 lines of (a4 ASCII characters. You also have the flexibility that comes with 16 K Extended Disk BASIC ROM.

Compucolor 11 offers a number of other options and accessories, like a second disk drive and expanded keyboard, as well as expandability to 32K of user RAM. Of course we also have a whole library of low-cost Sof-Disk \({ }^{\text {TM }}\) programs, including an assembler and text editor,

Visit your nearest computer store for details. And while you're there, do some comparison testing. With all due respect to the others, once you see it, you'll be sold on the Compucolor II.

\section*{5 Compucolor
Corporation}

same impressed noise level, the average noise power would have been twice as great, or \(N_{16}=2 N_{8}\). This conclusion is based on the noise power \(\times\) time product. The total energy in the sine wave component (the energy in the bump at \(w=\) one radian per second) also doubles. However, we have seen in the previous examples that the width of the sine-wave component narrows as the number of periods increases (width in frequency space is proportional to the inverse of the number of periods). Thus, the power at the characteristic frequency for the sixteen-period sine-wave quadruples, or \(S_{16}=4 S_{8}\). The power signal to noise ratio is:
\[
\begin{equation*}
(S / N)_{16}=2(S / N)_{8} \tag{10}
\end{equation*}
\]

It can be shown that by increasing the length of the sine wave sampled by a factor \(n\) you can improve the amplitude \(S / N\) by \(\sqrt{n}\). (Lock-in amplifiers can also be used to improve \(\mathrm{S} / \mathrm{N}\). Observe that increasing the sampling time is analogous to including more periods; \(\mathrm{S} / \mathrm{N}\) is proportional to \(\sqrt{\text { sampling time }}\), or \(1 / \sqrt{\text { bandwidth.) }}\)

\section*{Conclusion}

The computer program presented in listing 1, although not optimal in efficiency, is reasonably universal and capable of being used in many applications. The application considered above was the evaluation of frequencyshift keying encoding method, in terms of decoder bandwidth, band separation, and noise immunity.

A simple extension of the program could be implemented by generating the phase component of the complex frequency spectrum. This can be done by placing another few statements in the program:

> Insert: \(805 \mathrm{P}(\mathrm{I})=\) ATAN \((\mathrm{S} 1 / \mathrm{C} 1)\)
> Add:
\(\mathrm{P}(\mathrm{I})\) represents the phase in radians. Since North Star

BASIC, Version 6, Release 2 does not have the inverse tangent function, an additional subroutine for calculating the inverse tangent would be necessary. For the examples given above, the phase response was not an important consideration, and would have increased the computing time.

The use of the complete transform, both amplitude and phase, encourages some interesting experiments in the realm of signal recovery. For example, a low resolution signal (eg: an image scan such as that from an analog barcode reader) could be transformed, and the resulting transform could be corrected for the device response. The resulting corrected transform could then be retransformed back into signal (optical image) space. This is particularly easy (and effective) when the device response is stable and there is sufficiently little noise. For example, with a simple optical device such as a grocery store barcode reader, the unaided resolution in terms of edge response may be on the order of 0.005 inches. With correction this can be improved to 0.0005 inches, an order of magnitude improvement in edge response. Such corrections are not uncommon as most quality tape recorders have playback frequency compensation. In the latter case, an analog circuit is used instead of a computer.

The preceding resolution improvement approach is based on the assumption that the system being considered is linear. Optical systems are convenient in this respect, and much can be done with the transforms of optical images-witness the Mariner photos. The program presented here offers the opportunity to experiment with some of these techniques.

\section*{REFERENCES}

McGraw-Hill Dictionary of Scientific and Technical Terms, Second Edition, 1978.
Radio Shack Dictionary of Electronics, 1974-75.
A Dictionary of Microcomputing, Philip E Burton, Garland Publishing Inc, 1976.

\begin{abstract}
Glossary
center frequency: 1. The mean frequency of the output wave when modulated by a symmetrical signal. 2. The center frequency in a frequency spectrum plot.
harmonic distortion: The production of undesirable harmonic frequencies at the output, due to circuit nonlinearities when a sinusoidal voltage is applied to the input.
Fast Fourier Transform: (FFT) A mathematical concept that describes the relationship between information in the time domain and the frequency domain. The Fourier transform of correlation functions will yield the power spectra.
flutter: The variations in frequency caused by irregular motion of the recording device during the recording process. Flutter usually refers to high-frequency variations, and the term "wow" denotes low-frequency deviations.
frequency compensation: A technique involving modification of a circuit to improve the linearity of its response with respect to frequency over the existing bandwidth.
\end{abstract}
frequency response: 1. A measure of how effectively a circuit or system transmits the different frequencies that are applied to it. 2. The section of the frequency spectrum which can be sensed by a device within specified amplitude error tolerances.
frequency-shift keying: (FSK) A method of frequency modulation that involves shifting the output frequency between predetermined values corresponding to the frequencies of correlated sources.
frequency spectrum: An entire range of the distribution of the intensity of an electro-magnetic or acoustic radiation as a function of frequency.
noise immunity: A measure of how sensitive a circuit is to electrical interference or other sources of noise. overshoot: 1. An initial transient response to a unidirectional variation in input which exceeds the steady state response. 2. The maximum amount by which this transient response exceeds the \(100 \%\) amplitude level.
phase-locked loop: A circuit which compares the input carrier frequency with the frequency of the voltage

\title{
FOR THE VERY BEST IN NORTHSTAR \({ }^{\text {® }}\) COMPATIBLE SOFTWARE
}

\title{
DATA BASE MANAGERS \\ SPECIAL!! \$10.00 OFF of Selector-III C2
}

Selactor-III C2: SuparSoft is proud to offer the Selactor-III C2 at a spacial \(\$ 10.00\) discount. Selactor III Sallows instant recall of any record using any information item in the record. This makes Selactortorl the allows instant recall of any record using any information item in the record. This makes Selector. IIn the
most powerful Data Base Managament System in micro-computers todayl You can define a data format most powerful Data Base management System in micro-computers todayi You can detine a data format
and begin entering your data in minutes. Helps bring applications on line in hours insteat of months. (Hote:
 Selactor.tII C2 is: \(\$ 335,00\) (\(\$ 10.00\) off list!). (Manual alona: \(\$ 20.00\))

CRS - Client Record System. A complete program packege forthe Insurance agent. CRS will provide you with very fast onfins accass to your client records, print reports and mail labels, and give you all the inforwith very fast onine accass to your cient racords, print reporis and mail labels, and give you all
mation you will need to incraase your sales through the use of CRS as a MARKEING TOOL.
CRS stores a complate record for each client that includes the name, address, telaphone \#, as well as provisions for customer \#, salasman \#and up to six policies texpandabla if neesded). The policy information is complate with both the typa of coverage and the company that is underwriting it, as wall as exp, date premium, term, and payment schedule. You also have a remark field.
You can saarch tha files by any field, and CRS supports a powerful 'sieve' search to provide you with all the information you need to incraase insur ance sales. CRS comes with two\{2) user's manuals, one for the owner, and one for affice parsonnall Iminimal systam: one drive, 40K RAM starting 2000H) \(\$ 250.00\) (Manual: \(\$ 40.00\))

\section*{TEXT PROCESSORS}

TFS - Text Formaiting System. At last a full faaturad text processor for NorthStar that you can raly onl IFS has loft \& right margin justification, page numbering, chaptering, page headings, centering, paged out put \& MORE. Supports powerful text manipulations including; global \& local 'search and change,' file merges and block moves. This means that you can restructure your text file at any time to look the way you want it to, you can even 'chain' fifes tagathar from disk for documents larger than your current mamory.
TFS is complataly Toad and so' therefore you can start using it at once. You gat iwol2) user's manuals: one is a Quick Start manual to gat you going in minutes, the other is an in depth study of TFS. ITFS raquires RAM from 0000H to 2000H) \(\$ 75.00\) (Manual only: \(\$ 20.00\))

\section*{COMPUTER AIDED INSTRUCTION}

M I S S - Microcomputar Instructional Support Systam. A complate, salf.contained CAi package applicable to home, school or business aducation. Includes averything nesdad to create a sophisticatad computer learning environment. MISS allows one to create any type leason compiete with wrong answer branching, relas, and complate record hesping. The sta or special knowisiga, A spocial foature is the optional use of a uniqua algoritm which separates spelling arractive and maintains in apecel MISS is a completely ftexible system thet will allow you to aither create lessons or to purchase
 rre-programmed lessons which run under MISS. Complete with usar's manual . . . \(\$ 40.00\). thanual alona: \$10.00)

ARIAN - A complate 8080 assemblar that interfacas diractly to your DDS. ARIAN is complately load and go', Fbatures includs: dynamic fila and RAM allocation, custom disk and RAM command capability. sevaral library rautines directly accessabla by the user. Also, a complate text editor, and systam axacutive ARIAN is both powerful and easy to learn and use; it is an assambler that you can grow with. Comas com plata with a 51 page user's manual (ARIAH raquiras RAM from 0000H to 2000H) \(\$ 50.00\) (Manual alona: 10.00)

ARIAN Utility Package - Savaral disk based utilitias. Includes a complata debug Packaga: \(\$ 50.00\)

PROGRAMMING LANGUAGES
'Tiny' Pascal - This is the famous ChungiYuen 'tiny' Pascal. Fast - elegant - structured, Local and global variables plus procedure and function indapendance maka 'tiny' Pascal graat for high spaed applicatians. Compiles to 8080 cada that executas up to 25 timas fastor than BASIC. You also receive SOURCE to tiny' Pascal written in Pescal. This means that you can compile the compilerl Add features, relocate, etc. [you will need 38 K to do this) \(\$ 40,80\)

\section*{UTILITIES}

DEBE - (Does Evarything But Eat!) This is a must for NorthStar usar's. Youcan: COMPACT \& EXPAND BASIC programs. Compacting removes unnecessary spaces and remarks. This saves money and makes for programs run faster. Expanding puts them back again.
Cross-ralarence BASIC programs by yariables and transiar statements.
Global substitutions of variables and transfer statements.
Formatted print outs of BASIC programs as wall, \(\$ 40.00\)

\section*{SPECIFY SINGLE OR DOUBLE DENSITY}

\section*{FOR THE VERY BEST IN TRS-80 COMPATIBLE SOFTWARE}

\section*{'Tiny' Pascal FOR TRS-80}

Now you too can have Pascal! The famous ChungiYuen 'tiny' Pascal hes been spacially designed for Now you too can have Pascal! The famous ChunglYuen 'tiny' Pascal has be日n specially designed for
the TRS. BOl The full power end elegance of 'tiny' Pascal is at your command. Programs written in 'tiny'
 Pascal run at laast 4 times faster than
learn Pascal programming, \& fun too.
Best of all, you only need a 16 K Level II TRS-80! Mo disk is required. The 'tiny' Pascal operating system Bast of all, you only need a 16 K Lavel
is salt-containad and very easy to use.
is sati-contained and very easy to use.
Tiny' Pascal is a subsat of standard Pascal 8 includes: RECURSIVE PROCEDUREIFUNCTION, IF-THEN. TISY' Pascal is a subsal of standard Pascal \& includas: RECURSIVE PROCEDURE; (IUNTIL, 'PEEK' \& 'POKE', WHILE DD, CASE, MDREI (Plus full graphics for your TRS-80). You can save and load programs to and from tape in hoth source of compiled form.
You get all this and more, plus a user's manual for \(\$ 40.00\)
You pet all this and more, plus a user'
OSK VERSION NOW AVALLABLE \(\$ 45.00\)

Energy-Miser
Energy-Miser is a complate hatinglcooling analysis program for your home, office or business! With Enargy-Miser you can calculate heat loss bacause of poor insulation, laaky doors and windows, poor plann-Enargy-Miser you can calculata heat loss bacausi of poor insulation, laaky doors and windows, poor plann-
ing and marg. With Enargy-Misar you can pradict the annual savings an your utility bills for various improvements or modifications, including: use of solar power, better insulation, opening and closing drapery. prove
etc.
But there is avan more: Energy-Miser can also calculata your Return on Investment. That is, you can find your break point for converting to solar, for insulating batter, etc. Enargy. Miser even tahas into considarw. tion the Enargy Tax Craditl Enargy-Miser is a program designed to save your monay!
fon the Enargy Tax Craditl Enargy-hisar is a program designad to saya your monayl
Enargy.Misar is a provan program writan by a profassional and includes a complata user's manual for 22.50. (Minimum Systern 16K Laval II, No Disk Raquired)

ALL ORDERS PREPAID OR C.O.D.
ILLINOIS RESIDENTS ADD 5\% SALES TAX
controlled oscillator (VCO) by means of a phase detector; the ouput of the phase detector is fed through a loop filter and then back to the voltage controlled oscillator to keep in phase with the incoming carrier frequency.
phase shift: 1. The difference between corresponding points on the input and output signal waveforms, commonly referred to as the phase angle. 2. A change in the phase angle between two periodic signals. processor: (CPU - central processing unit) The central control unit of the digital computer. This unit contains the memory, the Arithmetic and Logic Unit (ALU), control circuitry, and general purpose registers. The processor controls the decoding and execution of all machine instructions.
real-time operation: A computer mode of operation in which the input data is received and processed as it is
generated so that the current information may be used to control that process.
rise time: The time required for the leading edge of a pulse to rise from \(10 \%\) to \(90 \%\) of its steady-state value. It is proportional to the time constant and is a measure of how quickly the signal makes a transition form one state to another.
signal-to-noise ratio: (\(S / N\) ratio) A measurement of the relative quality of a signal. Precisely the ratio of the magnitude of the signal to the magnitude of the noise present.
video display: (CRT - cathode ray tube) a peripheral which presents its data visually on a television-like screen.

\title{
Add Nonvolatile Memory to Your Computer
}

\author{
Steve Ciarcia \\ POB 582 \\ Glastonbury CT 06033
}
'You know, Ray, sometimes I think I see more of you than your wife does."

He grinned and retorted, "I just dropped over to see what the Circuit Cellar' Frankenstein was cooking up this month."

I fully deserved that. Few have seen the Circuit Cellar, and it does look a little imposing at first. The usual 20-square-foot hobby corner used by most computerists has been expanded to a 1000 -square-foot computer room which vaguely resembles the bridge of the starship Enterprise. Accented with the eerie appearance of seven video displays and a multitude of strange black boxes emanating menacing sounds, it sometimes becomes an environment of computerized insanity. While I am not interested in creating any monsters, Baron von Frankenstein and I may have a few interests in common. His demise, I assure you, was simply a case of bad press.
"Steve?" Ray said loudly. "What are you working on?"
I was jerked back to reality somewhat abruptly. Visions of a 1932 movie set faded as I turned in my swivel chair to respond.
"I am actually working on several ideas, Ray, but the easiest is trying to put a computer in a car."

Ray quickly cast a doubtful glance
at the 64 K-byte, dual-disk, Z80-based system. Returning his attention to me he quipped, "Where do you plan to put the printer?"
"I do not mean a big computer. I mean a little one, probably a single board. I will have sensors throughout the car to monitor engine speed, temperatures, pressures, and so forth fed to a display visible to the driver. The driver will be able to calculate and keep running totals of gas mileage, monitor the engine performance, and generally maintain a comfortable feeling of safe motoring."
Ray said, "That sounds pretty good. You will obviously have to use CMOS for your computer." His observation was based on his long years of technical experience.
"Why?"
Ray seemed confused at my reply. He expected agreement. Shouldn't complementary-metal-oxide semiconductor (CMOS) components be used since the computer will be battery powered?
"Because it is battery powered. That's why!" he demanded.
"That is not necessarily true." Trying not to seem quarrelsome, I continued. "Let's think about an automobile for a minute. There are many power-consuming devices. A defroster fan or rear-window heater
can draw 100 watts each. Without the floppy-disk drives, even that big Z80 system over there does not pull that much. I am shooting to stay under 20 watts, but logic type does not make much difference."
"Yes, I know when the engine is running there is plenty of power available from the alternator." Ray seemed a bit frustrated in pointing out my misjudgement of the facts. He persisted. "At 12 volts, 20 watts is almost 2 amperes! The 12 -volt car battery will not last long with the engine off."
"You do not leave the defroster fan on with the engine off, do you?" I countered.
"Of course not! But what about your program? If it is written into programmable memory such as 2102 or 2114 devices, you'll lose it when the power goes off."
"I said this computer is for automotive use. It cannot be considered as a general-purpose computer. Rather than using only programmable memory with programs loaded from tape or disk, it will have the operating system and language interpreter stored in read-only memory and application software stored in erasable, programmable read-only memory, an EPROM. The only programmable memory needed will be a

Text continued on page 40

\title{
Make the SBC/9 the heart of your computer and put to work the most outstanding microprocessor available, the 6809.
}

\section*{the Mighty 6809}

Featuring more addressing modes than any other eight-bit processor, position-independent coding, special 16-bit instructions, efficient argu-ment-passing calls, autoincrement/ autodecrement and more, it's no wonder the 6809 has been called the "programmers dream machine.'

Moreover, with the 6809 you get a microprocessor whose programs typically use only one-half to two-thirds as much RAM space as required for 6800 systems, and run faster besides.

And to complement the extraordinary 6809, the Percom design team has developed PSYMON "', an extraordinary 6809 operating system for the SBC/9".

\section*{PSYMON" - Percom SYstem MONitor}

Although PSYMON " " includes a full complement of operating system commands and 15 externally callable " trademark of Percom Data Company, Inc.
utilities, what really sets PSYMON ** apart is its easy hardware adaptability and command extensibility.

For hardware interfacing, you merely use simple, specific device driver routines that reference a table of parameters called a Device Control Block (DCB). Using this technique, interfacing routines are independent of the operating system.

The basic PSYMON " command repertoire may be readily enhanced or modified. When PSYMON " first receives system control, it initializes its RAM area, configures its console and then 'looks ahead' for an optional second ROM which you install in a socket provided on the SBC/9" card. This ROM contains your own routines that may alter PSYMON " pointers and either subtly or radically modify the PSYMON \({ }^{\prime \prime}\) command set. If a second ROM is not installed, control returns immediately to PSYMON"
- Provision for multi-address, 8 -bit bidirectional parallel I/O data lines for interfacing to devices such as an encoded keyboard.
- A serial interface Reader Control output for a cassette, tape punch/reader or similar device.
- An intelligent data bus: multi-level data bus decoding that allows multiprocessing and bus multiplexing of other bus masters.
- Extended address line capability - accommodating up to 16 megabytes of memory - that does not disable the onboard baud rate clock or require additional hardware in I/O slots.
- On-board devices which are fully decoded so that off-card devices may use adjoining memory space.
- Fully buffered address, control and data lines.

The SBC/9"', complete with PSYMON"in ROM, 1 K of RAM and a comprehensive users manual'"costs just \$199.95.

PERCOM
PERCOM DATA COMPANY INC, 211 N. KIRBY GARLAND. TEXAS 75042 (214)272-3421

\section*{Welcome to Percom's Wide World}

Each LFD mini-disk storage system includes:
- drives with integral power supplies in an enamel-finished enclosure
- a controller/interface with ROM operating system plus extra ROM capacity
- an interconnecting cable
- a comprehensive 80 -page users manual

\section*{Low-Cost Mini-Disk Storage in the Size You Want.}

Percom LFD mini-disk drive systems are supplied complete and ready to plug in the moment they arrive. You don't even have to buy extra memory. Moreover, software support ranges from assembly language program development aids to high-speed disk operating systems and business application programs.

Mini-disk storage system prices:
\begin{tabular}{lrrr}
MODEL & \begin{tabular}{r}
1-DRIVE \\
SYSTEM
\end{tabular} & \begin{tabular}{r}
2-DRIVE \\
SYSTEM
\end{tabular} & \begin{tabular}{r}
3-DRIVE \\
SYSTEM
\end{tabular} \\
For the SS-50 Bus: & \(\$ 599.95\) & \(\$ 999.95\) & \(\$ 1399.95\) \\
LFD-400 & 895.95 & 1549.95 & 2195.95 \\
LFD-800 & \(\$ 649.95\) & \(\$ 1049.95\) & \(\$ 1449.95\) \\
For the EXORciser* Bus: & \(\$ 945.95\) & 1599.95 & 2245.95 \\
LFD-400EX & & & \\
LFD-800EX & (dual) \(\$ 2495.00\) & (quad) \(\$ 4950.00\) & -
\end{tabular}

EXORciser* Bus LFD-400EX \({ }^{\text {iw }}-800 E X^{\text {(i4 }}\) Systems

\section*{Upgrade to 6809 Computing Power. Only \(\$ 69.95\)}

Although designed with the SWTP 6800 owner in mind, this upgrade adapter may also be used with most other 6800 and 6802 MPUs. The adapler is supplied assembled and lested, and includes the 6809 IC, a crystal, other essential components and user instructions. Restore your original system by merely unplugging the adapter and a wire-jumpered

DIP header, and re-inserting the original components. Also available for your upgraded system is PSYMON \({ }^{\text {iin }}\) (Percom SYstem MONitor), the operating system for the Percom 6809 single-board computer. PSYMON on 2716 ROM cosis only \(\$ 69.95\). On diskelte (source and object files), only \(\$ 29.95\).

Data Terminal \& Two-Cassette
Interlace - the CIS-30+

- Interface to data terminal and two cassette recorders with a unit only \(1 / 10\) the size of SWTP's AC-30. - Select 30,60 or 120 bytes per second cassette interiacing: 300, 600 or 1200 baud data terminal interfacing.
- Optional mod kits make CIS-30+ work with any microcomputer. (For MTS 680b, ask for Tech Memo TM-CIS-30+-09.)
- KC Slandard/Bi-Phase-M (double frequency) cassette data encoding. Dependable self-clocking operation. - Ordinary functions may be accomplished with 6800 Mikbug* monitor
Prices: Kit, \$79.95; Assembled, \$99.95. Prices include a comprehensive instruction manual. Also available: Test Cassette, Remote Control Kit (for program control of recorders), IC Socket Kit, MITS 680b mod documentation and Universal Adapter Kit (converts CIS-30+ for use with any computer).

\title{
of 6800 Microcomputing.
}

\section*{6800/6809 SOFTWARE}

\section*{System Software}

6800 Symbolic Assembler - Specify assembly options at time of assembly with this symbolic assembler. Source listing on diskette \(\$ 29.95\)
Super BASIC - a 12 K extended random access diskBASIC for the 6800 and 6809 . Supports 44 commands and 31 functions. Interprets programs written in both SWTP 8K BASIC (versions \(2.0,2.2 \& 2.3\)) and Super BASIC. Features: 9 -digit BCD arithmetic, Print Using and Linput commands, and much more. Price
\(\$ 49.95\)
TOUCHUPim - Modifies TSC'S Text Editor and Text Processor for Percom mini-disk drive operation. Supplied on diskette complete with source listing
\(\$ 17.95\)

\section*{Operating Systems}

INDEX - This easy-to-use disk-operating and file management system for 6800 microcomputers is fast. VO devices are serviced by interrupt request. INDEX \({ }^{\text {Tiv }}\) accessesperipherals the same as disk files - new devices may be added without changing the operating system. Other features: unlimited number of DOS commands may be added • over 60 system entry points - display only those files at or above user-specified file activity level - versions available for SWTP MF-68, Smoke's BFD-68 and Motorola's EXORciser*. Price \(\$ 99.95\) MINIDOS-PLUSX \({ }^{(4)}\) - An extension of the original MINIDOS \({ }^{\text {TiL }}\) for LFD-400 \({ }^{\text {Ti }}\) mini-disk systems, MINIDOSPLUSXiim manipulates files by six-character names. Supports up to 31 files. Resident commands include Initialize, Save, Allocate, Load. Files (directory list), Rename and Delete. Supplied on 2708 ROM with a minidiskette that includes transient utilities such as Copy, Backup, Create, Pack and Print Directory. Price \(\qquad\) Directory. Price - PSYMON © Percom SYstem MONitor for the Percom single-board/SS-50-bus-compatible 6809 computer accommodates user's application programs with any mix of peripherals without modifying programs. PSYMON \({ }^{\text {mio }}\) also features character echoing to devices other than the communicating device, sophisticated register and memory dump routines and more. Price (on 2716 ROM)
. \(\$ 69.95\). WINDEX - Described in detail elsewhere on this page. Business Programs
General Ledger - For 6800/6809 computers using Percom LFD mini-disk storage systems. Requires little or no knowledge of bookkeeping because the operator is prompted with non-technical questions during data entry. General Ledger updates account balances immediately - in real time, and will print financial statements immediately atter journal entries. User selects and assigns own account numbers; tailors financial statements to firm's particular needs. Provides audit trail. Runs under Percom Super BASIC. Requires 24 K bytes of RAM. Supplied on minidiskette with a comprehensive users manual. Price
\(\$ 199.95\).
FINDER - This general purpose data base manager is written in Percom Super BASIC. Works wh 6800/6809 computers using Percom LFD-400imini-disk drive storage systems. FINDĖR \({ }^{\text {im }}\) allows user to define and access records using his own terminology - customize file structures to specific needs. Basic commands are New, Change, Delete, Find and Pack. Add up to three user-defined commands. FINDER plus Super BASIC require 24 K bytes of RAM. Supplied on minidiskette with a users manual. Price
\(\$ 99.95\)
Mailing List Processor - Powerful search, sort, create and update capability plus ability to store 700 addresses per minidiskette make this list processor efficient and easy to use. Runs under Percom Super BASIC. Requires 24K bytes of RAM. Supplied on minidiskette with a users manual. Price \(\$ 99.95\).

\section*{From the Sollware Works}

Development and debugging programs for \(6800 \mu \mathrm{Cs}\) on diskette: Disassembler/ Source Generator \(\$ 30.95\) Reloc'Ing Disas'mblr/ Segmented Texi Gen \(\$ 40.95\) Disassembler/Trace
Support Relocator Program. \(\$ 25.95\)
Relocating AssemberlLinking Liar. \(\$ 25.95\)
SmithBUG** (2716 EPROM) \(\$ 70.00\)
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{1/2-Price Special on Hemenway Software!} \\
\hline CP/68 \(\ddagger\) disk operating system & \$ 49.97 \\
\hline STRUBAL+ \(\ddagger\) compiler & \$124.97 \\
\hline EDIT68 text editor & \$ 19.97 \\
\hline MACRO-Relocating Assembler & \$ 39.97 \\
\hline Linkage Editor (LNKEDT68) & \$ 24.97 \\
\hline Cross Reference utility & \$ 14.97 \\
\hline
\end{tabular}

\footnotetext{
Hrademark of Percom Data Company, tric.
- trademark of Motorola Corporation
}
\(\ddagger\) Trademark of Hernenway Associates Company

And 'looking into' is just what you do with the Electric Window \({ }^{\text {(IM }}\) as you peer right into memory space where characters are being input and manipulated. Display is memory-resident. programmable and generates up to 2480 -character lines. Other features include: - standard character generator plus provision for optional special character generator
- dual intensity, high-lighting alphanumeric display
- scrolling by a programmable register • programmable display positioning - programmable interlaced or non-interlaced scan
- descenders on lower case
letters • users manual with application instructions and listing of WINDEX

WINDEX is a fast video display driver program for the Electric Window \({ }^{\text {im }}\). WINDEX \({ }^{\text {mim }}\) also teatures: program and keyboard control of character generators - displayable control characters - under program control • automatic scrolling • a driver routine for the parallel input keyboard feature of the Percom 6809 Single-Board Computer, the SBC/g - auto-linking to PSYMON*w, the ROM operating system for the SBC/gwe Prices: ROM version: \(\$ 39.95\); LFD-400 compatible diskette (source and object files): \$29.95.

\section*{Now Available! the SBC/9 MPU/Control Computer}
(Single-Board-Computer/6809) - stands alone as a control computer, but aiso compatible with the SS-50 bus for use as an MPU card. Includes PSYMON® (Percom SYstem MONitor) in a 1 K ROM and provides for additional 1 K of ROM. Also includes 1 K of RAM. Features: Super Port - provision for multi-address, 8 -bit bidirectional data lines - an intelligent data bus for multi-level data bus decoding - an on-board 110-baud to 19.2 kbaud clock generator - extended address capability - to 16 megabytes without disabling baud clock or adding hardware. And much more. Supplied with PSYMON® and comprehensive users manual. Price

See full page ad elsewhere in this magazine for all of the SBC/9 features.
Full Feature Prototyping PC Boards
All of the features needed for rapid, straightiforward circuit prototyping. Use 14-, 16-, 24- and 40-pin DIP sockets - SS-50 bus card accommodates 34- and 50-pin ribbon connectors on top edge, 10-pin Molex connector on side edge \(\cdot 1 / 0\) card accommodates 34 -pin ribbon connector and 12 -pin Molex on top edge

- VO card is \(1-1 / 4\) inches higher than SWTP \(/ 0\) card • interdigitated power conductors - contacts for power regulators and distributed capacitance bypassing - use wire wrap, wiring pencil or solder wiring - tin-lead plating over 2-oz copper conductors wels quickly, solders easily - FR4-G 10 epoxy-glass substrate.

To place an order or request additional literature call tollfree 1-800-527-1592. For technical information call (214) 272-3421. Orders may be paid by check, money order, COD or charged to a VISA or Master Charge account. Texas residents must add \(5 \%\) sales tax.

PRICES AND SPECIFICATIONS SUBJECT TO CHANGE WITHOUT NOTICE.

PERCOM
PERCOM DATA COMPANY INC, 211 N. KIREY GARLAND. TEXAS 75042 (214) 272-3421

Circle 305 on inquiry card.

\section*{muMATH \({ }^{\text {m }}\)}
- These examples illustrate only a few of the many symbolic math capabilities of muMATH. Note that it is not limited to numerical evaluation as in BASIC or PASCAL
- Available for 8080, 8085 and \(\mathbf{Z 8 0}\) processors using standard CP/M.* CDOS*, IMDOS*, and TRSDOS* operating systems.
- Engineers and scientists find it ideal for deriving or checking lengthy analytical results.
- Students and teachers agree it is superb for math education from exact arithmetic through calculus.
Hobbyists have discovered the underlying muSIMP programming system perfect for other artificial intelligence applications.

Also available from The Soft \({ }^{-}\) Warehouse is a sophisticated LISP language interpreter for the above processors and operating systems.
All software with extensive documentation is immediately available.

Call or write directly for fast response.
* Manu facturers' registered trademarks.

P.O. Box 11174, Honolulu, Hawaii 96828 Telephone (808) 734-5801

Text continued from page 36 : scratch pad for calculations and a small area set aside for storage of continually updated, long-term quantities like mileage and gas consumption."

Ray was not incorrect. The language interpreter and application program could reside entirely in programmable memory as in most older personal computers. Memories composed of 2102A devices can, in fact, be put in a stand-by mode by dropping the power-supply voltage to 2 V . This reduces power consumption by \(80 \%\) while still retaining data.

While being practical under most circumstances, stand-by operation is not a total solution. Depending upon the system configuration, memory power might have to be sequenced on and off, and perhaps be isolated from the 5-V supply of the rest of the system.

The ultimate value of this technique is dependent on efficient power conversion. A 12 -V-to-2-V converter with \(50 \%\) efficiency would be selfdefeating. Battery power, however much reduced, is still required as long as memory data is to be retained.

Hybrid computers exist wherein high-speed, bipolar microprocessors are mated with low-power CMOS memory. Such a system could have various forms of read-only memory as before, but in the form of complementary-metal-oxide devices rather than bipolar memory chips.

Data retention time would probably be an order of magnitude longer, but there are complications associated with mixing logic families. All things considered, if it were not for the high cost of CMOS memory, I would use it.

Ray persisted, saying, "You still have to provide continuous power for some programmable memory if you intend to store those long-term values." Ray was convinced that I must have constant power on something. I hated to disillusion him.

I explained, "Not necessarily. I considered the usual standby-mode programmable memory, both CMOS and bipolar types, and rejected them. Bipolar standby takes too much power; and CMOS memory chips might be destroyed by physical handling. This is experimental, you know."

Ray said, "If you intend to shut off
the computer entirely, then I suppose you could write out data to an audio cassette to be reloaded when you start the car."

I said, "Well no, I want this to be automatic. I should be able to get in the car, turn the key and have the computer start too. The tape player in the car is for Bartok, not for Kansas City data." I paused slightly to allow the air to clear, and then continued. "I have been thinking of using nonvolatile programmable memory."
Ray's jaw dropped. "Nonvolatile? Do you mean core memory?"

While magnetic core memory is indeed nonvolatile, that was not what I meant. "No, not core, but semiconductor, nonvolatile programmable memory!"
Though Ray is quite technically aware, this was a new concept for him and he wasn't sure if I was serious. I have been known to play jokes like this before.
To convince him that I was serious, I began to explain, "Specifically, I am talking about electrically alterable read-only memory, or EAROM. You should consider it as a read-mostly memory."
"Well, that's different!" Ray exclaimed with relief. "You didn't say read mostly!"

\section*{All About the EAROM}

EAROMs are word-alterable readonly memories intended for use as "read-mostly" memories. On the surface this may sound similar to an EPROM (erasable, programmable read-only memory). Once erased under ultraviolet light, an EPROM is indeed a word-alterable read-only memory.
In reality, there is very little similarity between the electrically alterable and erasable, programmable memory. An EPROM can be erased only in block mode and generally takes about 10 minutes to erase. While some can be programmed in as little as 50 seconds, an 11-minute (or more) read/write cycle-time hardly qualifies it in the category of highspeed programmable memory. An EPROM, therefore, is just a conveniently reprogrammable read-only memory.
An EAROM, on the other hand, does not rely upon ultraviolet light exposure for erasure. Clearing memory for reprogramming is done

\title{
Introducing the First CP/M Compatible Desktop Computer with Color Graphics.
}

The new Intecolor 8063 is the first desktop computer to combine the advantages of color alphanumerics and graphics with the versatility of CP/M. For unprecedented flexibility at a price within the reach of most small businesses, the Intecolor 8063 is the answer.
What does CP/M mean to you? An abundant selection of readily available software. There are CP/M programs for most business applications, minimizing the need for specially-prepared software.

Load the CP/M Operating System Disk and you're ready to run any CP/M program (without modifica-
tion), whether it's in BASIC, FORTRAN IV, or any other programming language. Add the superb readability and improved comprehension of color graphics and you've got unparalleled desktop performance.
Standard features of the Intecolor 8063 include a 19 " color display with an 80 character \(x 48\) line format, 32K of user RAM (expandable to 48 K), and a dual 8 " floppy disk drive with 591 K bytes of storage (expandable to 1,1 megabytes).

Plus you get ISC's color version of Microsoft Business BASIC on floppy disk. All for just \(\$ 5995\)." Incredible? Indeed, and only from ISC, the world's largest supplier of color CRT terminals.

If your application calls for it. Microsoft FORTRAN IV is available from ISC for \(\$ 150.00\).*
So if you want to spend more time computing than programming, contact your ISC sales representative today. Or check out the
8063 at selected computer dealers. CP/M in color. Only from ISC.

\section*{Color Communicates Better}

U.S. Domestic prices. Unretouched photo of screen Furniture not included CP/M is a registered trademark of Digital Research Corp.

ISC SALES REPRESENTATIVES: AL: 205/883-8660. AK: (GA) 4C4/449-5961. AZ: 602/994-5400. AR: (TX) 214/840-2169. CA: Alhambra 213/281-2280. Goleta 805/964-8751. Irvine 714/557-4460. Los Angeles 213/476-1241. Mountain Vlew 415/964-9300. San Diego 714/292-8525. CO: 303/759-0809. CT: (GA) 404/449-5961, OE: (GA) 404/449-5961. DC: (VA) 703/569-1502. FL: Orlando 305/425-5505. Ft Lauderdale 305/776-4800. Melbourne 305/723-0766. Tallahassee 904/878-6642. GA: 404/455-1035. HI: 808/524-8633. ID: (UT) 801/973-7969. 1L: (No I 312/564-5440, (SO) (MO) 816/765-3337. N: (IL) 312/564-5440. IA: (MO) 816/765-3337.KS: MO) 816/765-3337. KY: 606/273-3771. LA: 504/626-9701. ME: (GA) 404/449-5961. MD: (VA) 703/569-1502. MA: (GA) 404/449-5961
NV: (AZ) 602/994-5400. NM: 505/292-1212. NY: (GA) 404/449-5961. NC: 919/682-2383. ND: (MN) 612/822-21 19. OH: Dayton 513/429-9040. Cleveland 216/464-8113. Columbus 614/436-2051.

EUROPEAN EXPORT SALES: EUROPE (MA) 617/661-9424. BELGIUM Brussels02-242 36-04. FRANCE. Ruell Malmaison 749-40-37 GREECE A thens 642-1368 ITALY Roma 805-647/872-457 THE NETHERLANOS: POeldijk 01749-7640. SPAIN. Barcelona 2041743 . SWEDEN Vallingby 08-380-370. SWITZERLAND. MuIschellen 057-54655. UNITED KINGDOM: Bournemouth 0202-293-1i5. WEST GERMANY:München089-31881, AUSTRALIA \& NEW ZEALAND: Melbourne 543-2077. Meadowbank 808-1444. Chermside 59-6436. Welling1on 64-4585. Auckland 876-570. GANADA.
Datamex, Ltd (Distributor) Dorval 514/636-9774. Ottawa \(613 / 224-1391\). Toronio 416/787-1208. Vancouver 604/684-8625. CENTRAL \& SOUTH AMERICA \& CARIBBEAN: (GA) 404/394-9603. MEXICO Monterrey 564-876. FAR EAST: (CA) \(213 / 382-107\). HONG KONG. 5-742211, JAPAN Tokyo402-8596. TAIWAN Ta!per 02-7C26284. MIDDLE EAST, IRAN TeTran 891148, ISRAEL-TEI Aviv 266-291. KUWAIT: Kuwait 438 180/1/2, LEBANON: Beirut 221731260110 . SAUDI ARABIA: Jeddah 27790 . Ryadh 25083-39732. UNITED ARAB EMIRATES: Sharjah 24068

For sales and service in other countries contact ISC headquarters in Norcross. GA. U.S A

Photo 1: Shown here are the General Instrument ER3400 and ER1711 electrically alterable read-only-memory (EAROM) parts. The ER3400 has only the EAROM function; the ER1711 combines the functions of programmable memory and EAROM in a single part.

\section*{ASCII encoded keyboards as low as \(\$ 65\) *}

The RCA VP-601 keyboard has a 58 key typewriter format for alphanumeric entry. The VP-611 (\$15 additional*) offers the same typewriter format plus an additional 16 key calculator type keypad.

Both keyboards feature modern flexible membrane key switches with contact life rated at greater than 5 million operations, plus two key rollover circuitry.

A finger positioning overlay combined with light positive activation key pressure gives good operator "feel", and an on-board tone generator gives aural key press feedback.

The unitized keyboard surface is spillproof and dustproof. This plus the high noise immunity of CMOS circuitry makes the VP-601 andVP-611 particularly suited for use in hostile environments.

The keyboards operate from a single 5 volt, DC power supply, and the buffered output is TTL compatible. For more information contact RCA VIP Marketing, New Holland Avenue, Lancaster, PA. Telephone (717) 291-5848.

RB/
"Optional user price. Dealer and OEM prices available.
electrically. With a read time equivalent to a high-speed EPROM, complete or partial erasure in 10 ms , and a write time of a mere 1 ms , an EAROM fills the gap between truly programmable memory and EPROM.
EAROM can be integrated into the memory address space of practically any microcomputer. Like regular read-only memory, it retains data (for up to 10 years) when the power is removed, and is a natural choice for bootstrap program-storage applications. Should the stored program have to be changed, you can erase the chip with a 10 -ms eraser routine and then rewrite the data at a rate of 1 ms per byte. This can all be done without removing the part from the system.
There are many EAROMs available, but like other types of memory devices, their architectures and capacities vary. You would not use 1 K-bit memory chips if you had to fit 64 K bytes of memory on a small printed-circuit board, nor would you choose to use an erasable programmable read-only memory requiring a 3 -voltage power supply if only a \(5-\mathrm{V}\) supply is available.

It is important to observe that EAROMs also have limitations. Unlike regular programmable memory, the electrically alterable read-only memory cannot be erased and reprogrammed without limit. The General Instrument model ER3400 EAROM, for instance, can have each byte read \(2 \times 10^{11}\) times, but written only 100,000 times. If this EAROM were being used as standard programmable memory in a frequently executed loop, 100,000 erase and write cycles would take only 20 minutes.

The ER3400 is better used to store tables and calculated results that must be retained if the power fails. The specific, useful qualities of the ER3400 are high density of data storage, high speed, and long time of data retention.

\section*{A Hybrid Memory Device}

Where nonvolatile memory is required to have more frequent write cycles, the General Instrument ER1711 should be used. This device combines two types of memory on a single chip: a standard 1 K-bit, static programmable memory and a 1 K -bit electrically alterable read-only memory.

\section*{from 3FABROM:?

 compaitle}

A0 thru A9 10-bit word address
D0 thru D3 Data input and output pins

Chip enable. Chip selected when \(\overline{\mathrm{CE}}\) is pulsed to logic 0 .
Mode-control inputs.
Write enable. Input data read when \(\overline{W E}\) is pulsed to logic 0.
Substrate supply. Normally at +5 V .
Ground input.
Power-supply input. Normally at -12 V .
Power-supply input. Normally at -30 V .

Table 1: Functions of pins on the General Instrument ER3400 electrically alterable read-only-memory device.

The programmable memory is mapped as standard program memory. There is no limitation on write cycles. When the memory contents are to be retained, such as at the time of system power-down, a sensing circuit pulses the EAROM write line. With one pulse the entire content of the 1 K programmable memory is written in parallel to the EAROM. The EAROM section has the same write-cycle limitations as the ER3400 part.

Devices such as the ER1711 are particularly suited for storing frequently changing data. As long as power is available to the system, this data resides in the programmable memory. Only during periods when the power is off or during special events is the data transferred to nonvolatile storage.

\section*{Design Choices}

Each of the two EAROM devices has its good and bad features. The designer choosing EAROM parts for

Figure 1: Pinout designations of the twenty-two pins on the General Instrument ER3400 electrically alterable readonly memory (1a), and a block diagram of the major circuit sections within the part (1b).

a memory system will have to choose among the various positive attributes and complications. No single EAROM part necessarily fits all applications. The application must determine the choice.

Failure to understand this fact and lack of adequate knowledge of the variety of parts available are contributing factors to the absence of electrically alterable read-only memories in personal computers. The two devices I have chosen to discuss should cover most applications, but other configurations do exist.

\section*{General Instrument ER3400}

The ER3400 is a 4 K -bit EAROM configured as 1024 by 4 bits. 1 K bytes of nonvolatile storage can be obtained using two chips. Figure 1a shows the pinout designations, and figure 1 lb shows the block diagram of the chip. Photo 1 shows the part in its dual-in-line package. Table 1 describes the functions of the pins found on the ER3400.

The ER3400 requires three powersupply voltages \((+5 \mathrm{~V},-12 \mathrm{~V}\), and -30 V) for complete operation.

Because of the relatively low currents required to write data into an EAROM, the \(-30-\mathrm{V}\) supply is usually derived from either the \(+5-V\) or \(-12-\mathrm{V}\) supply. A previous Circuit Cellar article ("No Power for Your Interfaces? Build a 5 W DC-to-DC Converter," October 1978 BYTE, page 22, or page 1 in my book Ciarcia's Circuit Cellar BYTE Books, 1979) covered both theory and design procedures, should you need to make \(-30-\mathrm{V}\) supply.

Unlike a regular programmable memory which has only read and write functions, the ER3400 has four operational modes: read; write; word erase; and block erase.

\section*{Operational Modes of the ER3400}

Erase: To erase one word, both of the C 0 and C 1 mode-control input lines are set in the logic 1 (high) state, and the desired address location is set. A negative excursion of the voltage on the chip enable (\(\overline{\mathrm{CE}}\)) line loads in the address and control, and initiates the erase operation. To avoid tying up the microprocessor bus, this mode is latched on the positive-going edge of the \(\overline{\mathrm{CE}}\) signal. The erase operation will continue while \(\overline{\mathrm{CE}}\) is high.

When it is desired to erase the entire device, the operation is the same,

Color. VP-590 add-on Color Board allows program control of 8 brilliant colors forgraphics, colorgames. Plus 4 selectable background colors. Includes sockets for 2 auxiliary keypads (VP-580). \$69.

Sound. VP-595 Simple Sound Board provides 256 tone frequencies. Great for supplementing graphics with sound effects or music. Set tone and duration with easy instructions. \$24.

Music. VP-550 Super Sound Boardturns your VIP into a music synthesizer. 2 sound channels. Program control of frequency, time and amplitude envelope (voice) independently in each channel. Program directly from sheet music! Sync provision for controlling multiple VIPs, multitrack recording or other synthesizers. \$49:

Memory. VP-570 RAM Expansion Board adds 4K bytes of memory. Jumper locates RAM in any 4 K block of up to 32 K of memory. On-board memory protect switch. \$95.

EPROM Programmer. VP-565 EPROM Programmer Board comes complete with software to program, copy and verify 5 -volt 2716 EPROMs-comparable to units costing much more than the VP-565 and VIP put together! Programming voltages generated on board. ZIF PROM socket included. \$99.*

EPROM Interface. VP-560EPROM Interface Board locates two 5-volt 2716 EPROMs (4K bytes total) anywhere in 32 K of memory. VIP RAM can be re-allocated. \$34.:

ASCII Keyboard.* Fully encoded, 128-character ASCII encoded alpha-numeric keyboard. 58 light touch keys including 2 user defined keys! Selectable upper and lower case. Handsomely styled. Under \$50:

Auxiliary Keypads. Program your VIP for 2-player interaction games! 16-key keypad VP-580 with cable (\(\$ 15^{*}\)) connects to sockets provided on VP-590 Color Board or VP 585 Keyboard Interface Card (\$10*).

\title{
COSMAC VIP lets you add computer power a board at a time.
}

With these new easy-tobuy options, the versatile RCA COSMAC VIP (CDP18S711) means even more excitement. More challenges in graphics, games and control functions. For everyone, from youngster to serious hobbyist. And the basic VIP computer system starts at just \$249* assembled and ready to operate.

\section*{Simple but powerful—not just a toy.}

Built around an RCA COSMAC microprocessor, the VIP includes 2K of RAM. ROM monitor. Audio tone with a built-in speaker. Plus 8-bit input and 8-bit output port to interface relays, sensors or other peripherals. It's

easy to program and operate. Powerful CHIP-8 interpretive language gets you into programming the first evening. Complete documentation provided.

Take the first step now.
Check your local computer store or electronics parts house. Or contact RCA VIP Marketing, New Holland Avenue, Lancaster, PA 17604. Phone (717) 291-5848.
-Suggested retail price. CDP 185711 does not includevideo monitor or cassette recorder. -"Available 1st Quarter. 1979

Block erase Word erase Read Write

Erase operation performed on all words.
Stored data is erased at addressed location. Addresses data read after leading edge of CE pulse. Input data written at addressed location.

Table 2: Selection of modes of operation of the ER3400 EAROM. The indicated logic levels are presented to the two mode-control inputs C0 and C1 to produce the corresponding mode of operation of the memory device.
except that the CO mode-control input is low while C1 is kept in a high logic state.

A "dummy read" operation is required to end the erase cycle.

Write: The control code for write is for the C0 line to be high while C1 is low. The control word and address are strobed in at the occurrence of the \(\overline{\mathrm{CE}}\) (chip enable) pulse. Data is strobbed in during the write enable (\(\overline{\mathrm{WE}}\)) signal. The timing requirements for the write enable signal are design-
ed so that \(\overline{W E}\) may be generated by combining the chip enable signal and a write signal through a logic gate.

As is the case with the erase operation, the control code and address are latched on the rising (positive-going) edge of \(\overline{\mathrm{CE}}\). Data is latched by the rising edge of \(\overline{W E}\). As in erase, a dummy read is required to end the write cycle.

Read: To read out data, C0 and C1 control lines are both held low and the desired address is selected. The
chip enable signal strobes in the mode and address data, and clocks out the data.

In all modes, when \(\overline{\mathrm{CE}}\) is high, the data input/output lines are in a highimpedance state. The control line logic levels for the several modes are summarized in table 2.

In the write and erase (both word and bulk) modes, the data, addresses, and the state of the control lines are loaded into internal registers within the ER3400 on the rising edge of the \(\overline{\mathrm{CE}}\) pulse, and are later cleared by a dummy read pulse also strobed by \(\overline{\mathrm{CE}}\).

Number Type +5V GND -12V -30V
\begin{tabular}{rrrrrr}
IC1 & HM 7603 & 16 & 8 & & \\
IC2 & ER3400 & 22 & 9 & 2 & 1 \\
IC3 & ER3400 & 22 & 9 & 2 & 1 \\
IC4 & 74121 & 14 & 7 & & \\
IC5 & 7400 & 14 & 7 & &
\end{tabular}

Figure 2: Schematic diagram of a circuit that uses two ER3400s to form a 1024-byte memory. Read, write, and erase functions of the ER3400 are available using this circuit. The programmable read-only memory, IC1-the Harris Semiconductor HM-7603, a 32-word-by-8-bit PROM, serves to decode mode-control inputs received from a parallel output port. The truth table for this PROM is shown in table 3.

\section*{We Need Your Help!}

\section*{An International Company Called} MicroDaSys has designed a dynamite solution for the small businessman seeking a computer. We call it the "millie"TM. It's a system that combines the absolute best business software available with fast, dependable hardware.

The "millie" is the smartest buy a small business can make. It comes with the most powerful accounting, word processing and applications software available. And to take advantage of that power, the "millie" uses the S-100 bus, eight inch disk drives and the universal CP/M \(\ddagger\) operating system. It can be programmed in BASIC, FORTRAN, Pascal and dozens of other languages. Best of all, "millie" prices start at under \(\$ 3000\). The one illustrated includes a reproductionquality printer and full accounting and word processing software for just \(\$ 6995\). "Millie" has been in use for over a year in the US, Europe, South America and Australia. It is a proven design, regularly updated as the state-of-theart advances.

\section*{But an international company can't} knock on doors. Without branch offices in every city of the US (and the world) we have the same problem as dozens of other computer manufacturers. We simply can't contact all of the small businessmen who could benefit from our "millie". That's where you come in.

We seek your help. Sell our "millie" as a complete, integrated system to your neighborhood businesses, universities, writers and other professionals. If you're reading this magazine you probably
have all the expertise required to demonstrate and sell "millies". All that's really required is the motivation to seek out prospective customers and the ability to present "millie's" features to them in a way most understandable to them. Put us in your customer's place.
We offer you a piece of the exciting computer market, the chance to work with the most sophisticated software and hardware available, and best of all, a handsome commission and no minimum purchase requirements (not even one!).
It's easy to sell "millies". You will be supported by an international advertising campaign, a dependable system made by a well known manufacturer, and the best documentation available. All you need is the enterprise to seek out new customers and provide them with the support they need (perhaps earning your own consulting fees) during and after installation. We will even supply you with potential sales leads in your area - Reader Service Questionaires, Direct Mail Inquiries, and Telephone Responses. These are peole who want you to sell them a "millie"! All you need to do is act!

You've got nothing to lose! There are absolutely no strings, no minimum purchases, no special degrees or instruction required, no retail store necessary. All that is required is the sincere desire to earn money selling our computers. Join the fascinating field of computer sales now. The market is ready if you are! Write or call today for your introductory sales package and complete info:

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Operation & AO & A1 & A2 & A3 & A4 & 01 & O 2 & 03 & O4 & O5 & 06 & 07 & 08 \\
\hline Read & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & \(x\) & \(x\) & \(x\) & \(x\) \\
\hline Write & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 1 & 1 & \(x\) & \(x\) & \(x\) & \(x\) \\
\hline Word Erase & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 1 & 0 & \(x\) & \(x\) & \(x\) & \(x\) \\
\hline Block Erase & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & \(x\) & \(x\) & \(X\) & \(x\) \\
\hline & \multicolumn{5}{|l|}{All other locations} & 0 & 0 & 0 & 0 & X & X & X & \(X\) \\
\hline
\end{tabular}

Table 3: Truth table for the mode-decoding, programmable read-only memory (PROM) that appears as IC1 in figure 2. A high logic state is represented by 1; a low logic state is represented by 0 . Where the logic state does not matter, \(\chi\) characters appear in the table. Possible substitutes for the Harris Semiconductor HM-7603 PROM used here include the 74S288, 82S123, and AM27S09.

Observe carefully the requirement for the dummy read operation. Since there is no internal timing or sequencing, the ER3400 relies upon the user to terminate the write and erase functions by switching the EAROM into the read mode after 1 ms following a write and after 10 ms following an erase. There are various software and hardware methods to accomplish this.

For personal computer use, the circuit of figure 2 should be considered.

A parallel output port provides the flag input to the mode-decoding, programmable read-only memory (PROM) IC1. A memory map of the mode-decoding memory is shown in table 3.

With the electrically alterable read-only-memory device attached to the address and data lines, a read operation is accomplished by setting the output bit corresponding to the A0 input line of the PROM to a high logic state. Each of the four address
lines A0 thru A3 is called a flag for purposes of explanation.
Setting the read flag (AO) corresponds to a binary 10000 input code to the PROM (IC1 in figure 2). The O1 and O2 outputs will place low logic levels on both mode-control inputs CO and C 1 . This places the EAROM in the read mode.

Next, the EAROM is addressed through the normal \(\overline{\mathrm{CS}}\) line. This action fires the one-shot (monostable multivibrator, IC4 in figure 2) which clocks the data onto the computer data bus. The ER3400 has a cycle time of \(1.8 \mu \mathrm{~s}\). Depending upon the memory speed of your computer, it may be necessary to add wait states when addressing EAROM.

The sequence is similar for write and erase operations. By setting the write flag (A1), the mode-decoding PROM causes C0 to go high while C1 stays low, placing the EAROM in the write mode. Addressing the appropriate byte and strobing the \(\overline{C S}\) line causes the ER3400 to enter a write

Figure 3: A flowchart of the algorithm for actuating the various operating modes of the ER3400 interface circuit of figure 2. The diagram blocks marked with asterisks refer to standard memory read or write instructions.

\title{
CCS has everything to expand your Apple II*
}

Friendly Frankie's roadside Apple II stand has plenty to whet your appetite for expansion. So, if you're ready to have your Apple II computer interface with the outside world, wheel around to Frankie's stand today.

Expand to your heart's content with our full range of delicious
accessories, including: prom modules, asynchronous and synchronous serial interfaces, arithmetic processors, programmable timers, parallel interfaces, A/D converters, and Apple II compatible boards galore.

Let Frankie connect your Apple II to the rest of the world
faster, and for a lot less bucks.
For all the mouth-watering details, contact our northern California headquarters or your local roadside computer store. If Frankie's out, ask for Dennis or Jerry. They'll be glad to help you.
*Apple II is a registered
trademark of Apple Computers, Inc.

Table 4: Descriptions of pin functions of the General Instrument ER1711 hybrid EAROM/programmable memory part.
\begin{tabular}{|c|c|}
\hline Pin & Description \\
\hline D0 thru D3 & 4-bit data word \\
\hline A0 thru A7 & 8-bit data address \\
\hline \(V_{s s}\) & \(+5 \cdot \mathrm{~V}\) supply voltage \\
\hline \(V_{\text {do }}\) & - \(12 \cdot \mathrm{~V}\) supply voltage \\
\hline \(\mathrm{V}_{\text {cI }}\) & Ground \\
\hline CE & Chip enable: strobed during programmable-memory cycles, held low during EAROM cycles \\
\hline H & Hoid: normally high, low during data-recall cycle \\
\hline W & Write: high during programmable-memory write cycle \\
\hline RS & Restore: normally low, pulsed high during recall cycle \\
\hline ENW & Erase/Write: controls EAROM memory cells. \\
\hline
\end{tabular}
condition. (The byte addressed for writing should have previously been erased through either the word or block erase operations.)

After 1 ms , the read flag (AO) is set and a read sequence is executed to stop the write activity. A flowchart of the mode-selection algorithm is shown in figure 3.

\section*{Operational Modes of the ER1711}

The ER1711 operates quite differently from the ER3400. Configured as 256 by 4 bits, this device combines the properties of both regular pro-
grammable memory and electrically alterable read-only memory on a single chip. Figure 4 shows the pinouts of the ER1711, and table 4 describes the pin functions.
In general, EAROM writing is rather slow. Read access time can be less than 1 ms , but writing and erasing take 1 to 50 ms (depending upon the device). As demonstrated earlier, it takes a little over 1 second to completely write the ER3400.
In applications where the EAROM is "read-mostly" memory and is used to hold infrequently changing data or

\section*{TURN-ON!}

Now have full computer control of up to 256 lights, appliances and even wall switches without special wiring. The SciTronics REMOTE CONTROLLER permits direct control of the inexpensive BSR remote line-carrier switches sold by Sears, Radio Shack and many others.
HOW IT WORKS: Writing 3 control words to the controller board sends one of 6 instructions over the a-c line to the desired switch. The instructions include any remote on, off, all off, any light bright, dim, or all on. Reading the board tells if busy.

\section*{FEATURES:}
* FULL S-100 COMPATIBILTY-all lines fully buffered, board address dip switch selectable to span 65 K .
\(\star\) FULL TRS-80.1 COMPATIBILITY-board housed in attractive woodgrained case with power supply and connector cable allows dir ect connection to TRS-80-l expansion port
\(\star\) COMPATIBLE WTH OTHER SYSTEMS-com bination of on-board select switches and
complete connector wiring information allows ease of use with Apple II, PET, KIM SYM, HEATH H8, plus others.
* SYSTEM SELECT SWITCHES—chose active high or low Inputs, addressed or I/O drive, parallel or serial entry, non S-100 Inputs like VMA, clocking on any transition.
* SIMPLE TO USE-sample software Included for all systems listed, all lC's socketed.

\section*{APPLICATIONS:}
* Make your entire home, business or apartment "computer controlled"
* Save energy by controlling lights and appliances
* Control lights and alarms for security systems

REMOTE CONTROLLER BOARD ENCASED SELF POWERED CONTROLLER FOR TRS-80.I

Send check or money order to:

\section*{SciTronics Inc.}

523 S. Clewell St., P.O. Box 5344
Bethlehem, PA 18015
(215) \(868-7220\)

Please list system with which you plan to use controller. Master Charge and Visa accepted. PA residents add sales tax.

Figure 4: Pinout designations of the General Instrument ER1711 hybrid electrically alterable read-only-memory/programmable-memory device.

programs, slow erase and write times are no problem. However, in instances where an EAROM is used to store data or programs during powerdown conditions, slow write times are objectionable. The distinctive feature of the ER1711 is its ability to store its entire contents of the programmable memory in a single write pulse.

The static programmable-memory section of the ER1711 is addressed like any other system memory. It can hold constantly changing data with no restrictions on the number of read/write cycles. The contents of this memory can be transferred to the EAROM section through one write pulse. In this way, the EAROM can instantly save all data when the power fails. When power is returned, a simple pulse sequence restores the data from the EAROM to the programmable operating memory.

\section*{ER1711 Power Requirements}

The ER1711 uses \(+5-\mathrm{V}\) and \(-12-\mathrm{V}\) power supplies for normal pro-grammable-memory operation. These supplies must be kept constant within a \(5 \%\) tolerance. Other voltages used are as follows for EAROM operations:
\[
V_{w}(-17 \mathrm{~V} \text { to }-21 \mathrm{~V})
\]
is used to transfer data from programmable memory to EAROM;
\[
\mathrm{V}_{R}(-8 \mathrm{~V} \text { to }-15 \mathrm{~V})
\]
is used to transfer data from EAROM to programmable memory; and
\[
V_{E}(+25 \mathrm{~V} \text { to }+30 \mathrm{~V})
\]

\title{
Low Cost Add-On Storage for Your TRS-80*. In the Size You Want.
}

When you're ready for add-on disk storage, we're ready for you. Ready with six mini-disk storage systems - 102K bytes to 591 K bytes of additional on-line storage for your TRS-80*.
- Choose either 40 -track TFD-100 \({ }^{\text {TM }}\) drives or 77-track TFD-200 \({ }^{\text {TM }}\) drives.
- One-, two- and three-drive systems immediately available.
- Systems include Percom PATCH PAK \#1 \({ }^{\text {TM }}\), on disk, at no extra charge. PATCH PAK \# \(1^{\text {ru }}\) de-glitches and upgrades TRSDOS* for 40- and 77 -track operation.
-TFD-100 \({ }^{\text {TM }}\) drives accommodate 'flippy disks." Store 205K bytes per mini-disk.
- Low prices. A single-drive TFD-100 \({ }^{\text {M }}\) costs just \(\$ 399\). Price includes PATCH PAK \# \(1^{\text {im }}\) disk.
- Enclosures are finished in systemcompatible "Tandy-silver" enamel.

Whether you need a single, 40track TFD-100 \({ }^{\text {TM }}\) add-on or a three-drive add-on with 77 -track TFD-200 \({ }^{\text {TM }} \mathrm{s}\), you get more data storage for less money from Percom.

Our TFD-100 \({ }^{\text {TM }}\) drive, for example, lets you store 102.4 K bytes of data on one side of a disk - compared to 80 K bytes on a TRS-80* mini-disk drive and 102.4 K bytes on the other side, too. Something you can't do with a TRS-80* drive. That's almost 205K bytes per mini-disk.

And the TFD-200 \({ }^{\text {TM }}\) drives provide 197K bytes of on-line storage per drive
- 197K, 394K and 591K bytes for one-, two and three-drive systems.

PATCH PAK \#1 \({ }^{\text {TM }}\), our upgrade program for your TRSDOS*, not only extends TRSDOS* to accommodate 40and 77 -track drives, it enhances TRSDOS* in other ways as well. PATCH PAK \(\# 1^{\text {TM }}\) is supplied with each drive system at no additional charge.

The reason you get more for less from Percom is simple. Peripherals are not a sideline at Percom. Selling disk systems and other peripherals is our main business - the reason you get more engineering, more reliability and more back up support for less money.

\footnotetext{
In the Product Development Queue ... a printer interface for using your TRS-80* with any serial printer, and . . . the Elecfric Crayon \({ }^{\text {TM }}\) to map your computer memory onto your color TV screen - lor games, animated shows, business displays, graphs, etc. Coming PDO!
}

To order add-on mini-disk storage for your TRS-80*, or request additional literature, call Percom's toll-free number: 1-800-527-1592. For detailed Technical information call (214) 272-3421.

Orders may be paid by check or money order, or charged to Visa or Master Charge credit accounts. Texas residents must add \(5 \%\) sales tax.
Percom 'peripherals for personal computing'
is used for erasing the EAROM storage cells.

Since these voltages are required only as single pulses during either power-up or power-down cycles, they do not require separate power supplies. All voltages can be generated by charge-pumping circuits operated from \(+5-\mathrm{V}\) and \(-12-\mathrm{V}\) supplies.

Figure 5 is the schematic diagram of a circuit which accomplishes the savedata and recall-data functions and maintains the proper timing and voltages required for the various operations.

\section*{Data Restoration}

The static-programmable-memory portion of the ER1711 has an access time of 900 ns . Upon initial application of power to the system, if this programmable memory is to be loaded from EAROM, the computer signals this action by pulsing the data-recall input line. This triggers a \(300 \mu \mathrm{~s}\) ramped voltage to the erase/write (E/W) line of the ER1711. After \(300 \mu \mathrm{~s}\), the hold line (H) is
brought high for 150 ms , and the \(\mathrm{E} / \mathrm{W}\) line is set at a potential of 27 V . At the conclusion of this sequence, the ER1711's programmable memory will contain the former contents of the EAROM, and the EAROM will be erased.

Saving the data stored in the programmable memory is started by raising the system-save line to a logic 1. The resultant application of a \(-20-\mathrm{V}\) pulse of a 1-to-10-ms duration to the ER1711 causes the data to be stored in the electrically alterable read-only memory. Data retention time varies according to the pulse duration, from 3 days for a \(1-\mathrm{ms}\) pulse to 30 days for a 10 -ms pulse.

\section*{In Conclusion}

I do not expect that you will immediately convert your computer memory to EAROM, but at least you now know what EAROM is. In my own case, I have chosen to use ER1711 memory devices for my automotive computer. I can only speculate on the final configuration, but at least I can count on not having

Figure 5: A circuit that allows data stored in the programmable memory of the ER1711 to be saved into and recalled from the electrically alterable read-onlymemory section. Charge-pumping circuits are used to generate the relatively high voltages needed for the erase, store, and recall cycles of the ER1711. Power-down and power-up states are initiated by the System Save and Data Recall signals.
to be concerned with standby power consumption and battery backup.

For further information on EAROMs or determination of price and availability contact:

General Instrument Corp
600 W John St
Hicksville NY 11802
Attn: John Wunner
EAROM specifications and diagrams reprinted courtesy of General Instrument Corporation.

Next Month: you will learn how to build a wireless interface that connects the Sears (alias BSR) home control system to your computer.

\section*{Operation of the ER1711}

In normal operation the ER1711 operates as a programmable memory. Before powering down, the data can be stored in the electrically alterable, nonvolatile read-only-memory (\(E A R O M\)) cells by a single, negative write pulse. When power is restored, the previously saved data can be recalled by a power-up and data-recall cycle which transfers all this saved data to the programmable memory. It is suggested that an erase cycle be performed soon after the datarecall cycle, so that the memory will be prepared in case of another power-down cycle. The EAROM cycles operate as explained here.

\section*{Erase Cycle:}
1. The H line should be high and the RS and CE lines low.
2. Positively pulse the \(E / W\) line to +25 V for 100 to 200 ms .

\section*{Stored-Data Cycle:}
1. The \(H\) line should be held high
and the RS and CE lines low.
2. Pulse the \(E / W\) line negative to -22 V for 1 to 10 ms to store nonvolatile data.
3. The nonvolatile EAROM memory cells must have been previously erased for valid data retention.

\section*{Power-Up and Recall Cycle:}
1. Turn on power with \(C E\) and \(R S\) held to ground and the \(H\) and E/W lines based to \(V_{s s}\).
2. When power is on, lower \(H\) and pulse \(R S\) to precondition the EAROM cells.
3. Lower \(R S\) and ramp down the \(E / W\) line at a rate of \(-0.1 \quad \mathrm{~V} / \mu \mathrm{s}\).
This can be done with a series resistor of 470 K ohms in the E/W line.
4. After the \(E / W\) recovery time, bring both the \(E / W\) and \(H\) lines to \(+V_{s s}\).
5. If in the course of erasing data, the power shuts down again, the erase cycle can be terminated and a write cycle im-
mediately started without loss of data.

In normal programmable-memory operation, only the \(+5-V\) and \(-12-V\) power supplies are required. The erase-store and recall cycles require momentary high-voltage pulses to tunnel charges through the negative-metallic-oxide-semiconductor (NMOS) memory transistors. These higher voltages can be created from the \(+5-V\) and \(-12-V\) power supplies using the charge-pumping circuits shown in figure 5. This circuit will generate the sequence of \(R S, H\) and \(E / W\) pulses needed for power-down and up sequencing. The power-down and up cycles are initiated by System Save and Data Recall signals respectively. Figure 5 is a suggested circuit using standard transistor-transistor logic (TTL) parts; a similar circuit can be designed with complementary-metallic-oxide-semiconductor (CMOS) logic instead.

\title{
Faster Audio Processing with a Microprocessor
}

\author{
William J Dally \\ Apt U-3 Dutch Village \\ Blacksburg VA 24060
}

\section*{Introduction}

Audio processing involves transforming an audio signal by filtering, delay, and modulation to make the sounds more musically pleasing or to improve communication systems. Audio processing by both analog and digital methods has been performed for many years; however, these methods are expensive to implement if complete manipulation of the ouput signal is to be achieved.

The advent of low-cost microcomputers in recent years permits a new approach to audio processor design which has the advantage of much greater flexibility at competitive costs. T C O'Haver employed a microcomputer for audio processing using a minimum of hardware in the design, while relying upon software for signal manipulation (see "Audio Processing with a Microcomputer," June 1978 BYTE, pages 166 thru 173). With this heavy emphasis on software, the speed of the processor was not sufficient to process high fidelity audio signals (20 Hz to 20 kHz). This

\footnotetext{
About the Author
William] Dally is an engineering consultant for a Silver Spring, Maryland electronics development firm and is an electrical engineering student at Virginia Polytechnic Institute and State University. His past projects include a programmable read-only memory programmer, a computerized traffic control system, and an intelligent tape drive; current projects include a general purpose Z80 system and a disk-based editor plus assembler which uses only \(3 K\) bytes of memory.
}
article presents a different approach wherein modest amounts of hardware are incorporated into the design of the microcomputer system, reducing the demands on the processor. Flexibility in manipulating the audio signal is not sacrificed, and the cost of the additional hardware is not excessive.

\section*{Timing Analysis of Software Approach}

In the microcomputer audio processing system developed by O'Haver, only an analog-to-digital (A/D) converter, a microprocessor, and a digital-to-analog (\(\mathrm{D} / \mathrm{A}\)) converter were used. The audio processing functions of phlanging, reverberation, and linear transformation were performed by the software of the system. In a timing analysis of the design, an 8080 processor operating at a system clock rate of 2 MHz was considered.

The processing routines used in this system are shown in listing 1, translated to 8080 assembly language. Also shown are the number of processor cycles and the execution times for these routines (\(28 \mu \mathrm{~s}, 79 \mu \mathrm{~s}\), and \(85 \mu\) s respectively). Most applications will use all three of these routines, as well as system control and overhead routines. Thus, the worst-case cycle time (the time required to process one unit of data) becomes:
\[
\mathrm{t}_{c \nu}=28+79+85+\mathrm{t}_{o v}>200 \mu \mathrm{~s}
\]
where \(\mathbf{t}_{c y}=\) worst-case cycle time and \(t_{o v}=\) overhead time.

To prevent distortion, the sampling frequency \(f_{n}\) must be twice that of the maximum signal frequency \(f_{s}\) which is:
\[
\mathrm{f}_{s}<\mathrm{f}_{n} / 2=1 /\left(2 \mathrm{t}_{c y}\right)<2.5 \mathrm{kHz} .
\]

It is evident from this calculation that \(\mathrm{f}_{\mathrm{s}}<2.5 \mathrm{kHz}\) is too low for highfidelity audio. Furthermore, many audio applications require more functions than linear transformation, phlanging, and reverberation. Adding more functions to a softwareoriented system decreases the maximum signal frequency still further. It is apparent that a system which depends too heavily on software is too slow for comprehensive audio processing. A better approach is to use a design combining software and hardware that reduces the time demands on the processor, while maintaining flexibility.

\section*{Hardware and Software Approach}

There are several methods by which hardware can be added to the system to reduce the processing load. Bit-slice processors with cycle times which are about eight times faster than an 8080 could be used for the processor. However, these bit-slice processors and the fast memories needed to support them are prohibitively expensive. Also, this system would not be capable of handling any additional functions.

A better solution is to add peripheral hardware to take some of the processing load off of the pro-

\title{
MOUNLA DATA AT A STIILS PLGE BEGIUSE YOURE FLOPPY BOUND?
}

Let Corvus Systems put you back in the race!
- For TRS-80t, Apple \(\ddagger\) (including Apple Pascal), S-100 Bus-and now LSI-11.
- Fully compatible hardware/software.
- 10-million byte disk: IMI-7710.
- Proven Winchester technology.
- Z-80 based Corvus disk controller.
- Comprehensive disk diagnostics.
- Up to 4 disks per system.
- System \$5350, add-on disk \(\$ 2990\).

Corvus offers a complete systems solution to the mass storage problem of micro computers. In a package smaller than a brietcase, we provide an intelligent controller, disk, and personality module. Call or write today for additional information. Get up to speed with Corvus.

Nowi Corvus speaks Applem Pascal \({ }^{\text {ty! }}\)
\(\dagger\) TRS-80 is a registered trademark of RadioShack, a TandyCo. \(\ddagger\) Apple is a registered trademark of APPLE Computers, Inc.

900 S. Winchester Boulevard
San Jose, California 95128
408/246-0461

Listing 1: Audio processing routines to perform linear transformation, phlanging, and reverberation, using a software-oriented approach on an 8080 system with a 2 MHz system clock frequency. Execution times of \(28 \mu s\) (linear transformation), \(79 \mu s\) (phlanging) and \(85 \mu\) (reverberation) are too slow for high-fidelity audio applications.
cessor. This distributed hardware approach is less expensive than a fast processor, and allows more flexible software since timing is not critical. The remainder of this article will discuss this approach.

\section*{System Definition}

To design an audio processing
microcomputer system, it is necessary to define the system's processing functions. These functions fall into three categories: linear transformations, time-delay functions, and gaincontrol functions. Functions such as distortion and clipping, where the output depends only on the input, are linear transformation. Time-delay
functions such as phlanging, phase shifting, and reverberation, involve delaying the incoming signal and mixing signals which are delayed for different amounts of time. Gain-control functions involve varying the gain of the system to control amplitude, and include sustain, vibrato, and quantization noise reduction.

\section*{The Honor Graduate}

There's been a lot of talk lately about intelligent terminals with small systems capability. And, it's always the same. The systems which make the grade in performance usually flunk the test in price. At least that was the case until the SuperBrain graduated with the highest PPR (Price/Performance Ratio) in the history of the industry.

For less than \(\$ 3,000^{*}\), SuperBrain users get exceptional performance for just a fraction of what they'd expect to pay. Standard features include: two dual-density mini-floppies with 320 K bytes of disk storage, up to 64 K of RAM to handle even the most sophisticated programs, a CP/M Disk Operating System with a high-powered text editor, as*Quantity one. Dealer inquiries invited.
sembler and debugger. And, with SuperBrain's S-100 bus adapter, you can even add a 10 megabyte disk!
More than an intelligent terminal, the SuperBrain outperforms many other systems costing three to five times as much. Endowed with a hefty amount of available software (BASIC, FORTRAN, COBOL), the SuperBrain is ready to take on your toughest assignment. You name it! General Ledger, Accounts Receivable, Payroll, Inventory or Word Processing . . . the SuperBrain handles all of them with ease.

Your operators will praise the SuperBrain's good looks. A full ASCII keyboard with a numeric keypad and function keys. A non-glare, dynamically focused, twelve inch screen. All in an attractive desktop unit weighing less than a standard
office typewriter. Sophisticated users will acclaim SuperBrain's twin Z-80 processors which transfer data to the screen at 38 kilobaud! Interfacing a printer or modem is no problem using SuperBrain's RS232C communications port. But best of all, you won't need a PhD in computer repair to maintain the SuperBrain. Its single board design makes servicing a snap!

So don't be fooled by all the freshman students in the small systems business. Insist on this year's honor graduate . . . the SuperBrain.

2300 Broad River Road, Columbia, SC 29210 (803) 798-9100 TWX: 810-666-2115

Figure 1: A simplified diagram of a hardware implementation of a linear transformation or transfer function. It requires a software routine to set up a transfer function in a look-up table stored in memory.

\section*{Linear Transformations}

A simplified diagram of a hardware implementation of a linear transformation is shown in figure 1. In this system, the audio input is filtered to eliminate high-frequency noise, and converted to digital form. This digital signal is then used as the address for a look-up table stored in memory. An address multiplexer allows the processor access to the memory to set up
or change the table. The output of this table is converted to analog form and is filtered to limit it to audio frequencies. Thus, the ouput is an audio signal, the voltage of which forms a one-to-one correspondence with the input voltage.

The only software required to support this hardware is a routine to set up a transfer function in the look-up table. This routine is executed only

\title{
NOW, FROM MOUNTAIN HARDWARE. THIF: 100,000 DAY ClOCK.
}

\section*{Put your S-100 Computer on the clock.}

A real time clock could double the utility of your computer. Time events in \(100 \mu \mathrm{~S}\) increments for up to 100,000 days (over 273 years). Program events for the same period with real time interrupts that permit preprogrammed activities to take place...without derailing on-going programs. Maintain a log of computer usage. Call up lists or appointments. Time and date printouts. Time events. An on-board battery keeps the clock running in the event of power outage.
Mountain Hardware also offers a complete line of peripheral products for many fine computers.

Available at your dealer's. Now. Mountain Hardware, Inc.

300 Harvey West Blvd.
Santa Cruz, CA 95060 (408) 429-8600
on power-up or when the transfer function is changed. Effects such as "fuzz," and harmonic distortion can be implemented in this manner, and users can define their own transfer function. A linear transfer function can be used to bypass this processing element if desired.

Compared to a software intensive approach, the only additional hardware required to implement a linear transformation is the address multiplexer. The converters and memory for a look-up table are required even with a software-oriented approach. However, the processor has much more free processing time with a hardware and software approach since data transfer takes place without processor intervention.

\section*{Time-Delay Functions}

Phlanging is a time-delay function which involves delaying the input signal from 0 to 5 ms and mixing it with the current input signal to produce the output signal. The result is that of a comb filter, attenuating the frequency which has a period twice as long as the time delay and all of its odd harmonics. The time delay is varied with time over a certain range to give a sweeping effect.

Because a musician does not always want the same phlanging effect, it is necessary to give the processor control over the phlanging parameters, which include width (the difference between the longest and shortest time delay), range (the average delay), rate (the rate at which the delay changes), and depth (the amplitude of the delayed signal).

The hardware to perform the phlanging function is shown as a

\section*{A FULL NETWORK DATA MANAGEMENT SYSTEM FOR MICRO COMPUTERS the Ultimate Software Tool: \\ Mitro Data Base Susitems, inc.}

MDBS IS A VERSATILE DATA BASE MANAGEMENT SYSTEM
- PROVIDES FLEXIBILITY OF A FULL NETWORK DATA BASE SYSTEM
- EFFECTIVE REPRESENTATION OF COMPLEX DATA STRUCTURES
- RECORDS CAN BE ORDERED ON VARIOUS SORT KEYS
- COMMANDS TO ADD, DELETE, UPDATE, SEARCH AND TRAVERSE THE DATA BASE
- SORTED, FIFO, LIFO, NEXT AND PRIOR SET ORDERING PROVIDED
- PROVIDES DATA PROTECTION
- STRAIGHTFORWARD USE OF ISAM-LIKE STRUCTURES
- COMPARABLE TO DATA BASE SYSTEMS PREVIOUSLY

DIFFERENT RECORD TYPES CAN PARTICIPATE IN A
SINGLE SET
- MULTIPLE LEVELS OF READ/WRITE PROTECTION

\section*{FEATURES}
- WRITTEN IN Z.80 CODE FOR MAXIMAL EXECUTION EFFICIENCY AND MINIMAL MEMORY USAGE. 18080 VERSION EXTRA).
- ROUTINES ARE CALLABLE FROM BASIC IOR OTHER HOST LANGUAGES) TO FACILITATE FAST AND EASY APPLICATION PROGRAMMING.
- ROUTINESCAN BE ORGED TO SATISFY USER REQUIRE. MENTS.

\section*{- MDBS INTRODUCTORY OFFER \(\$ 750.00\)}

\section*{- USER S MANUAL (alone) \(\$ 35.00\)}
- Distributors and OEMS Contact MDBS for Special Rates
- Application Programming Contracts will be Considered.

Indiana Residents Include 4\%:

CP/M is a registered tradernark of Digital Research Corp. TRS-80 is a registered trademark of Radio Shack/Tandy Corp.

Figure 2: A diagram of hardware to perform the phlanging function. Phlanging is an audio effect originally produced by playing duplicate tape or disk recordings in almost exact synchronization. The name is derived from the practice of manipulating the phlanges of tape reels as they spin to change the degree of synchronization.

\section*{YOU MAY ALREADY OWN YOUR NEXT 1200 BAUD DECWRITER \({ }^{\wedge}\)}

UPGRADE YOUR LA36 TO STATE-OF-THE-ART PERFORMANCE WITH THE DS 120 TERMINAL CONTROLLER

FASTER-The DS120 prints atupio 665 cps and mamtans true 1200 baud throughout. This translales into lower cosis in computer time as well as lime savings for you. A to00 character internal pnni bulter vitually ewnates the need for fill characters.
SMARTER-Our microprocessor control "inteingently" optimizes carrage movement by pinting bidrectionally and automatically executing high speed labs over any blank spaces in the text.
MORE VERSATILE-We ofter more standardleatures than any 1200 baud teleprinter currently avalable. A complete list of forms conirol and formatting leatures are programmable from the keyboard or via the data stream. The DS 120 is equipped with both an EIA RS232-C interface and a 20 mA Current Loop intertace The unt communcates using the 128 character ASCIls setat baud rates from 110 to 4800 . Full duplex. hall-duplex and echo-plex modes may be selected from the keyboard. The controfler supports haffduptex transmission using bolh coded-character turn-around and reverse channel protocol.
EASY TO INSTALL, EASY TO USE-The DS120 replaces your LA36 logic cart in a matter of minutes and is fully compatible with the existing electronics. A comprehensive User's Manual provides detailed mstructions for installamon and operation.
RELIABLE-Our performance and reliability have been field proven in over 2500 installations.
INEXPENSIVE - BUT NOT CHEAP-Although the OS 120 is just about the towest cost way to pont at 1200 baud. we don't cut corners on quality. The OS120 is bumli lot years of service using pretested. hugh rethabilhty components from leading manulacturers. Each unit undergoes a 48 hour lest cycle beforeshtpment and carres a 90 day warranty on materials and workm
AVAILABLE - We can deliver ... typically within 30 days ather recewing your order. Our stocking distributors are con veniently located in major cities throughout the US. lor even better delvery

DATASOUTH COMPUTER CORPORATION

simplified diagram in figure 2. The input signal is filtered, converted to digital form, and stored in memory for a period of time controlled by the processor. After being delayed by storage in memory, the data is converted to analog form (with the gain controlled by the processor), then mixed with the current incoming signal, and filtered. The mixing of a delayed signal with a signal which has not been delayed produces the phlanging effect.

The delay in memory is accomplished by having a counter cycle through a portion of the memory, reading the delayed data and writing new data at each location. Thus, the delay is equal to the cycle length which is controlled by the processor. The processor stores the cycle length in an 8 -bit latch. The contents of this latch are compared to the output of the counter; when they are equal, the counter is reset to zero. This action causes the memory to cycle from location zero to the location corresponding to the contents of the latch. Thus, the processor can add sweep to the phlanging effect, and control the width, range, and speed of the sweep by varying the contents

\title{
POWER-ONE D.C. POWER SUPPLIES
}

\section*{Now available for small systems applications}

Power-One, the leader in quality open-frame power supplies, now offers a complete line of single, dual, and triple output models for small computer systems. Also available are special purpose models for Floppy Disk and Microcomputer applications.
Below are just a few popular examples of the over 90 "off the shelf"' models now available from stock.
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
SINGLE OUTPUT \& LOGIC POWER SUPPLIES \\
- 56 "off the shelf" models \\
- 2 V to 250V, 0.1A to 40A \\
- \(\pm .05 \%\) regulation \\
- 115/230 VAC input
\end{tabular} & \[
5 \mathrm{~V} \text { © } 3 \mathrm{~A}, \mathrm{w} / \mathrm{OVP}
\] & \begin{tabular}{l}
5V (a) 12A, w/OVP \\
HD5-12/OVP \\
\(\$ 79.95\) single qty.
\end{tabular} & \begin{tabular}{l}
SK5-40/OVP \\
Switching Model \\
\(\$ 250.00\) single qty.
\end{tabular} \\
\hline \begin{tabular}{l}
FLOPPY-DISK SERIES \\
- 8 "off the shelf" models \\
- Powers most popular drives \\
- Single/dual drive applications \\
- 2-year warranty
\end{tabular} & \begin{tabular}{l}
5V @ 0.7A, w/OVP 12V © 1.1A/1.7A PK \\
CP340 \\
For one 5.25' Media Drive \(\$ 44.95\) single qty.
\end{tabular} & \begin{tabular}{l}
5V @ 1A, w/OVP \\
-5V@0.5A,w/OVP \\
24V@1.5A/1.7A PK \\
CP205 \\
For one 8.0" Media Drive \(\$ 69.95\) single qty.
\end{tabular} & \begin{tabular}{l}
CP206 \\
For two 8.0'' Media Drives \(\$ 91.95\) single qty.
\end{tabular} \\
\hline \begin{tabular}{l}
DUAL OUTPUT MODELS \\
- 15 "off the shelf" models \\
- \(\pm 5 \mathrm{~V}\) to \(\pm 24 \mathrm{~V}, 0.25 \mathrm{~A}\) to 6A \\
- I.C. regulated \\
- Full rated to \(+50^{\circ} \mathrm{C}\)
\end{tabular} & \begin{tabular}{l}
12V/15V@ 0.25A \\
HAD12-.25/HAD15-. 25 \(\$ 32.95\) single qty.
\end{tabular} & \begin{tabular}{l}
HAA512 \\
\(\$ 44.95\) single qty.
\end{tabular} & \begin{tabular}{l}
HBB15-1.5 \\
\(\$ 49.95\) single qty.
\end{tabular} \\
\hline \begin{tabular}{l}
TRIPLE OUTPUT MODELS \\
- 10 "off the shelf" models \\
- 5 V plus \(\pm 9 \mathrm{~V}\) to \(\pm 15 \mathrm{~V}\) outputs \\
- Models from 16W to 150W \\
- Indusiry standard size
\end{tabular} & HTAA-16W \(\$ 49.95\) single qty. & \[
\begin{aligned}
& 5 V @ 3 A, w / O V P \\
& \pm 12 V @ 1 A \text { or } \\
& \pm 15 V @ 0.8 A
\end{aligned}
\] & \[
\begin{aligned}
& 5 V @ 6 A, w / 0 V P \\
& \pm 12 V @ 1.7 A \text { or } \\
& \pm 15 \mathrm{~V} @ 1.5 A \\
& 2 \%
\end{aligned}
\] \\
\hline
\end{tabular}

NEW 79' CATALOG!
Get Your FREE Copy Now!
Phone us direct or circle the reader service number below.

Power One Drive • Camarillo, CA 93010 • (805) 484-2806 • TWX 910-336-1297
of the 8 -bit latch. The amplitude of the output is controlled by varying the reference voltage for the digital-to-analog converter.
A flowchart of a routine which will control the phlanging effect is shown in figure 3, and the 8080 code is shown in listing 2. This routine should be supported by a control panel routine which updates the values of amplitude, width, range, and speed from external switches.

The routine initially sets the time delay equal to range plus \(1 / 2\) width. This delay is then decremented at a rate proportional to speed until the delay becomes equal to the lower limit of range minus \(1 / 2\) width. When this value is reached, the process is repeated with the delay being set to its initial value.
For this routine to operate efficiently, the wait period of (\(1 /\) speed) is regulated by a real-time clock interrupt. No processing time is wasted in software timing loops using this method. Allowing a minimum waittime of 1 ms , this software will execute during \(43 \mu\) s (average) out of every 1 ms interval. Comparing this value to the impractical execution times for a software-oriented approach, it is apparent that the addition of a little hardware takes a great load off the system software.
Reverberation (or reverb), another time-delay function, has the effect of making music sound like it is being played in a large auditorium. This effect is produced by creating artificial echoes, using time delay, that simulate echoes off the walls of a concert hall. Multiple echoes, from
repeated reflections off walls, are simulated by mixing the ouput (delayed signal) with the input (not delayed) so that the output contains information that is delayed many times. To simulate different room acoustics, it is useful for the processor to have control over the length of the delay and the amplitude of the delayed signal.
A simplified diagram of a hardware implementation of the reverberation effect is shown in figure 4. The audio input is filtered and mixed with the delayed signal, and the output of this mixer is then converted to digital form and delayed in memory using a scheme analogous to that used in phlanging, with the processor controlling the length of the delay to simulate larger or smaller rooms. The output of the delay memory is converted back to analog form, with the amplitude controlled by the processor to determine the rate at which the echoes decay. This delayed analog signal is mixed with the input, producing the reverberation effect. The output is the current input signal mixed with echoes of an integer number of time periods with decaying amplitude.
At first the circuit described by figure 4 may appear to represent more than a little additional hardware. However, the 4 K bytes of delay memory are required even with an all software approach. Furthermore, the hardware reverberation circuit provides automatic refresh for dynamic memories, as the low-order six address bits are always cycled through

Figure 3: Flowchart of software routine to control phlanging. The code for this routine is found in listing 2. It initializes the delay time to (range + width/2) and decrements the time at a rate proportional to speed until the delay time is equal to (range - width/2). When this value is reached, the delay time is reinitialized and the process is repeated. The average execution time is \(43 \mu \mathrm{~s}\) for each cycle.

(CLOCK CYCLES)
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{5}{*}{PHLN1:} & LDA & AMPL & ;INITIALIZE - SET AMPLITUDE & 13 \\
\hline & STA & DAC3 & ;ANALOG CHANNEL 3 & 13 \\
\hline & LDA & STDEL & ;(RANGE + WIDTH/2) & 13 \\
\hline & STA & DELAY & ;DELAY - RANGE + WIDTH/2 & 13 \\
\hline & RET & & ; & 10 \\
\hline \multirow[t]{9}{*}{'PHLNG:} & LDA & DELAY & ;GET DELAY & 13 \\
\hline & STA & PHLTC & ;STORE AT PHLATCH & 13 \\
\hline & DCR & A & :DECREMENT DELAY & 5 \\
\hline & STA & DELAY & ;SAVE & 13 \\
\hline & MOV & B, A & & 5 \\
\hline & LDA & ENDEL & ;(RANGE - WIDTH/2) & 13 \\
\hline & CMP & B & ;DELAY = RANGE - WIDTH/2? & 4 \\
\hline & J2 & PHLN1 & ;YES, REINITIALIZE & 10 \\
\hline & RET & & ;NO, RETURN FOR 1 MS WAIT & +10 \\
\hline \multicolumn{4}{|l|}{;EXECUTION TIME 43 MICROSECONDS AVERAGE} & 86 \\
\hline
\end{tabular}

Listing 2: Assembler coding of a routine to control phlanging for the 8080 microprocessor. A flowchart of this is shown in figure 3.

\title{
You, the small systems user can enjoy the advantages of HI-performance lou cost computer graphics
}

\section*{PL(1) \(T^{\text {" }}\) Digital Plotters}

The perfect small system output device Displays data in easy to read graphical format
Both serial and parallel inputs built-in.
- Used standard \(81 / 2^{\prime \prime} \times 11^{\prime \prime}\) paper (DIN A4)
- Plotting speed up to 2.4 ips (60 mm per sec)
- Resolution of both 0.01 and 0.005 in \(\{0.1 \mathrm{~mm}\) and 0.2 mm)
- Baud rate and step size easily changed
- Completely assembled and ready to use
- Priced at \(\$ 1085^{\circ}\)

HIPAD \({ }^{\text {" }}\) Digitizers

The perfect small system input device Resolution and repeatability of 0.005 in . \((0.1 \mathrm{~mm}\))

Origin is completely relocatable RS232C and 8 bit parallel interface selectable at the connector Accuracies of \(\pm 0.015 \mathrm{in}\). (0.4 mm)
Optional LC display shows actual values being inputted
- Digitizing surface \(11^{\prime \prime} \times 11^{\prime \prime}\) (28
\(m m \times 28 \mathrm{~mm}\))
- Priced at \(\$ 795^{\circ}\)

For complete information contact Houston Instrument, One Houston Square, Austin, Texas 78753. (512)837-2820. For rush literature requests persons outside Texas call toll free 1-800-531-5205. In Europe contact Houston Instrument, Aochesterlaan 6, 8240 Gistel Belgium. Phone 059/27 7445.
pivision of andechslome
"the graphics - recorder company"

HIPLOT - CIrcle Inquiry *165 HIPAD - Circle Inquiry \#167 TM Trademark of Houston instrument *U.S. Domestic Price Onty

Figure 4: Simplified diagram of a hardware implementation of the reverberation effect. This circuit produces artificial echoes using a time delay.
 shown in listing 3) consists of a routine to update the length of the delay and the amplitude of the delayed signal every time the control panel routine is accessed. Again, by dedicating 4 K bytes of memory to
reverberation and adding a little additional hardware, great software savings are realized.

\section*{Gain-Control Functions}

The third class of audio processing functions to be discussed is gaincontrol functions such as compression and vibrato. Compression involves decreasing the system's gain as the amplitude of the input signal increases, and increasing the gain as the amplitude of the input decays, to keep the output at a near constant
\begin{tabular}{ll}
LDA & RAMP \\
STA & DAC2 \\
LDA & RDEL \\
STA & RLTC
\end{tabular}

RET
;EXECUTION TIME 31 MICROSECONDS
;SET UP AMPLITUDE 13
;ANALOG CHANNEL 2 13
;SET UP DELAY TIME 13
;IN REVERB LATCH 13
;EXIT +10

Listing 3: 8080 code of the routine to control the reverberation function. It simply sets up the desired amplitude and delay times. The flowchart is shown in figure 5.

\section*{"onComputing \(\begin{array}{r}\text { really makes }\end{array}\) personal computers easy to understand." \\ \\ \\ \title{
"onComputi really makes
}} \\ \\ \title{
"onComputi really makes
}}
\begin{tabular}{|c|}
\hline \[
\begin{aligned}
& \text { Men } \cap \square \square \square \\
& \text { SENSATION! }
\end{aligned}
\] \\
\hline \begin{tabular}{l}
You have been reading about our astounding \\
Pascal MICROENGINE \({ }^{\text {tu }}\) CPU that executes \\
Pascal 13x faster than an LSI-11 and \(3 x\) \\
faster than a PDP11-34. Your orders show \\
it! That is our Model X-90. \\
Now meet another sensation in our \(X\)-pert \\
Systems \({ }^{\text {4 }}\) configuration. CRT Model X920. \\
-Trademark Western Digtal Corporator
\end{tabular} \\
\hline \begin{tabular}{l}
DISPLAY/EDIT TERMINAL \\
Model X-920 \\
s968* \\
\({ }^{5} 856{ }^{\star}\) (Without 18 Iunction keys) \\
STANDARD FEATURES (partial list) \\
- Microprocessorcontrolled \\
- Serial RS232C and 20 ma current loop \\
- 10 baud rates-75 to 19.200 \\
- 24 lines \(\times 80\) characters \\
- 96 ASCl| displayable characters \\
- Upper and lower case \\
- \(12 \times 10\) character resolution \\
- Dual infensity display \\
- Clear tull intensity data only \\
- Programmable reverse video \\
- Programmable underline \\
- 105 keys with alpha lock \\
- 14 key numeric pad with decimal \\
- 16 special function keys \\
- 8 edit function keys \\
- 2 block transmisston keys \\
- Sell test mode \\
- Protect mode \\
- Block mode \\
- 80 storable tabbing \\
- Insert/delete character and line \\
- Scrolling \\
- Addressable cursor \\
- A host of other features. inclu cursor controls and remote commands such as clear to nulls spaces. end of line. end of screen: set hi.lo.zero intensity; set blink: etc \\
- Optional screen print \& 2nd page memory
\end{tabular} \\
\hline \begin{tabular}{l}
For our system or for yours in commercial. technical, educational or personal applications, the Computex X -920 is unmatched in its price class \\
Coming soon is our Model \(\mathrm{X}-8000\). This high performance 16 -bit CPU, using the \(2-8000\). addresses 8 M bytes of memory directly!
\end{tabular} \\
\hline All features of the Hazeltine 1400 and ADM-3A Plus: 128 ASCII characters. \(7 \times 10\) matrix. Reverse video .. Print key. Shiftlock... Transparent mode .. Backspace Tabbing . . . Integrated numeric pad. \\
\hline \begin{tabular}{l}
Off the shell delivery now on the Model X-920 and P -E Model 550 . Same day shipping on all orders with certified cash payment Specify shipping and add 40 lb cost. Any wifference refunded. A \(\$ 25\) connecting cable free with every CRT ordered before December 1 \\
Customer satisfaction is guaranteed. Full refund with the return of any product within 10 days. Service contracts available. Systems catalog \(\$\) Pascal MICROENGINE"" owners manual \(\$ 19.95\) (postpaid). \\
-LIMITED TIME cash price. 10\% downguarantees priority. IL residents add \(5 \%\) sales tax. Master Charge and VISA accepled.
\end{tabular} \\
\hline
\end{tabular}
(312) 684-3183

\section*{COMPUTEX}
"The Compuler Experts
5710 Drexel Avenue
Chicago, IL 60637

Figure 6: Simplified diagram of a gain-control function circuit. It employs a feedback system using a digital peak comparator composed of an 8-bit latch and an 8-bit comparator.
level. This effect "stretches" notes or sustains them by stopping their decay. Vibrato is an effect whereby the amplitude of the output is periodically varied to give a warbling sound.

The gain-control functions are implemented by means of a feedback system. The processor varies the gain of the system according to a certain rule and receives feedback on the result of its action by measuring the amplitude of the current signal. A circuit to perform these functions is shown in figure 6. The processor controls the amplitude of the signal by varying the reference voltages to the input analog-to-digital converter and output digital-to-analog converter. The processor gets feedback about the amplitude of the signal from a digital peak detector composed of an 8 -bit latch and an 8 -bit comparator.

To use the peak detector, the processor clears the latch at the beginning of a period and samples the contents of the latch at the end of the period. The comparator continuously compares the amplitude of the input signal (A) with the contents of the latch (B). When the amplitude of the incoming signal exceeds the value stored in the latch, the \(\mathrm{A}>\mathrm{B}\) output of the comparator goes to a true logic
state, strobing the amplitude of the incoming signal into the latch. Therefore the contents of the latch always reflect the greatest amplitude of the input signal from the point when the latch was last cleared, because when a signal of greater amplitude is detected by the comparator, it is clocked into the latch.

Since the attack (rising amplitude portion of waveform) of the signal may be very fast, an interrupt is provided for the processor when the amplitude exceeds hexadecimal FO. This gives the processor time to adjust gain before clipping can occur.
A flowchart and code for the compression routine are shown in figure 7 and listing 4. This compression routine attempts to keep amplitude at a constant level by subtracting the peak value of the incoming signal from a limit on this value, set by the user. The reference voltage of the input analog-to-digital converter is adjusted proportionally to the difference. Thus, if the peak amplitude is lower than the desired limit, the difference is positive, and the analog-todigital converter reference voltage (and therefore the gain) is increased. Similarly, if the peak amplitude is greater than the limit, the gain is

\section*{DIGITAL RESEARCH}

망 CPM＊FLOPPY DISKETTE OPEFATING SYS 0080 assembler texteditor 8080 debugger and varion Bos0 assembler，texteditor，8080 debugger and various figured for most popular computer／disk systems includ
ing：North Star Single，Double or Quad density，Altair 8 disks，Helios II，Exidy Sorcerer，Vector MZ，Heath H17 or H89 \(\dagger\) ．TRS－80 \(\dagger\) ．．iGOM 3712 and iCOM Micro Dish plus many other configurations available of the shelf． CP／M version 2 （not all formals available inmediately） MAC－ 8080 Macro Assembler．Full Intel macro defini－
tions．Pseudo Ops include RPC，IRP，REPT．TITLE，
PAGE，and MACLIB． \(2-80\) librany included．Produces Intel absolute hex output plus symbols file for use by SID
（see below）SID－ 8080 symbolic debugger．Full trace，pass count and histogram utilities．When used with MAC，provide all symbolic display of memory labels and equated val． TEX
\(\square\) TEX－Text formatter to create paginated，page．num to disk or printer ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． \(\mathbf{S 8 5 / \$ 1 5}\)
\(\square\) DESPOOL－Program to permit simultaneous printing of data from disk while user executes another program
from the consote \(. .50 / \$ 5\)

\section*{MICROSOFT}

BASIC－B0－Disk Extended BASiC，ANSI compatible with long variable names，WHILENWEND，chaining，vari－
able length fite fecords ．．．．．．．．．．．．．．．．．．． \(\mathbf{\$ 3 0} 0 / \mathbf{5} 25\) BASICICOMPILER＇－Language compatible with BASIC－80 and 3.10 times faster execution，Produces
standard Microsoft relacatable binary output．includes Macro－80．Also linkable to FORTRAN－80 or COBOL－8 FORTRAN－80－ANSI＇66（except for COMPLEX） （1）plus many extensions．Includes relocatable object com Mier，inking loader，iorary with manager．Also inchuces Format same－ANSI 74 Relocatable object output． COPY EXP最位 ISAM，interactive ACCEPTIDISPLAY MACRO－80－8080／280 Macro Assembler Intel and Zlog mnemonics supported．Relocatabte linkable output utilities included
EDIT－SO－Very fast random access text editor for text with or without ine numbers．Global and intra－line com－

\section*{MICRO FOCUS}

STANDARD CIS COBOL－ANSI 74 COBOL Standard complier fully validated by U．S．Navy tests to dynamic loading of COBOL modules and a full iSAM file tacility．Also，program segmentation，interactive debug
and powerIul interactive extensions to support protected and powerful interactive extensions to support protected
and unprotected CRT screen formatting from COBOL programs used with any durnb terminal ．．．． \(\mathbf{\$ 8 5 0 / \$ 5 0}\)
FORMS 2 －CRT screen editor．Automatically creates a query and update program of indexed files using GRT protected and unprotected screen iormats．Ot put is programs．No programming experience needed．Output

\section*{EIDOS SYSTEMS}

KISS－Keyed Index Sequential Search．Ofters com－ management．Includes built－in utility functions for 16 or 32 bit arithmetic，string／integer conversion and string compare．Delivered as a relocatabie linkable module in Microsotl format for use with FORTRAN -80 or COBOL
80 ，etc．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．\(\$ 535 / \$ 23\)
KBASIC－Microsoft Disk Extended BASIC with all ISS lacilites，integrated by implementation of nine KISSREL as described above，and a sample mail list
program ．．．．．．．．．．．．．．．．．．．．\(\$ 995 / \$ 45\)

\section*{adpticuphre purad！}

\section*{micropro}

SUPER－SORT I－Sort，merge，extract utility as abso． format．Sorts fixed or variable records with data in binary BCD，Packed Decimal，EBCDIC．ASCII，lioating，fixed point，exponential，field justrified，etc．etc．Even variable
number of fields per record！．．．．．．．．．．．．． \(\mathbf{\$ 2 2 5 / 5 2 5}\) SUPER－SORT II－Above available as absolute pro－ gram only SUPER－SORT III－As II without SELECT／EXCLIUE

WORD－STAR－Menu driven visual system for use with slandard terminals．Text formating pertormed on screen Facilites for texi paginate，page number．fustity，center and underscore，User can print one document while simultaneously editing a second
Edit facifilies include global search and replace，read） write to other text files，block move，etc．．eqequires CRT terminal with addressable cursor positioning \(\mathbf{\$ 4 4 5 / \$ 2 5}\) WORD－MASTER Text Editor－In one mode has superset of CPM＇M ED commands including global
searching and replacing，forward and backwards in lie．\(h\) video mode．provides full screen editor lor users with
serial addressable－cursor terminal \(\ldots \ldots \ldots . . \$ 125 / \$ 25\) SOFTWARE SYSTEMS
\(\stackrel{\square}{(6)}\)
CBASIC－2 Disk Extended BASIC－Non－interactive ter，Supports full file control chaining，integer and ex－
tended precision variabies，elc．\(. \$ 109 / \$ 15\)

\section*{Sunotwad vien the
syon discouted！}

STRUCTURED SYSTEMS GROUP
\(\square\) GENERAL LEDGER－Interactive and fiexible sys－ Com providing prool and report outputs．Customization of centers．Extensive checking performed at data entry for
proof．COA correctness elc Journal entries may be batched prior topostina Closing procedure automalically backs up input lies．Ali repons can be tailored as neces－
sary．Requires CBAStC
ACCOUNTS RECEIVABLE－Open item system with output for internal aged reports and customer－ori－ ented statement and billing purposes．On－Line Enquiry permits information for Customer Senvice and Credir de． partmenis．Interiace tir GeneralCedger proviced it
systems used．Requires CBASIC ．．．．．．．\(\$ 69 / \$ 25\) ACCOUNTS PAYABLE－Provides aged state－ ments of accounts by vendor with check writing for \begin{tabular}{l}
selected invoices Can be used alone or winh General \\
Ledger andior with NAD．Requires CBASic \\
\hline \(699 / \$ 25\)
\end{tabular} \(\square\) LETTERIGHT－Program to create，edit and type tet－ ters or other documents．Has facilities to enter，display， delete and move text，with good video screen presenta．
tion．Designed to integrate with NAD for form letter mail． tion．Designed to integrate with NAD for form letter mail－
ings．Requires CBASIC..............\(~\)
\(\mathbf{1 7} 9 / \$ 25\)
NAD Name and Address selection system－interactive as full reporits with felerence data or restricted intorma－ tion for maill labels．Transler system for extraction and Iransier of selected records to create new ilies． \(\mathbf{\$ 7 9 / 5 2 0}\)
OSORT－Fast sortmerge program for files with fixed record length，variable field length information．Up to tive
ascending or descending keys．Full back－up of intul tiles asceated．

\section*{GRAHAM－DORIAN SOFTWARE}

\section*{SYSTEMS}

PAYROLL SYSTEM－－Maintains employee master位e Computes payroll withholding tor FICA，Federal and State taxes．Pints payroll register，checks，quarierly re－
ports and W－2 forms．Can generate ad hoc reports and
 APARTMENT MANAGEMENT SYSTEM－Fi－
nancial management system for receipts and security deposits of apartment projects．Captures data on vacan．－
cies，reverues，etc．for annual trend analysis．Daily report shows late rents，vacancy notices，vacancies，income
 INVENTORY SYSTEM－Captures slock levels， （2）Transaction inlormation may be entered tor reporting by Transaction iniormation may be entered tor reporting by
salesman，type of sale，date of sale，etc．Reports avail able both tor accounting and decision making．Requires
CBASIC Supplied in source code．．．．．．．．．\(\$ 590\)／ \(\mathbf{S 3 5}\) CASH REGISTER－Maintains files on daily sales． （1）Files data by sales person and item．Tracks sales，over rings．refunds，payouts and total net deposis．Requires
tiny C－Interactive interpetive system for teaching structured programming tectriqiques．Manual includedes flil BDS C COMPILER－Supports most major features of language，including Structures．Arrays，Pointers，
recursivelunction evaluation，Inkable with libraly to 8080 recursive Lunction evaluation．IInkabla with inraily yoar type and slatic \＆register class specifiers．Documentation in \begin{tabular}{l}
cludes＂C＂Programming Language book by Kertighan \(\&\) \\
Ritchie....................................\(~\) \\
\hline
\end{tabular}
WHITESMITHS＇C COMPILER－The ultimate in systems software tools．Produces laster code than Pas－
cal with more extensive facilfies．Contorms to the fuil UNIX．－．Version 7 C language，described by Kerrighan
and Ritchie，and makes available over 75 functions for performing \(1 / 0\) ，string manipulation and storage alloca Compler output in A－Natural source．Supplied with
1 A－NATURAL－Narrative assembler with linking load－
（1）er，librarian，extensive 8080 subroutine library in \(A\) ． source to Microsoft MACRO－80 source and from A
Natural rel to source

POLYVUE／80－Full screen editor for Mmwa／Nome XY cursor positioning．Screen edititer for any CRT with
 lating blocks of 1 ．end comprefiensive 70 page manual．
POLYTEXT／30 Text fornatter for word processing

ALGOL－60－Powerful block－structured language compiler featuring economical cun time dynamic alloge tion of memory．Very compact（24K total RAM）system implementing almosi all Algol 60 report teatres plus many powertul \(x\) xtensions including string handing direct
disk address IIO etc．Requires Z00 CPU \(. . . \$ 199 / \$ 20\)
\(\square\) Z（1）disk file ing edment PACKAGE－Consists or： ties：（2）Z80 relocating assembler Z Zlog Mostek mine monics，conditional assembly and cross reference table capabilities；（ 3 ）linking loader producing absolute
hex disk file：
Z ZDT－Z 280 Debugger to trace，break and examine reg－ isters with standard Zilog／Mostek mnemonic disassem－
oly displays．\(\$ 35\) when ordered with 280 Develosment bly displays， \(\mathbf{\$ 3 5}\) when ordered with 280 Develop ment
\(\square\) DISTEL－Disk based disassembler to Intel 8080 or \begin{tabular}{l}
files．Intel or TDL／Xitan pseudo ops optional．Runs on \\
8080 ．． \\
\hline 10
\end{tabular}
\(\square_{\text {© }}^{6}\) DISILOG－As DISTEL to Zilog Mostek mnemonic
（e．TEX TWURITER III－Text formatter to justify and pagi－ ciude inserion of texi during execution from other disk files or console，permitting recipe documents to be
created from linked ifagments on other files．Has facilities Ior soited index，table of contents and tootnoteinsertions．
ideal for contracts，manuals，etc．\(. \$ 125 / 520\)
POSTMASTER－A comprehensive package for mail tion and label production．A lorm letter program is in－ cluded which provides neatletters on single sheet or con－
tinuous forms．Requires CBASIC \(.5150 / \mathbf{S 2 5}\)
\(\square\) WHATSIT？－Interacive data－base system using associative lags to retrieve information by subtect．Hash－
ing and random access used for fast fesponsere Reairss CBASIC ．．．．． \(\mathbf{\$ 1 2 5 / \$ 2 5}\)
\(\square\) XYBASIC interactive Process Control BASIC－Full bytes，rolate and shift，and to test and set bits．Available in Integer：Extended and ROMable versions． nteger Cisk or integer ROMable alil．．．．．． \(\mathbf{\$ 2 9 5 / 5 2 5}\)
\(\square\) SMAL／80 Structured Macro Assembled Language－ Package of powerful general pupose text macro proo an assembler language with IF－THENELSE，LOOP－ ．．．．．．．WHILE，DO－END，BEGIN－END Constructs
\(\square\) SELECTOR III－C2－Data Base Processor to create sorted reports with numerical summaries or mailing labels．omes with sample applications including Sales ter，and Client Patient Appointments．etc．Requires
\(\square\) CPM／374X－Has iull range of functions to create or re－name an IEMM 3741 volume，display directory infor－
mation and edit the data set contents．Provides full fite transter facilities between 3741 volume data sets and BASIC UTLLITY DISK－Consists of：（1）CRUNCH－ 14－Compacing in yo reduce the size and increase Basic．（2）DPFUN－Double precision subroutines for computing nineteen transcendental functions including square root，natural log． \(\log\) base 10, sin，are sin，hyper－ diskette and documentation Funsorm \(\mathbf{5 5 0 / 5 3 5}\)
THE STRING BIT－Fortran character string han－ dling．Routines to tind，fill，pack，move，separate，con－
catenate and comoare character strings．This packace completely eliminates the problems associated with source．
（10）BSTAM－Utlithy to link one computer to another also equilped with BSTAM．Allows file translers al fuil data speed（no conversion lo tory．with CAC block control
 phone connection，Both ends need one．Standard and \(M\)
\(\square\) Fllppy Disk Kit－Template and instructions to modify
 －CPiM Is a rademark of Dignal Research
\(\cdots\) WHATSIT？is a trademark ol Cormputer Headware

（1）user hcense agreement tor this product must be signed and
reluned to Lueboal Associates betore stupment may be made

Lifeboat Associates， 2248 Broadway，N．Y．，N．Y． 1002 （212）580－0082 Telex： 668585

;EXECUTION TIME \(\$ 3\) MICROSECONDS
:GET LIMIT
;SAVE
;GET PEAK
;RESET DETECTOR
:PEAK - LIMIT
;GET CURRENT VALUE OF DAC3
;DAC3 + LIMIT - PEAK
;UPDATE DAC3 AND IMAGE
;EXIT
(CLOCK CYCLES)

Figure 7: Flowchart of a routine to perform compression of an audio signal. It adjusts the reference voltage of the input analog-to-digital converter to keep the output signal at a constant level. The assembler code for the 8080 processor is shown in listing 4.
decreased. This action keeps the signal at a near constant level. Reaching the maximum possible gain of the analog-to-digital converter limits this action, thereby preventing noise from being amplified to audible levels in the absence of a signal.

Vibrato is obtained by using the algorithm shown in the flowchart of figure 8a. The 8080 code is shown in listing 5. This vibrato routine varies the amplitude of the audio signal approximately sinusoidally, with a period equal to eight times the interval between executions of this routine. To simulate a sine wave, the algorithm breaks one cycle into eight parts (0 thru 7, see figure 8b). Each time the routine executes, it fetches the offset value for that part of the curve from a look-up table. Different offset values are used for different levels of vibrato. The value obtained from the look-up table is then added to the reference voltage of the input digital-to-analog converter. The frequency of the vibrato is controlled by how often the routine executes.

Figure 8a: Flowchart of the vibrato routine. It varies the amplitude of the audio signal in an approximately sinusoidal manner by dividing a sine wave into eight discrete parts. Each time the routine executes, it fetches an offset value from a table for the present state and amplitude. This offset value is added to the reference voltage of the input digital-to-analog converter to produce the vibrato effect. The code is given in listing 5 .

Listing 4: 8080 assembler code of the routine to perform compression of an audio signal by adjusting the reference voltage of the input analog-to-digital converter (ADC) to keep the output signal at a constant level. The flowchart is given in figure 7.

Figure 8b: Division of the sine wave into eight parts and the resulting voltage levels for each state.
\begin{tabular}{|c|c|c|c|}
\hline VIBR: & \begin{tabular}{l}
LXI \\
MOV \\
BAL \\
RAL \\
RAL \\
INX \\
ADD \\
INR \\
LXI \\
ADD \\
MOV \\
IDA \\
ADD \\
STA \\
RET
\end{tabular} & \begin{tabular}{l}
H. AMPL M,A \\
H \\
M \\
M \\
H,BASE \\
L \\
L, A \\
DAC3IM \\
M \\
DAC3
\end{tabular} & \begin{tabular}{l}
:COMPUTE TABLE ADDRESS \\
;GET AMPLITUDE \\
;MULTIPLY BY8. \\
;ADD TO STATE \\
;INCREMENT STATE \\
;GET BASE ADDRESS . \\
;ADD TO STATE + AMPL*8 \\
;GET CURRENT VALUE OF VREF \\
;ADD TO TABLE OFFSET \\
;OUTPUT TO DAC \\
;EXIT
\end{tabular} \\
\hline
\end{tabular}

Listing 5: Routine to add vibrato coded for the 8080 processor. It uses table look-up of an 8-segment approximation of a sine curve to vary the input digital-to-analog converter (DAC) reference voltage. Figure \(8 a\) shows the flowchart.

\title{
Acomputer is onlyas good asits soitware.
}

We set the standard.

For a more precise sine wave, more states should be used to represent the curve. If the number of states is reduced, higher vibrato frequencies are possible. With eight states, the maximum vibrato frequency (with the routine executing once every ms) is 125 Hz . This is adequate for most applications. For even higher frequencies with less distortion, a voltage controlled oscillator may be added to the circuit.

The gain-control circuitry can also be used to minimize quantization noise by keeping the digital signals at near maximum levels and restoring their dynamics (amplitude variations) at the output digital-to-analog converter. However, care must be taken with this approach to restore the dynamics of delayed signals at levels that reflect the amplitude at the time that they were delayed.

\section*{Complete System}

Combining the transfer, time-delay and gain-control functions into a single system saves money on hardware since all functions share the same analog-to-digital converter and processor, two of the most expensive components. Figure 9 shows a simplified diagram of the complete system which combines the circuitry described in all previous figures.

The system software is structured so that each function's routine should execute periodically, but each routine may execute with a different period. To control the calling of these function routines, the top level of the system software (shown in the flowchart of figure 10 and with code given in listing 6) is interrupt driven (by the frequency divider of figure 11), executing once every ms. This routine decrements software timers corresponding to each routine. When one of these timers reaches zero, the corresponding routine is called. On system power-up, all timers are initialized, and after executing a particular routine the timer corresponding to that routine is reinitialized.

Listing 6: The code for the interrupt service routine. The real-time clock causes this routine to be entered at intervals of 1 ms. It activates functions according to the proper schedule. Its flowchart is shown in figure 10.

Figure 10: Flowchart of the interrupt service routine. At intervals of 1 ms, an interrupt occurs from the real-time clock, and this interrupt service routine is executed. It calls the appropriate function routines at the proper times by decrementing software counters corresponding to each routine. When one of these counters reaches zero, its software routine is called and the time is reinitialized. If the function is not selected, the counter will not be decremented. The control panel service routine executes during any free time.

\title{
One of the best values computers is now
}

- 8080A CPU has more software written for it than any other CPU
- 7 plug-in board positions for flexibility in configuring your system
- Up to 65K memory capacity
- Front panel keyboard for direct access to registers and memory
\$289 kit purchased separately. Was \(\$ 379\). You save \(\$ 90\).
\(\$ 349.00\) assembled

Heathatigly jogoy
- Instant access to programs and data
- 102K bytes storage area
- 250 mS typical random access time
- Includes interface controller board
\(\$ 495.00\) kit purchased separately \(\$ 550.00\) assembled

Heainkit H19 Smart Video Teuminal
- Z80 microprocessor-controlled
- \(25 \times 80\), upper and lower case
- Direct cursor addressing
- 8 user-programmable keys
\(\$ 675.00\) kit purchased separately \(\$ 995\) assembled

\section*{5\% discount on soffware, memory and interfacing}

Special 5\% discount applies to all software, memory and interface
boards when purchased with the H 8 system.
Seven plug-in board positions on the H8 let you configure any combination of memory and I/O's that suits you. Heathkit memory boards come in \(16 \mathrm{~K}, 8 \mathrm{~K}\) and 4 K increments. Interface boards are available for parallel, serial and cassette //O's.

\section*{Wide selection of software}

Software for the H8 Computer includes operating systems software, MICROSOFT \({ }^{\text {MM }}\) BASIC, FORTRAN, wordprocessing, plus innovative applications software for business and pleasure.
HUC has over 400 programs
An extensive library of programs is available to owners of Heathkit Com-

Circle 163 on inquiry card.
puters through the Heath User's Group (HUG). The experience of this computerite group can help you get the most from your computer.

Plis Heathlit scrice
You get the most thorough documentation ever written when you buy your Heathkit Computer. So it's easy to get your system assembled and operating quickly.
And you get one of the most reliable service organizations after you buy. More than 55 service locations throughout the U.S., plus a factory service phone give you fast access to experts when you need them.

\section*{Ifs all at your Heathlift}

Flectronic Center
Computers, peripherals, software and accessories - in kit or assembled form - you'll find them all at your Heathkit Electronic Center. You'll even find educational support like
the special self-instruction programs that teach you BASIC and Assembly languages programming.

Gheck the white pages th the city nearest you for the location of your Heathat Electronic Ceniers:

\footnotetext{
Alexandria, VA
Anaheim, CA
Allanta, GA Baltimore, MD Boston, MA Buifalo, NY Chicago, IL Cincinnati, OH Cleveland, OH Columbus, OH Dallas, TX Denver, CO Detroil, MI El Cerrito, CA Fair Lawn, N] Frazer, PA Hartford, CT Houston, TX Indianapolis, IN Jericho, NY Kansas City, KS Los Angeles, CA Louisville, KY Miami, FL Milwaukee, WI Minneapolis, MN
}

\section*{New Orleans, LA}

Norfolk, VA
Ocean, NJ
Oklahoma City, OK
Omaha, NB
Philadelphia, PA
Phoenix, AZ
Pittsburgh, PA
Pomona, CA
Providence, RI
Redwood, CA
Redwood, CA
Rochester, NY
Rockville, MD
Rockville, MD
Sacramento, CA
Salt lake City, UT
San Antonio, TX
San Diego, CA
San lose, CA
Sealtle, WA
St. Louis, MO
St. Paul, MN
Tampa, FL
Toledo, OH
White Plains, NY
Woodland Hills, CA
Woodland
Units of Schlumberger Products Corporation. Prices stated here are mail order and may be slightly higher at retail'locations. CP-169

Figure 11: Frequency divider for the 50 kHz data-transfer clock and the 1 ms real-time clock interrupt. The first stage divides the 2 MHz processor clock signal by forty, to ob\(\operatorname{tain} 50 \mathrm{kHz}\). This is further divided by fifty and sent to a flip-flop to interrupt the processor every 1 ms.

Routines that execute once per ms are called on every interrupt and do not have timers. Any time left over at the end of the millisecond is used to service the control panel.

\section*{External User Control}

The control panel used with the system (the device with which the user communicates with the system, selects functions, and specifies function parameters) can take many forms. A control panel can be as simple as a few toggle switches or as elaborate as a graphics terminal. The schematic diagram for a very simple control panel interface is shown in figure 12. Two pairs of seven-segment light emitting diode (LED) displays show the user which parameter is being observed and the value of that parameter. The value of the parameter can be adjusted by pressing increment or decrement switches. A parameter select switch changes the parameter displayed. The software to operate this panel is shown as a flowchart in figure 13, and the 8080 code is given in listing 7.

This routine looks for transitions of the switches, and updates the display and parameters accordingly.

\section*{Conclusion}

The interested user is by no means limited to the functions that I have described here. Tonal control, phaseshifting, and even synthesized chords are possible using digital techniques. Using a microcomputer, the possibilities are endless. The microcomputer can even generate the music it processes. There are certainly many unexplored instances where microcomputers can be applied to audio processing.

I have attempted to describe not only the design of one microcomputer audio processing system, but also the methodology used in designing any real-time microcomputer system. Before rushing into the design of a system, a top-down approach to the problem should be used, the system should be defined, a worst case timing analysis of the system should be performed and, if necessary, hardware versus software tradeoffs should be made to distribute tasks and allow reasonable execution times. An intelligent compromise between hardware and software is almost always the best solution.

Figure 13: Flowchart of the control-panel service routine. It supports the hardware shown in schematic form in figure 12. The three pushbutton switches are polled once
 database creation and list maintenance. Runs under CP/M* and CBASIC2** on a microcomputer system in only 40K RAM.
Completely user-defined file structure with sequential, random and linked file maintenance; user-defined number of fields; data transfer between records; automatic high speed search algorithms with global search function; built-in ISAM; fast sort/merge utility; record selectable output can be formatted (with/without headings, column titles, totals, etc.) and printed on various forms (labels, envelopes, preprinted forms, etc.); links to CP/M commands or programs with automatic return to Global; provides status reports on diskette, data file and hardware environment; disk used as extended memory.
Supplied on standard \(\mathbf{8}^{\text {" }}\) IBM disk (inquire about other formats), complete with BASIC subroutine library in source code, with comprehensive manual.

MANUAL ONLY... \(\$ 25\)
- Trademark of
Digital Research
" Trademark of
Sottware Systems \(\quad\) Add \(\left\{\begin{array}{c}\text { Shipping } \$ 2.00 \\ \text { C.O.D. } 1.00 \\ \text { Sales Tax } \\ \text { where applicable }\end{array}\right.\)
dealer inquiries invited

1505 Ocean Ave., Brooklyn, N.Y. 11230 212/252-5002

\title{
GLOBAL \({ }^{\text {w }}\) DATABASE MANAGEMENT SYSTEM
}

\author{
for
}

PROGRAMMERS, ACCOUNTANTS, BOOKKEEPERS. DOCTORS, LAWYERS, PUBLISHERS. SCIENTISTS, MANUFACTURERS, WHOLESALERS, RETAILERS, MANAGERS, LANDLOROS, REAL ESTATE AGENTS, TEACHERS, STUDENTS, ETC.
Extremely comprehensive, versatile user-oriented management system for database creation and list mainlelds, data ranser between records,

Technical Systems Consultants, Inc, is The Source for your 6800/6809 systems software needs. Family, to Sort/Merge, your disk operating system of the 680X filled with the highest quality systems requirements can be filere else can you find such variety
\begin{tabular}{l}
systems \\
software in the industry. Nowhere else \\
from a single source. Here are some of the most popular: \\
Program Name \\
\hline FLEX for SWTPC \\
\hline FLEX for SSB \\
\hline Extended BASIC \\
\hline Extended BASIC Precompiler \\
\hline BASIC \\
\hline BASIC Precompiler \\
\hline FLEX Sort/Merge \\
\hline Text Editing System \\
\hline Assembler \\
\hline Text Processing System \\
\hline Debug Package \\
\hline
\end{tabular}

FLEX Utilities
These packages are available on eithe Price includes user's FLEX diskettes (\(5^{\prime \prime} 6800\) is FLEX 2.0). Certain programs are available manual and object code diskette. Certal Consultants for pricing. on cassette. Contact Technical 3 percent for postage and handling All orders should include orders). Master Charge and Visa (8 percent on foreign ordes are welcome.
\({ }^{\text {Tu F FLEX }}\) is a trademark of Technical Systems Consultants, Inc.

\title{
Letieps
}

\section*{Problems 1 thru ten}

Most publications other than BYTE print "two," not " 2 " in the midst of an English sentence. Now when I read BYTE I have to go through a kind of mental stuttering: " 2 , oh yes, that means two." It is the same sort of gear shifting I go through whenever I read text that says "hopefully" when "I hope" is meant, or spells "through" as \(t, h, r, u\), as the Chicago Tribune used to do. These are all examples of manner interfering with matter.

I do not object to all reforms in communication (going metric suits me fine), but this one is unrewarding.

\section*{Philip Bacon}

3101 NW 2nd Ave
Gainesville FL 32607

The road to truth and beauty is sometimes a convoluted one. You will notice that our humorous experiment with simplistic rules only lasted for an issue or two - and that reason and judgement
have now prevailed. We resolve 1 (sic] thing at a time. . . . CTH

\section*{S-100 Core?}

I have an S-100 bus computer and would like to install core memory in it. I have been unsuccessful in locating anyone marketing such a device. I would greatly appreciate any information on the subject.

If no one is manufacturing S-100 core, where might I locate core planes that I can interface to the S-100 bus?

Larry Smith
R and I. Enterprises
2901 Willens Dr \#6
Melrose Park IL 60164

\section*{Removing Solder - A Comment}

William Trimmer's article "Soldering Techniques" (September 1979 BYTE, page 84) covers the basics of soldering very well, but I would like to take ex-

With E-Z CIRCUIT's revolutionary new pressure-sensitive Copper Design Products, you actually build "instant" professional caliber PC boards right in your own shop or home, WITHOUT chemicals, artwork, photography, screening or etching.

The exclusive new E.Z CIRCUIT Copper Design System contains everything you need to produce or repair a professional, printed circuit board with electrical and mechanical characteristics that simulate those of etched "production house" PC boards. Our unique Technical Manual, with easy-tofollow, illustrated "how to" tips and

For your copy of this value- packed E.Z CIRCUIT Technical Manual \& Catalog 102. including information on the location of your nearest E-Z CIRCUIT Distributor, send \(\$ 1.00\) - plus 50 for postage and handling - along with your name and address to:
techniques shows and tells you how.
E-Z CIRCUIT's pressure-sensitive copper products are only one dimension of the E-Z CIRCUIT family. The comprehensive E-Z CIRCUIT Technical Manual \& Catalog 102 contains detailed information on the entire product line, including:
- PC Drafting Aids to help you create professional PC board artwork
- General Purpose PC Plug Boards, DIP \& SIP Sockets, Terminal Pins, Wire and Accessories for building PC boards with today's fast, modern wire wrapping methods

\footnotetext{
le:t eifeluit"
by (B) Bishop Eraphics. Inc.
5388 Sterling Center Drive - P.0. Box 5007AA Westlake Village, CA 91359 U.S.A. (213) 991-2600 - Telex: 66-2400
}
ception to his suggestion to remove solder by "Rap(ping) the edge of the board smartly on the workbench." This practice could crack the board at worst, or the flying solder could bridge across the foil patterns, causing a short.

My technique for desoldering is to take "Solder-Wick," dip it in liquid rosin flux and wick up the solder as Mr . Trimmer mentions in his article. I find that the liquid flux improves the wicking action of the braid.

John F Roystone
4084A Birch Ct
Shaw AFB SC 29152

\section*{Weather Radio Information}

There seems to be a request for information relating to Weather Satellite Receiving Equipment.
I have had a receiving set in operation since the fall of 1973, using a modified Heathkit GR-110 as a receiver, and using other ideas from the NASA SP 5079.

A much more informative and practical book is Weather Satellite Handbook, by Dr Ralph E Taggart of Michigan State University.

C A Bush
5538 Larch St
Vancouver British Columbia
V6M 4E1 CANADA

\section*{Subroutine Parameters Questioned}

With all due respect to Professor Maurer, his \(D(L, L)\) example in "Subroutine Parameters" (July 1979 BYTE, page 228) would always yield strange results, without regard to the particular parameter passing technique employed. If the function of \(D\) is to zero the first parameter while doing nothing with the second, calling it with the same actual parameter in both places is a logical inconsistency, demanding that the same thing be made zero and be left alone simultaneously. The CDC 6400 program did not "work" any better than the IBM one; it simply produced a different "strange" result, which the programmer apparently found more acceptable.
I also question, on page 230, the statement that the \(S=S+\chi\) example will not work with call-by-reference. Again, the problem here appears to be inherent in the logic of the case. The logic of the subroutine is expected to do \(S=S+\) \(A(I)\) on the range \(I=1,10\), while at the
same time treat the formal parameter \(X\) as standing for a simple variable. I am not familiar with ALGOL 60, but most FORTRANs handle the situation by requiring an array declaration for \(X\) in the body of the subroutine's code.

\section*{Omri Serlin}

POB 62138
Sunnyvale CA 94086

\section*{WD Maurer Replies:}

When we CALL \(D(A, B)\), where \(D\) is defined by SUBROUTINE \(D(X, Y)\), the basic idea is that \(X\) is "really" \(A\) and that \(Y\) is "really" \(B\). Any time we see an \(\chi\) in the subroutine \(D\), we expect it to stand for \(A\), in the context of this particular call. If, for example, we set \(X\) to \(U\) and then \(Y\) to \(V\), that corresponds to setting \(A\) to \(U\) and \(B\) to V. If \(A\) and \(B\) are really both the same variable \(L\), then we have set \(L\) to \(U\) and then \(L\) to \(V\), which is perfectly acceptable. If we have set \(X\) to \(U\) and not set \(Y\) to anything, then, if the actual parameters are both \(L\), we should set \(L\) to \(U\). The fact that we have not set \(Y\) to anything does not mean that the old value of \(L\) should necessarily be preserved without modification, since there are many other possible ways that the variable \(L\) can have another name; for example, it can be in COMMON, referenced by both \(D\) and the program which calls D.

The second of Mr Serlin's concerns is a simple matter of confusion about ALGOL 60. If I put \(S=S+\chi\) in a loop in ALGOL 60, it is capable of doing \(S=S\) \(+A|1|\) the first time, \(S=S+A|2|\) the second time, etc, through the loop. If I put \(S=S+X\) in a loop in FORTRAN, it must add the same quantity \(X\) each time through the loop. In this case it will be \(A(\mathrm{i})\), where i was the value that the variable I takes on when the subroutine is entered. Requiring an array declaration for \(X\) would make \(X\) into an array name, in which case \(S=S+\chi\) would not be syntactically valid.

W D Maurer
George Washington University
SEAS
Washington DC 20052

\section*{Quest Comments}

Thanks so much for the QUEST program listed in the July 1979 BYTE. As novices, it was fun modifying this routine to run on our TRS-80.

By placing personal references in some of the maze locations, our family has received hours of fun, often late into the night.
For any beginners who wish to do more than buy cassette games, listings such as this are well worth a BYTE subscription.

Harold and Marguerite Jenkins 10 Peaceful Ln Norwalk CT 06851 -

\section*{Konan's smc- 100 Is versat/Ie, fast, cost offlc/ent. It's the disk controllor that brings 5 - 100 bus micro computers together with large capacity hard dlak drlves.}

\section*{Versat/le}

Interfaces \(\mathrm{S}-100\) bus micro computerswith all fixed or removable media disk drives with storage module (SMD) interfaces. Each Konan SMC- 100 will control up to 4 drives ranging from 8 to 600 megabytes per drive, including most "Winchester" type drives. Up to 2400 megabytes of hard disk per controller! And you can take your pick of hard disk drives: Kennedy, Control Data, Fujitsu, Calcomp, Microdata, Memorex, and Ampex, for example.

\section*{Fast}

SMC-100 transfers data at fast, 6 to 10 megahertz rates, with full onboard sector buffering and sector interleaving, and a DMA that's faster than other popular S-100 DMA controllers.

\section*{Cost afflclent}

SMC-100 is priced right to keep your micro computer system micro-priced. It takes advantage of low-cost-permegabyte disk drive technology to make the typical cost less than \(\$ 80\) per megabyte.
The OEM / Dealer single quantity price is only \(\$ 1650\), with driver ROM option. Excellent quantity discounts are available.

\section*{SMC. 100 avalfab/lity:}

Off the shelf to 30 days in small quantities. (Complete subsystems are on hand for immediated delivery.)

Konan has the'answers. Talk to them today. Call direct on Konan's order number: 602-269-2649. Or write to Konan Corporation, 1448 N. 27th Avenue, Phoenix, Arizona 85009.

\section*{Microcomputing comes of age.}

\section*{Ohio Scientific's OS-65U Level 3 operating system software brings new networking and distributed processing capabilities to microprocessor based computer systems.}

Until now, the only alternative for low cost multiple-user computer applications was time-shared systems. However, a serious drawback of microcomputer or minicomputer multi-user time-share systems is the fact that under heavy work loads they slow down to a crawl since the central processor time in such a system is shared by all of the users.
In a microprocessor based distributed processing system, using floppy based microcomputers as intelligent terminals (local systems) most of the work load is handled locally. Overall system performance does not degrade under heavy job loads. Each local system performs entry, editing and execution while utilizing the central data base for disk storage, printer output, and other shared resources.
For more demanding applications it is desirable to have several data bases, each with its own collection of local systems. Such an inter-connected set of data bases is called a network.
Each data base and its local intelligent and dumb terminals is called a cluster.

\section*{Level III}

OS-65U Level 3 now supports this advanced networking and distributed processing capability as well as conventional single user operation and time-sharing. Level 3 now supports local clusters of intelligent microcomputer systems as well as
dumb terminals for the purpose of utilizing a central Winchester disk data base and other shared resources. The system also has full communications capability with other Level 3 data bases providing full network capability.
The system utilizes Ohio Scientific's low cost, ultra high performance computer systems throughout for intelligent terminals as well as data bases. This general systems configuration provides a cost/ performance ratio never before attained in this class of computer power.
Level 3 resides in each network data base. A subset system resides in each intelligent terminal. Each data base supports up to 16 intelligent systems and up to 16 dumb terminals. However, since dumb terminals can heavily load the system, they should be kept to a minimum. Level 3 also supports a real time clock, printer management, and other shared peripherals.

\section*{Data Base Requirements}

Minimal requirements for a Level 3 network data base are a C3-C or C3-B computer system with 23 or 74 megabytes respectively, console terminal, 100 K bytes RAM and a CA10X 16 port //O board for network and cluster communications.

\section*{Intelligent Terminal Requirements}

Any Ohio Scientific 8" floppy based computer with 56K RAM and one data base communications port.

\section*{Connections}

Intelligent terminals and networked data bases are connected by low-cost cabling. Each link can be up to 10,000 feet long at a transfer rate of 500 K bits per second, and will cost typically \(30 ¢\) a foot (plus installation).

\section*{Syntax}

Existing OS-65U based software can be directly installed on the network with only one statement change! Level 3 has the most elegantly simple programming syntax ever offered on a computer network.
File syntax is as follows:
DEV A.B.C.D. Local Floppies \(\quad\) unchanged trom DEVE Local hard disks \(\left\{\begin{array}{l}\text { single user and } \\ \text { limeshare systems }\end{array}\right.\) DEV K-Z Specilic network Data Bases
Each of up to 8 open files per user can be from 8 separate origins. Specific file and shared peripheral contentions are handled by 256 network semaphores
with the syntax Waite N
Waite N, close.

The network automatically prioritizes multiple resource requests and each user can specify a time out on resource requests. Semaphores are automatically reset on errors and program completion providing the system with a high degree of automatic recovery.

\section*{A Typical System}

A typical system with two network data bases will have 148 megabytes of disk, four intelligent subsystems equipped with dual floppies, two dumb terminals, a word processing printer, a fast line printer, network data base manager software and 1000 ft . of interconnecting cable. Utlizing 7 MIPS processors throughout it will cost less than \(\$ 50,000\) plus installation. GT option computers (1.2 MIPS) can be utilized at a slightly higher cost.

\section*{One Step at a Time}

Best of all, Ohio Scientific users can develop distributed processing systems economically one step at a time. A user can start with a single user floppy system, add a hard disk, then time-sharing, then a second Winchester data base for backup and finally cluster intelligent terminals to achieve a full network configuration.
For literature and the name of your local dealer, CALL 1-800-321-6850 TOLL FREE.

1333 SOUTH CHILLICOTHE ROAD AURORA, OH 44202•[216]562-3101

\title{
The Microcomputers you should take seriously.
}

The Challenger III Series is the microcomputer family with the hardware features, high level software and application programs that serious users in business and industry demand from a computer system, no matter what its size.

Since its introduction in August, 1977, the Challenger III has become one of the most successful microcomputer systems in small business, educational and industrial development applications. Tens of thousands of Challenger Ill's have been delivered and today hundreds of demonstrator units are set up at systems dealers around the country.

The Challenger III systems offer features which make their performance comparable with today's most powerful mini-based systems. Some of these features are:

\section*{Three processors today, more tomorrow.}

The Challenger III Series is the only computer system with the three most popular processors- the 6502A, 68B00 and \(\mathrm{Z}-80\). This allows you to take maximum advantage of the Ohio Scientific software library and programs offered by independent suppliers and publishers. And all Challenger III's have provisions for the next generation of 16 bit micros via their 16 bit data BUS, 20 address bits, and unused processor select codes. This means you'll be able to plug a CPU expander card with two or more 16 bit micros right in to your existing Challenger III computer.

\section*{Systems Software for three processors.}

Five DOS options including development, end user, and virtual data file single user systems, real time, time share, and networkable multi-user systems.

The three most popular computer languages including three types of BASIC plus FORTRAN and COBOL with more
languages available from independent suppliers. And, of course, complete assembler, editor, debugger and run time packages for each of the system's microprocessors.

\section*{Applications Software for Small} Business Users.

Ready made factory supported small business software including Accounts Receivable, Payables, Cash Receipts, Disbursements, General Ledger, Balance Sheet, P \& L Statements, Payroll, Personnel Files, Inventory and Order Entry as stand alone packages or integrated systems. A complete word processor system with full editing and output formatting including justification, proportional spacing and hyphenation.

\section*{OS-DMS, the software star.}

Ohio Scientific offers an Information Management system which provides end user intelligence far beyond what you would expect from even the most powerful mini-systems. Basically, it

\section*{The Challenger III Series from Ohio Scientific.}
allows end users to store any collection of information under a Data Base Manager and then instantly obtain information, lists, reports, statistical analysis and even answers to conventional "English' questions pertinent to information in the Data Base. OS-DMS allows many applications to be computerized without any programming!

\section*{The "GT" option yields sub-} microsecond microcomputing.

Ohio Scientific offers the 6502C microprocessor with 150 nanosecond main memory as the GT option on all Challenger III Series products. The system performs an average of 1.5 million instructions per second executing typical end user applications soffware (and that's a mix of 8,16 and 24 bit instructions!).

\section*{Mini-system Expansion Ability.}

Challenger III systems offer the greatest expansion capability in the microcomputer industry, including a full line of over 40 expansion accessories.

\section*{Networking and Distributed Processing}

OS-65U level 3 now provides networking capabilities as well as time sharing ability allowing Challenger III based systems to be expanded to meet the most demanding business applications.

Prices you have to take seriously.
The Challenger III systems have phenomenal performance-to-cost ratios. The C3-S1 with 48 K static RAM, dual \(8^{\prime \prime}\) floppies, RS-232 port, BASIC and DOS has a suggested retail price of under \(\$ 4000.80\) megabyte disk based systems start at under \(\$ 12,000\). Our OS-CP/M software package with BASIC, FORTRAN and COBOL is only \(\$ 600\), and other options are comparably priced.

For literature and the name of your local dealer, CALL 1-800-321-6850 TOLL FREE.
Circle 300 on inquiry card.
C3-B wins Award of Merit at WESCON ' 78 as the outstanding microcomputer application for Small Business.

\title{
Technical fopum
}

\title{
A Proposed Graphics Software Standard
}

Part 2

Dr Vincent C Jones, 1913 Sheely Dr, Ft Collins CO 80526

\section*{Sample Implementation}

In part 1, the framework for a proposed graphics software standard was discussed.

An implementation of the 8080 assembly language protocol for use with the Cromemco Dazzler (listing 1) illustrates how the algorithms and standards presented translate into working software. Except for a few instances where the architecture of the 8080 or Dazzler allowed substantial simplification, the program code corresponds exactly to the Nassi-Schneiderman charts in part 1. The major deviations are in the handling of control characters in the routine CHAR, affected byte address calculation in DOT, and the termination condition in PAGE.

The software starts by defining the standard entry points. The Dazzler is assumed to be jumpered to use ports 16 and 17 (octal), the Cromemco default. If you own a Dazzler and it uses different ports, the I/O (input /output) commands in INITG, CHAR, and ANIMAT will need modification.

\section*{8080/Dazzler INITG}

The first step in all these routines is to preserve any registers affected. In this case, HL is not saved because its contents will be replaced by the display description parameters.

The Dazzler requires the refresh buffer to start at an even multiple of 512 . No test is made to check and see if the address provided is valid; instead, an algorithm that converts any address to a valid address and a valid address to itself is used. The refresh buffer address calculated is then stored in the two bytes labeled RBUF. Placing all the variables in a single section of memory is not only good programming practice, it also permits efficient setting of defaults by using register indirect addressing. The call to the CHAR routine with zero accumulator sets the display mode to MAXR and takes care of outputting the required controls to the Dazzler's Color/Mode port.

After calling PAGE to clear the screen, the Dazzler is finally turned on. The high-byte of the refresh buffer address is retrieved from memory and rotated into the bit position expected by the Dazzler. The OUT instruction starts the display, if it is not already on. The final step, before restoring register values, is to load the appropriate parameter description into HL. Hexadecimal 8AFC indiText continued on page 176 Listing on page 84

Listing 1: Implementation of the 8080 assembly language protocol for use with the Cromemco Dazzler. With a few exceptions, the program corresponds exactly to the Nassi-Schneiderman charts in part 1.

\begin{tabular}{|c|c|c|c|c|c|}
\hline 1124 & 224904 & & SHLD & RBuF & 3 SAVE BUFFER ADDRES \\
\hline 8127 & 218804 & & LKI & H, ANIM & 3START OF VARIABLE AREA \\
\hline 012 A & 77 & & MOV & M, A & 3FILLING BUFFER 8 \\
\hline 812 B & 23 & & INX & H & 3 REAIM AT YPOS \\
\hline 612C & 77 & & mov & M, A & 3 WHICH IS ZERO \\
\hline 1180 & 23 & & INX & H & 3 REAIM AT XPOS \\
\hline -12E & 77 & & mov & M, A & 3 YHICH IS ZERO \\
\hline 812F & 23 & & INX & H & 3 REAIM AT CURRENT COLOR \\
\hline 0138 & 36FF & & MVI & M, OFFH & 3 VHICH IS UHITE \\
\hline 0132 & CDBFg2 & & Call 1 & CHAR & 1128 EY 128 max Res OLUTION MODE \\
\hline 1135 & CD458! & & CALl \({ }^{\text {c }}\) & PAGE & BAMD FINALLY A CLEAR SCREEN \\
\hline 0138 & 3AAA®4 & & LDA & RBUF-1 & SRETRIEUE REFRESH ADDRESS \\
\hline 8138 & 37 & & STC & & SFUTURE ON BIT \\
\hline 813 C & \(1 F\) & & RAR & & INOU HAVE A DAZZLER CONTROR \\
\hline 013D & D39E & & OUT & DA26 & ; SO TURN IT ON \\
\hline 013 F & \(21 B C B A\) & & LXI & H BABCH & SDISPLAY DESCRIPTION \\
\hline 6142 & DI & & POP & D & f RESTORE REGISTERS \\
\hline 8143 & FI & & P OP & PSW & 3 3 \\
\hline 6144 & C9 & & RET & & 3 NLL: DONE \\
\hline \multicolumn{6}{|c|}{\multirow[t]{2}{*}{3 ROUTINE PAG}} \\
\hline & & & & & \\
\hline & & 3 & \multicolumn{3}{|l|}{Clear ths screen} \\
\hline \multicolumn{2}{|l|}{\multirow{3}{*}{-}} & \% & \multicolumn{3}{|r|}{OR CLEAR 2K OF MENORY COMMENCING} \\
\hline & & 8 & AT 1 & E ADDRES & IN 'rbut': \\
\hline & & \multicolumn{4}{|l|}{3} \\
\hline 0145 & P5 & PAGE: & PUSH & PSt & 3 SAVE THE USER VORLD \\
\hline 0146 & D5 & & PUSH & D & 3 \\
\hline 6147 & E5 & & PUSH & H & 2 \\
\hline 0148 & 2an904 & & LHLD & RBUF & STARTING ADDRESS \\
\hline g14B & \(3 \mathrm{Ed8}\) & & MVI & A 88 8 & (\({ }^{\text {(BUFFER LENGTH/256) }}\) \\
\hline 8140 & 84 & & ADD & H & SHIGH BYTE OF LAST ADDR +1 \\
\hline BIAE & 50 & & MOV & E. 1 & 3 EEED A EERO FOR MEMORY FILL \\
\hline dis & 73 & \multirow[t]{8}{*}{Pagas} & mov & M, E & I ZAP THAT BYTE \\
\hline 0150 & 23 & & 1 NX & H & INEXT BYTE \\
\hline 6151 & BC & & CMP & H & PDONE YET? \\
\hline 0152 & C24Fal & & JNZ & P00』 & : NO. KEEP TRUCKING \\
\hline 0155 & E1 & & POP & H & ; RESTORE THE USER \\
\hline 6156 & DI & & POP & D & \% \\
\hline 8157 & FI & & POP & P5W & 2 \% \\
\hline \multirow[t]{9}{*}{0158} & C9 & & RET & & SALL'DONE \\
\hline & & \multicolumn{4}{|l|}{\%} \\
\hline & & \multicolumn{4}{|l|}{\multirow[t]{2}{*}{IROUTINE CURSOR}} \\
\hline & & & & & \\
\hline & & 3 & \multicolumn{3}{|l|}{POSITION THE CURSOR AT X Y IN HAL OR CONVERT THE COORDINATES IN HAL FROM} \\
\hline & & ; & \multicolumn{3}{|l|}{STANDARD COORDINATES (\(8-255\) DN EACH AXIS)} \\
\hline & & 3 & \multicolumn{3}{|r|}{TO THE COORDIVATES GURRENTLY In USE BY THE} \\
\hline & & \% & \multicolumn{3}{|r|}{DAZZLER.} \\
\hline & & \multirow[t]{2}{*}{CURSOR:} & & & \\
\hline 1859 & F5 & & PUSH & PSU & 3 SAVE THE VORLD \\
\hline 0154 & ES & & PUSH & H & * OR AT LEAST PART \\
\hline 1158 & CD6401 & & CALL & cuads & 3 CONVERT TO COORD IN USE \\
\hline 615E & 22ACB4 & & SHLD & YPOS & IAND SAVE FOR OTHER PEOPLE \\
\hline 0161 & E1 & & POP & H & \% RESTORE THE WORLD \\
\hline 0162 & F1 & & POP & PSW & 3 \% \\
\hline 0163 & C9 & & \multicolumn{2}{|l|}{RET} & 3 ALL DONE \\
\hline & & \multicolumn{4}{|l|}{\multirow[t]{2}{*}{IINTERNAL SUBROUTINE CUgog}} \\
\hline & & & & & COORDINATE PAIR IN HIL TO \\
\hline
\end{tabular}

\section*{DRETR}

\section*{Double Density} Dish Controllier \(8^{\prime \prime}\) or \(5^{\prime \prime}\)

- 16K or 32K Static Memory. ES-100 Bus Connector. -9 Regulators provide excellent heat distribution. ©xtended addressing (bank switching). - Low power requirement. - Phantom line. -20-Page operating manual. Full 1-year warranty. 032 K version assembled and tested \(\$ 485.00\). 16K version available assembled and tested, \(\$ 290.00\).

- 12 slot S-100 Motherboard with power supply +8@20a, 士16@6a (nylon card guides).
- Mates with disk systems shown in center column.
- Neat, compact, extremely reliable mainframe.
- Also available with S-44 2 user, 3 CPU system with features similar to Multiuser TRS-80 Expansion Package.

Kit \$295.00

This One

- Designed for CPM \({ }^{\circledR}\). On Board Boot. \(-2 \mathrm{MHz}-4 \mathrm{MHz}\) Operation. Switch Selectable Write Precomp. - "Personality Board" to modify drive configurations (no jumper wires). 2 Data separators; one digital, one analog. Drive Diagnostic Software included. - Complete documentation. Runs without occupying any system RAM. -Transpar-

\author{
DP Z-80 CPU
} SOLUIIIIS
- 2 MHz or 4 MHz operation (jumper selectable).
- Power on jump to On Board Eprom (2708 or 2716). - M1 Wait State for \(160 \%\) thruput enhancement with 450 ns memory. 3 Parallel \(1 / 0\) ports
-Two Serial RS-232 I/O ports. Baud rates: 50 to 19.2 K .
\$260.00.
(Cable and Eprom extra)

DISh Drive storage

- Cabinet comes with multiple power.
- Supply to suit all popular disk drives \(\pm 5 @ 5 a,+24 @ 6\).
- DP-1000K Twin double density Shugart SA-800B or Siemens FDD-100-8. (2 megabytes).
\$1350.00
- DP-2000K Double sided, double density Shugart SA-850-R or Siemens FDD-200-8 (2 megabytes). \$1850.00
- Drive box less drives with ample power supply.

Kit \$295.00

- Cost effective Z-80 15 slot dual drive S-44 5" computer. Mates with TRS-80 or with terminal.
- Excellent expandable starter system for small business.
- Also an unbeatable choice for dedicated word processor applications or industrial scientific use (\(80 \times 24\) video).
- The S-44 card set ensemble is specifically designed for business engineering and technical applications.
- \(50-60 \mathrm{~Hz}\) (110/220VAC).
- Provides expansion to 64K CPM operating system, modems, multiuser, etc.
\(\$ 1775.00\) (32K)

\section*{West:}

\section*{DELTA PRODUCTS}

1653 E. 28th Street
Long Beach, Calif. 90806
Tel: (213) 595-7505

Telex: 128-126 DELTMAR SGHL

\section*{East:}

\section*{delta PRODUCTS}

1254 South Cedar Road New Lenox, Illinois 60451
Tel: (815) 485-9072

\title{
Relative Subroutines for the Z80
}

\section*{Dennis Bathory Kitsz, Roxbury VT 05669}

One of the problems associated with writing versatile, relocatable programs for microprocessors is making decisions on how to use subroutines. The main difficulty occurs when a program using subroutines is to relocate itself; every call address must be rewritten. On the other hand, avoiding subroutines wastes valuable memory space.
I faced this dilemma when developing a program to exercise the memory in my TRS-80; a bit had failed, and I needed a program that could reside in low-memory during a test of high-memory, and relocate itself to highmemory in order to test low-memory. The lengthy process had to be repeated many times (preferably while I was asleep), and leave the results displayed on the monitor the next morning. The necessary ingredients for this program were: a test of all combinations of bits in a byte; a section to identify the bad address; hexadecimal and ASCII conversion routines; a clear-screen and address display routine; and a section to relocate the program and display that fact. A further requirement was that the program reside in a single page of memory.

The identification for each bad address was written as a subroutine; nested inside were the conversions to hexadecimal and ASCII and the display section. Altogether, six separate subroutine calls were needed to identify and display each faulty address.

Self-relocation of the program could have ended with a flurry of activity, transferring the program and rewriting every CALL with a specific new address.

Instead, it was possible to write the program with "relative" subroutines which are not address-specific. This concept is not entirely new, and some lategeneration processors employ many such positionindependent commands. However, the current crop of popular chips does not offer any direct way of accessing a nearby subroutine. The following procedure illustrates one way it can be achieved with the Z80:
- determine the offset from the end of the subroutine back to the main program flow;
- assign this value as the operand of a relative jump placed at the end of the subroutine;
- jump to the subroutine.

Here is an example of a "relative call and return" situation - and it uses only two bytes more than a standard subroutine:
\begin{tabular}{|c|c|c|}
\hline \[
\begin{aligned}
& 1000 \\
& 1004
\end{aligned}
\] & \begin{tabular}{l}
LD \(\mid X, 1080\) \\
[MAIN PROGRAM]
\end{tabular} & ;CENTER POINT OF ONE PAGE \\
\hline & * & \\
\hline & in (1x+8) 80 & \\
\hline 1040 & LD (\(1 x+8\), 8 D & ;IDENTIFY RETURN OFFSET AND PUT IN PLACE \\
\hline 1044 & JR 20 & ;JUMP TO THE SUBROUTINE \\
\hline 1046 & [MAIN PROGRAM] & \\
\hline & - & \\
\hline & [& \\
\hline 1066 & [SUBROUTINE] & \\
\hline & - & \\
\hline & \(\cdot{ }^{-1}\) & \\
\hline 1087 & JR XX & ;RETURN TO MAIN PROGRAM FLOW \\
\hline
\end{tabular}

Note that, like an absolute subroutine, this configuration may be entered at any point - only the offset value loaded into the return jump must change.
In the case of a conditional return, moreover, the circumstances gain only one step in complexity, as the return value cannot be determined by the main program before the subroutine is executed. Instead, whenever a return condition is met during subroutine execution, the conditional jump transfers control to the last instruction of the subroutine, which is the "loaded" jump. It then returns to the main program flow.
Both these procedures have one characteristic that many programmers tend to avoid, and that is their selfmodifying activity. Naturally, this obviates their use in read-only memory. But if it is important to have a relocatable module, it can be achieved with only one register (IX or IY) needing a specific address.
The memory use benefits of either method can be determined quickly. If it takes 5 bytes to rewrite an address directly, and a standard CALL and return combination needs 4 bytes, then a 6 -byte unconditional or an 8 -byte conditional "relative call" is the obvious choice. Overall, these methods provide an efficient and versatile escape from the usual complexities of creating relocatable programs.

\section*{Lengueges Fopur}

\title{
APL/S: An Alternative
}

Robert G Brown, 777 S Mathilda Ave Apt D148, Sunnyvale CA 94087

\begin{abstract}
About the Author
Robert \(G\) Brown is an independent consultant after having worked for IBM for 13 years. He began using APL in 1968 and structured programming in 1970. When he designed the APL/S language in 1978, he attempted to combine structured programming with APL on a small computer in a way which removes some of the common objections to both.
\end{abstract}

APL/S is a modified subset of APL plus structuredprogramming control figures. It is intended to be a good first language both for those who may go on to more powerful languages such as Pascal or APL, and for those whose computational needs are destined to remain modest.

\section*{Pseudocode}

Structured programming is a collection of techniques that help produce demonstrably correct programs. One of the fundamental ideas is to first state the action of the program in what is sometimes called pseudocode, or structured English, then progressively refine the statements of the program toward the programming language being used.

Photo 1: An immediate-mode calculation displayed on an ordinary television set. The user entered " +1246 ". This expression was evaluated, and the result (12) was displayed. The +/ characters indicate that the elements of the array 246 should be added. Therefore \(2+4+6\) gives 12 as the result. The cursor (an inverse video \(U\), which shows up as a white square with a U inside) indicates that the keyboard is open for the next immediate-mode entry. The histogram bars are left over from a previous calculation.

With structured English, any imperative statement can be used, but alternation and repetition statements are restricted to a few well defined forms. In this case, the forms are IF-THEN-ELSE, ENDIF for alternation and WHILE-DO, ENDWHILE for repetition. Their intuitive meaning can be illustrated by a set of dieting instructions.

The instructions are to keep eating, one byte at a time, as long as you are hungry. When you are no longer hungry, ask yourself whether you want to get fat. If you do, eat some more. A structured English statement of these instructions is:

WHILE you are hungry
DO eat a byte
ENDWHILE
IF you want to get fat
THEN eat some more ENDIF

\section*{An APL/S Program}

The pseudocode for a guess-the-number-game program is shown in listing 1a. The input is a series of guesses at a

Photo 2: Program AVE, which computes the average of a set of numeric observations. Input is from the keyboard as a series of numeric values - an array constant. The input, returned by the KEYB function, is assigned to OBS, thus making OBS an array. The average value is computed by adding up the elements of the array (\(+/\) OBS) and dividing the sum by the size of the array (SIZE OBS). Since the result is not assigned to a variable, it is displayed.

Listing 1a: Pseudocode for a guess-the-number-game program. This type of expression may be called Structured English. See listing 16 for the APL/S equivalent.

Fick a number between 1 and 100
Set the number of guesses to 1
WHILE the guess from the keyboard is not equal
to the number picked
DO add 1 to the number of guesses
IF the guess is higher than the number
THEN display "Too high"
ELSE display "Too low"
ENDIF
Display "Try again"
ENDWHILE
Display "Number guesses-"
Display the number of guesses
randomly selected number. The outputs are messages saying "too high," "too low," and "try again." When the number is correctly guessed, the number of guesses made is displayed.

The corresponding APL/S program, named GUESS, is shown in listing 1 b . It is a line-for-line translation of the pseudocode. By looking at the pseudocode and the sample execution in listing 2, the programmer should be able to understand the main points of the APL/S program, although all the details may not be clear.

\section*{A Description of APL/S}

A more complete and precise description of APL/S is provided by the syntax diagrams in figure 1 thru 5 and

Photo 3: The program AVE is executed by keying in its name. Keyboard input is prompted by a question mark (?). The user entered the 3 -element array constant 1.52 2.5. In the program, \(+/ O B S \div-\) SIZE OBS was evaluated as \(+/ O B S\) (giving 6) divided by SIZE OBS (giving 3) for a result of 2 .

Listing 1b: APL/S program for the guess-the-number game. In this implementation of the language, keywords such as PROGRAM and RANDOM may be abbreviated by the first four letters. See listing 2 for an example of the execution of this routine.

\section*{PROGRAM GUESS}

NUM=RANDOM 100
NGES \(=1\)
WHILE NUM NE GES=KEYB
DO NGES=NGES+1
IF GES GT NUM
THEN "TOO HIGH"
ELSE "TOO LOW"
ENDIF
"TRY AGAIN"
ENDWHILE
"NUMBER GUESSES-"
NGES
ENDPROGRAM

Listing 2: Example execution of the program of listing 1b. Execution of a program is started by typing the name of the program, in this case GUESS. User input is prompted by a question mark (?) character.

GUESS
? 50
TOO HIGH
TRY AGAIN
? 25
TOO LOW
TRY AGAIN
? 32
NUMBER GUESSES3
the function descriptions in table 1. Starting at the diagram labeled Program, a path through the diagrams defines a syntactically correct APL/S program. The diagrams do not specify APL/S action (that is, the meaning or semantics of the program).
Each circle indicates a terminal symbol. Terminal symbols become part of the program text exactly as shown. The boxes indicate nonterminals. For each nonterminal there is a diagram (or, for functions, a description in table 1). When all nonterminals have been replaced with sequences of terminals according to the diagrams (or table 1), the result is a syntactically correct APL/S program.

The syntax diagrams in figures 1 thru 5 do not cover statements for loading, saving, editing, or tracing the execution of programs. A complete description of APL/S can be found in the paper "An Introduction to APL/S" (part of the Conference Proceedings of the Third West Coast Computer Faire, November 1978) and the APL/S User's Manual by W Judd and S Cintz (available from the VideoBrain Computer Co).

REG. \(\$ 2,350\)

- Integer or Apple Soft Basic
- 32K User Memory (RAM)
- Color Graphics
- Music and Sound Effects - Excellent Reliability

\section*{APPLE DISK II SYSTEM}
-Disk Drive with Controller
-Disk Operating System
-110 K On Líne Storage
- 10 Pre-Programmed Diskettes

13" PORTABLE T.V. SET
TO TAKE ADVANTAGE OF COLOR GRAPHICS, WITH RF TV

MODULATOR

COMPUTER STORE INTL. a division of computer metrics inc.

\section*{1251 BROADWAY \\ EL CAJON CA. 92021 (714) 579-8066}

OFFER EXPIRES 12-31-79
\begin{tabular}{|c|c|c|c|}
\hline & APLS & APL & Definition \\
\hline \multirow[t]{18}{*}{Scalar 2-argument functions} & \(X+Y\) & \(x+Y\) & \(X\) plus \(Y\) \\
\hline & \(X-Y\) & \(X-Y\) & \(X\) minus \(Y\) \\
\hline & \(X \times Y\) & \(X \times Y\) & \(X\) times \(Y\) \\
\hline & \(X \div Y\) & \(X \rightarrow Y\) & \(X\) divided by \(Y\) \\
\hline & \(X * Y\) & \(X * Y\) & \(X\) to the \(Y\) th power \\
\hline & \(X\) MAX Y & \(X \Gamma Y\) & maximum of \(X\) and \(Y\) \\
\hline & \(X\) MIN Y & XLY & minimum of \(X\) and \(Y\) \\
\hline & \(X\) MOD Y & & \(X\) modulo \(Y\) \\
\hline & & \({ }_{X \mid Y}{ }^{1}\) & \(X\) residue of \(Y\) \\
\hline & \(X\) LOG \(Y\) & \(X \otimes Y\) & base \(X \log\) of \(Y\) \\
\hline & \(X\) XT Y & \(X<Y\) & \(X\) less than \(Y\) \\
\hline & \(X\) LE Y & \(X \leq Y\) & \(X\) less than or equal to \(Y\) \\
\hline & \(X E Q Y\) & \(X=Y\) & \(X\) equal to \(Y\) \\
\hline & \(X\) GE \(Y\) & \(X \geq Y\) & \(X\) greater than or equal to \(Y\) \\
\hline & \(X\) GT Y & \(X>Y\) & \(X\) greater than \(Y\) \\
\hline & \(X\) NE Y & \(X \neq Y\) & \(X\) not equal to \(Y\) \\
\hline & \(X\) AND Y & \(X \wedge Y\) & \(X\) and \(Y\) \\
\hline & \(X\) OR Y & \(X \vee Y\) & \(X\) or \(Y\) \\
\hline \multirow[t]{10}{*}{Scalar 1-argument functions} & \(+Y\)
\(-Y\) & +Y & \[
Y
\] \\
\hline & SIGN Y & -Y & negative of \(Y\) signum of \(Y\) \\
\hline & \(\div Y\) & \(\div Y\) & reciprocal of \(Y\) \\
\hline & EXP Y & *Y & e to the Yth power \\
\hline & CEIL Y & 「Y & ceiling of \(Y\) \\
\hline & FLOO Y & LY & floor of \(Y\) \\
\hline & ABS Y & |Y & absolute value of Y \\
\hline & LOG Y & \$Y & natural log of \(Y\) \\
\hline & RAND Y & \[
\begin{aligned}
& !Y \\
& ? Y
\end{aligned}
\] & \begin{tabular}{l}
factorial of \(Y\) \\
a random integer from 1 to
\end{tabular} \\
\hline & NOT Y & \(-\mathrm{Y}\) & not \(Y\) (\\
\hline \multirow[t]{6}{*}{Mixed 2-argument functions Mixed 1 -argument functions} & \(X, Y\) & \(X, Y\) & the concatenation of \(X\) and \(Y\), an array \\
\hline & & & \\
\hline & SIZE Y & \(\rho Y\) & number of elements in \(Y\) \\
\hline & INDEX Y & IY & 1,2,. ., Y \\
\hline & ARRAY Y & \(Y \rho 0\) & size \(Y\) array of zeros \\
\hline & & , Y & \(Y\) ensured a vector \\
\hline \multirow[t]{4}{*}{Subscripting Assignment Reduction operator} & \(X(Y)\) & \(\mathrm{X}[\mathrm{Y}]\) & the element of \(X\) selected by \(Y\) \\
\hline & \(X=Y\) & \(X-Y\) & \(X\) assumes the value of \(Y\) \\
\hline & \(\bigcirc / Y\) & \(\bigcirc\) O & the © reduction of \(Y\), where © is any \\
\hline & & & scalar 2-argument function:
\[
Y_{1} \bigcirc Y_{2} \bigcirc \ldots \bigcirc Y_{n}
\] \\
\hline Input & KEYB & \(\square\) & keyboard input \({ }^{\prime \prime}\) \\
\hline \multirow[t]{2}{*}{Output} & & X & display the value of \(X\) \\
\hline & ' X " & ' \(\mathrm{X}^{\prime}\) & display \(X\) \\
\hline \multirow[t]{3}{*}{Circle functions (scalar 1-argument functions in APLS)} & SIN X & 10X & \(\sin x\) \\
\hline & 20S \(X\) & \(20 x\) & \(\cos X\) \\
\hline & TAN \(X\) & \(3 n \times\) & \(\tan X\) \\
\hline
\end{tabular}

Table 1: APL/S functions with equivalent APL functions shown for comparison.

Because of the limited character set available, the relational functions are denoted with alphabetic symbols (eg: NE for \(\neq\)) and assignment is denoted by \(=\) instead of the preferable - of APL. In most other cases, functions which are denoted in APL by special characters are denoted in APL/S by the name of the function as given in descriptions of APL.

In APL/S, mathematical formulas are evaluated left to right with addition and subtraction done last. For example, \(2^{*} 4+10 \times 3-1\) is evaluated as follows:
\[
\begin{array}{r}
2^{*} 4+10 \times 3-1 \\
16+10 \times 3-1 \\
16+\quad 30-1 \\
\\
46-1 \\
45
\end{array}
\]

Figure 1: Syntax diagram showing global structure of an APL/S program.

\section*{SYNCHRO-SOUND}

The ORIGINAL Computer People Who KNOW computers
and offer EVERYTHING you need in Small Computer Systems
Compare PRICE, QUALITY, DELIVERY, SERVICE and
you'll see why you don't have to look anyplace else!

\section*{SUPER SPECIAL!} TEXAS INSTRUMENTS

810 multi-COpy
 TERMINALS
\(\begin{aligned} & \text { LEAR- } A D M-3 A \ldots \\ & \text { SIEGLER } A D M-31 \ldots\end{aligned}\)

hazeltine
COMPUTERS
\(\begin{aligned} & \text { NORTHSTAR CALL* } \\ & \text { Horiz (kit)... for }\end{aligned}\)
PRINTERS
QUM
Sprint- \(5 / 45\) KSR

Figure 2: Syntax diagram for block and simple statement structures.

For an assignment statement, evaluation cannot be strictly left to right. For example, the statement \(\mathrm{A}=10+1\) is evaluated by first adding 10 and 1 for a result of 11 , then assigning the 11 to A .
Evaluating the right hand side of an assignment before performing the assignment is carried forward to the case of an assignment embedded within a formula. For example:
\[
\begin{aligned}
& 3 \times A=10+1 \\
& 3 \times A=11 \\
& 3 \times 11 \\
& 33
\end{aligned}
\]

The use of assignment within a formula is illustrated in the program GUESS of listing 1 b in the line WHILE NUM NE GES \(=\) KEYB. The evaluation of the line goes as follows: the KEYB function reads the keyboard and returns the value entered, the assignment operation places the value into the variable GES, and the NE function is then evaluated to 1 if NUM is not equal to GES or to 0 if NUM is equal to GES. WHILE will then have an argument of 0 or 1 .

WHILE, IF, AND, OR, and all the relational functions treat 1 as true and 0 as false. APL/S makes no data type distinctions such as boolean, integer, or real - a number is a number. Functions such as AND are defined on a subset of the numbers, namely 0 and 1 .

The control figures of APL/S are Sequence; IF-THENELSE, ENDIF; WHILE-DO, ENDWHILE; and Sub-
programs. There is no GOTO statement, but there is an EXIT for early termination of a WHILE loop. Because all control figures are self terminating (ie: ENDIF, ENDWHILE, ENDPROGRAM), there is no need for BEGINEND pairs to form compound statements. Anywhere a single statement can appear, so can a block of statements.

Programs can be invoked recursively. The major weakness is that all variables are global. These facilities of the language are powerful enough that the popular eight-Queens problem can be solved by an APL/S program which closely follows the recursive and well structured solution given by Dijkstra. (The differences are array bounds and local variables.)
The eight-Queens problem was discussed from a beginner's viewpoint in an article in the October 1978 BYTE ("Solving the Eight-Queens Problem," by Terry Smith, page 122) and from a more sophisticated vantage by several readers in the February 1979 BYTE ("EightQueens Forum," pages 132 through 148). Dr E W Dijkstra's solution is found on pages 72 thru 82 of Structured Programming, by Dahl, Dijkstra, and Hoare (Academic Press, 1972):

Like APL, in APL/S all scalar functions are extended element-by-element to arrays, any scalar two-argument function can be used to reduce an array, and mixed functions such as SIZE (\(\rho\) in APL) are defined. Unlike APL, in APL/S arrays are restricted to one dimension, and subscript expressions must evaluate to scalars (or oneelement arrays). Some examples should help clarify the array features.

Figure 3: Syntax diagram for variable, array constant, and number structures.

\section*{Some Examples}

Any simple statement (as defined in figure 2) can be entered for immediate evaluation. Photo 1 shows an example of an immediate mode calculation on the VideoBrain computer. The user entered \(+/ 246\). It was evaluated and the result, 12 , was displayed. The " 246 " is

-RS232C, current loop and centronics parallel - 80 columns - 112 char/sec
- 96 char set \(-9 \times 7\) font - Bidirectional printing
- Top of form, skip over perf, out of paper, eight vertical tabs, etc.

Only 9795
Plus \(\$ 20.00\) shipping and handling.
Terms - check with order
Allow 3 weeks for dellivery
Logon inc.
246OLemoineAve.
FortLee, N.l. O7O24
2O1-224-6911
212-594-82O2
an example of an array constant. Addition was used to reduce the array to a scalar. Reduction by addition (\(+/\)) can be visualized as: \(+/ 246\) gives \(2+4+6\) gives 12 .

A more realistic use of arrays in immediate mode is the calculation of net present value. Given the one-dimensional array of cash flows, \(\mathrm{C}=\left(\mathrm{C}_{1}, \mathrm{C}_{2}, \ldots, \mathrm{C}_{n}\right)\), the net present value (NPV) at an interest rate I, is given by:
\[
\mathrm{NPV}=\sum_{j=1}^{j=n} \frac{C_{j}}{(1+\mathrm{I})^{j}}
\]

In APL/S, the formula for the net present value is:
\[
+/(C \div((1+1) * \text { INDEX SIZE C }))
\]

For comparison, the equivalent formula in APL is:
\[
+/ \mathrm{C} \div(1+\mathrm{I})^{*} \iota \rho \mathrm{C}
\]

The two formulas are similar, differing only in function names and parentheses (to insure the same order of evaluation).

Because this kind of use of the array facilities is at the very heart of APL or APL/S programming, it is essential to understand how such formulas are evaluated. Let \(\mathrm{I}=0.1\) and \(\mathrm{C}=-10050\) 150. The evaluation of the APL/S formula can be traced through its intermediate results:
```

+/(C\div((1+I)*INDEX SIZE C))
+/(-100 50 150\div(1.1*INDEX SIZE -100 50 150))
+/(`100 50 150\div(1.1*INDEX 3))
+/(-100 50 150\div(1.1*1 2 3))
+/(-100 50 150\div(1.1 1.21 1.331))
+/(-90.90941.32 112.7)
-90.909+41.32+112.7
6 3 . 1 1 1

```

\title{
Bringing Music Home
}

\section*{LET MICRO MUSIC TURN YOUR APPLE II © INTO A FAMILY MUSIC CENTER!}

VISIT THE APPLE DEALER NEAREST YOU AND ASK FOR A DEMONSTRATION OF MMI'S MICRO COMPOSER \({ }^{\text {TM }}\)

\section*{The MICRO COMPOSER LETS YOU-}
- Play up to 4 simultaneous voices
- See all 4 voices at the same time you're hearing the music-a must for music editing!
- Enter music notes by a fast, simple and well-tested coding system.
- Program the pitch, rhythm, and timbre of the music. Tempo is varied by the Apple paddle.
- Choose 7 different tone colors for each voice or create your own tone color.
- Compose, edit, display, and play music through an interactive, command-driven language that's easy to learn.
- Save your music on disk or cassette.
- Hear quality music sound at low cost through the MICRO MUSIC \({ }^{\text {TM }}\) DAC card. No amplifier needed! Designed for MMI by Hal Chamberlin and Micro Technology Unlimited.
- Select from future MMI music instruction software to accompany the MICRO MUSIC DAC.
Ask your local dealer for information on MMI products, or contact:

The MICRO COMPOSER is an APPLE II (®) compatibile, low-cost music system designed by the folks at MMI. Our music software was designed by leading experts in music education. A simple step-bystep instruction manual leads you through entering, displaying, editing, and playing music with up to four vaices-soprano, alto, tenor, and bass. You can change the sound of each voice to reed, brass, string, or organ sounds and you can even color your own music

HAVE FUN! THE MICRO COMPOSER comes complete with an instruction manual, software disk or cassette-in either Integer or Applesoft ROM BASIC, and the MICRO MUSIC DAC music card. Just plug the MICRO MUSIC DAC in to the APPLE extension slot and connect the audia cable to a speaker.

Suggested retail price \(\$ 220\).

Micro Music Inc 309 W. Beaufort, University Plaza, Normal, Illinois 61761 (309) \(452-6991\)

\title{
SELECTOR III - C2 \\ THE INFORMATION MANAGEMENT SYSTEM Includes these Application Sub-Programs. . . \\ Sales Activity, Inventory, Payables, Receivables, Check/Expense Register, Library Functions, Mailing Labels, Appointments, Client/Patient Records
}

Circle 213 on inquiry card.

\section*{RANDOM, MULTI-KEY RECORD RETRIEVAL under CP/M, CDOS, IMDOS, ADOS . .}

SELECTOR III-C2 ALLOWS INSTANT RECALL OF ANY RECORD USING ANY IN. FORMATION ITEM \(\operatorname{IN}\) THE RECORD. That statement deserves re-reading, because that ability makes SELECTOR III-C2 the most powerful information management system in microcomputers today!

The three major activities in business computing are...Word Processing, Financial Accounting, and the storing, processing, and reporting of information. The latter is where SELECTOR III-C2 shines and fills the professional and personal need.

The system represents the state of the art using Micro-Ap's unique record indexing, query, and report writing methods. It's 'menu driven' and uses screen displays with all the instructions and error sensing that allow the novice to quickly learn the system and accomplish his tasks.

With SELECTOR III-C2 you...
- define a record format assigning up to 24 fields as 'key' fields -meaning that records can be instantly recalled by name, date, quantity, ZIP Code, or whatever.
- create a file and begin entering edited and verified data immediately.
- browse through your file in key field order, making whatever changes or deletions needed.
- select collections of records meeting your exact requirements and arranged in the order wanted.
- create a unique report that contains the precise information you need - with numerical totals, averages, maxima, and minima for any period of time and summarized by name, date...or by any item you want.
- bring an application on-line in hours instead of months.

SELECTOR III-C2 is a 'turn-key' system that can manage most applications as is. It includes source-code and pre-defined record formats and sub-programs to perform the tasks listed at top of page. Programmers can easily add other subprograms - using the system's powerful utilities - to perform virtually any special computation or function required.
The system runs under CBASIC Vers. 2 , and is priced at \(\$ 345\). It's available in a variety of CP/M, disk formats including Dynabyte; North Star; Micropolis; TRS80; Helios II; Heathkit; iCOM; Altair; Imsai; Cromemco; and others.
1
1
1
1
1 Available fiom compute, stores wolldwide.

LIFEBOAT Associates
2248 Broadway, Suite 34 , New York, N.Y. 10024 - (212) 580-0082

Or order direct from
MICRO-AP
9807 Davona Drive, San Ramon, CA 94583
(415) \(828-6697\)

Circle 58 on inquiry card.

Computer terminals, business systems, lab components . . . they all need desks and enclosures. That's what we're all about. Computer Furniture and Accessories offers a standard line of furniture suitable for a wide variety of applications. Handsome, rugged, economical furniture in all shapes, sizes and colors. Basic models shipped from stock in days, not months. And we're nice people to deal with. What more could you ask for?

Computer Furniture and Accessories, Inc. 1441 West 132nd Street Gardena, CA 90249 (213) 327.7710

Integer

Identifler

Figure 4: Syntax diagram showing integer, program name, and identifier structures.

Figure 5: Syntax diagram of formula, term, and factor structures.

\section*{A Beautiful Way To Interface}

\section*{IQ 140}

SOROC's first and foremost concern, to design outstanding remote video displays, has resulited in the development of the IQ 140 . This unit reficcis exquisite appearance and performance capabilities unequaled by others on the market.

With the IO 140 , the operator is given full command over data being processed by means of a wide variety of edit, video, and mode control keys, etc.

The detachable keyboard, with its complement of 117 keys, is logically arranged into 6 sections plus main keyboard to aid in the overall convenience of operation. For example, a group of 8 keys for cursor control / 14 keys accommodate numeric entry / 16 special function keys allow access to 32 pre-programmed commands / 8 keys make up the extensive edit and clear section \(/ 8\) keys for video set up and mode control / and 8 keys control message and print.

Two Polling options available: 1) Polling compatible with Lear Siegler's ADM-2. 2) Polling discipline compatible with Burroughs.

Circle 346 on inquiry card.

The SOROC IQ 120 is the resuit of an industrywide demand for a capable remote video display terminal which provides a mulitiple of features at a low affordable price.
The IQ 120 terminal is a simple self-contained, operator / computer unit.
The IQ 120 offers such features as: 1920 character screen memory, lower case, RS232C extension, switch selectable transmission rates from 75 to 19,200 bps, cursor control, addressable cursor, erase functions and protect mode. Expansion options presently available are: block mode and hard copy capability with printer interface. The IQ 120 terminal incorporates a 12 -inch, CRT formatted to display 24 lines with 80 characters per line.

Listing 3: An APL/S program that simulates a game of craps. The game continues until a bet of \(\$ 0\) is made. Actual play is handled by the subroutine PLAY, which sets WIN to 1 to indicate a win, and to 0 for a loss. The net amount won is stored in NET.

\section*{PROGRAM CRAPS}

NET \(=0\)
"BET 0 TO QUIT"
WHILE 1
DO "PLACE YOUR BET"
IF 0 GE BET=KEYB
THEN EXIT
ELSE "COMING OUT"
PLAY
IF WIN
THEN "WINNER"
NET \(=\mathrm{NET}+\mathrm{BET}\)
ELSE "YOU LOSE"
NET=NET-BET
ENDIF
ENDIF
ENDWHILE
IF NET GE 0
THEN "YOU'VE WON"
NET
ELSE "YOU'VE LOST"
-NET
ENDIF
"COME،AGAIN SOON"
ENDPROGRAM

Listing 4: The PLAY subroutine used by the CRAPS program of listing 3. A first roll of 7 or 11 wins; 2, 3, or 12 loses. Otherwise, a point is established (the value of the first roll). The dice are then repeatedly rolled until the point is rolled for a win, or a 7 is rolled for a loss. See listing 5 for a sample execution of CRAPS.
```

PROGRAM PLAY
+DICE=RANDOM 6 6
PONT=+/DICE
IF OR/(PONT EQ 7 11)
THEN "PASS"
WIN=1
ELSE WIN=0
IF OR/(PONT EQ 2 3 12)
THEN "CRAPS"
ELSE "YOUR POINT IS"

```
 PONT
 WHILE 1
 DO +DICE=RANDOM 66
 IF +/DICE EQ PONT
 THEN "POINT MADE"
 WIN \(=1\)
 EXIT
 ELSE
 IF +/DICE EQ 7
 THEN "BUSTED"
 EXIT
 ENDIF
 ENDIF
 ENDWHILE
 ENDIF
 ENDIF
ENDPROGRAM

Listing 5: Sample execution of CRAPS.

\section*{CRAPS}

BET 0 TO QUIT
PLACE YOUR BET
? 250
COMING OUT
43
PASS
WINNER
PLACE YOUR BET
? 300
COMING OUT
11
CRAPS
YOU LOSE
PLACE YOUR BET
?200
COMING OUT
24
YOUR POINT IS
6
14
62
55
15
POINT MADE
WINNER
PLACE YOUR BET
? 0
YOU'VE WON
150
COME AGAIN SOON

Text continued from page 94:
A simple program (AVE) using the array facilities is shown in photo 2 as it would appear to the user. The program computes the average of a set of observations. An execution of AVE is shown in photo 3.

The final example uses both the structured programming and array features for a simple game of craps. The main program is shown in listing 3, a subprogram in listing 4, and a sample execution in listing 5.

Both the main program and the subprogram use an EXIT statement to end a loop based on a condition detected inside the loop. The single entry, single exit convention of structured programming is maintained by this highly restricted type of GOTO.

The subprogram PLAY (listing 4) contains examples of using the array features for logical testing, a use which is not obvious in the numeric computation context usually employed in explaining the array features. Such nonmathematical use of the array features is common in APL programming, although in APL it is used in conjunction with a kind of conditional GOTO. The evaluation of the expression IF OR/(PONT EQ 7 11) will be followed through its intermediate results.

Although the purpose of the statement is logical testing, the execution trace will show how the statement is, in its use of the array features, similar to the expression for net present value. For tracing, let PONT \(=9\).
```

IF OR/(PONT EQ 7 11)
IF OR/(9 EQ 7 11)
IF OR/(00)
IF O OR 0
IF 0

```

The result, 0 , indicates that it is false that PONT equals 7 or 11, so execution will proceed to the first statement of the ELSE block.

\section*{Summary}

APL/S is one of the first high-level language alternatives to BASIC to be offered on a low-priced personal computer (under \(\$ 800\)). APL/S combines structured programming with an APL approach to arrays. Additional differences between APL and APL/S are due to hardware limitations and a desire to make use of the language as natural as possible.

An APL/S language system is available in a read-only memory cartridge for the VideoBrain home computer from VideoBrain Computer Co, 2950 Patrick Henry Dr, Santa Clara CA 95050.

\section*{REFERENCES}
1. Brown, R G, "An Introduction to APLS,'" Conference Proceedings of the Third West Coast Computer Faire, November 1978.
2. Dahl, Dijkstra, and Hoare, Structured Programming, Academic Press, 1972.
3. Judd, W and Cintz S, APLS User's Manual, Video Brain Computer Co, Santa Clara CA, 1978.
4. Smith, Terry, 'Solving the Eight-Queens Problem,'" October 1978 BYTE volume 3, number 10, page 122.

Applied
Computer Systems, Inc.

77 East Wilson Bridge Road • Worthington, Ohio 43085

\section*{Low Power 32K RAM for Heath \({ }^{\circledR}\) H8 computers \\ DG-32D 32K RAM FEATURES: \\ \(\checkmark\) Plugs into Heath \({ }^{\circledR}\) H8 Computer \\ \(\checkmark\) Ready to use. Fully assembled, tested \(\varepsilon\) burned in}
\(\checkmark\) Operates with existing Heath'memory
\(\checkmark\) Protected Memory Output Buffers in the event of Address error.
\(\checkmark\) Utilizes popular 4116 RAM devices
- Memory Address DIP switch changeable
\(\checkmark\) Arranged as 4 Independent 8 K Blocks
\(\checkmark\) Low Power Consumption: Less that 6 watts, typical
\(\checkmark\) Transparent Refresh
\(\checkmark\) One year guarantee
\(\checkmark\) Compatible with all current H8 peripherals.

\footnotetext{
Heath \({ }^{k}\) and H 8 are registered trademarks of the Heath Corporation, Benton Harbor, Michigan.
}

ELECTRONIC
DEVELOPMENTS CO.

D•G Electronic Developments Co. brings you a totally compatible, fully assembled and tested 32 K RAM for Heath \({ }^{8}\) H8 computers. The DG-32D has less than 6 watts power consumption. This allows you to add a full 32 K bytes of Random Access Memory without taxing or replacing your computer's power supply. Engineered to plug-in and run without any user modifications, the DG32D can be used with or without existing H8 RAM without modification. Protection of the memory output buffers is provided in the event of assigning two blocks to the same address space. The DG-32D is the ideal answer to expansion of the Heath H 8 computer . . . Low power consumption, low price, high capacity, total engineering and exacting production methods.

Ordering Information: DG-32D RAM available only from DC Electronic Developments Co., P.O. Box 1124, 1827 South Armstrong. Denison, Texas 75020. Check, money-order, VSA or Master Charge, Phone orders accepted on charge orders. NO COD's. Foreign orders add \(30 \%\). Texas residents add 5\%. For VSA or Master Charge orders call 214-465-7805. \$479.00 freight prepaid.

\section*{ALL Q-kits AVAILABLE IN ASSEMBLED MODULES}
- ask for Q-mod price information.

Q-kits use I/O ports and are not dependent on a particular bus system.

Most Q-kits offer stand-alone application capability, using a \(\pm 15\) Volt Power Supply.

\section*{CALL Q-KIT WITH YOUR CUSTOM-DESIGN SYSTEM REQUIREMENTS!}

 in touch with reality!
(602) 299-9831
P.O. BOX 35879
master charge
tme interamana cakto
TUCSON, ARIZONA 85740 a division of the \(j\). r. conwell corporation

\section*{BYTEs Bits}

Computer Simulates State Prison System, Helps Predict Cost
Louisiana State University (LSU) has designed several computer models that simulate the operation of the state's prison system. The computer models can determine the cost of building and staffing new prison units, the costs of prisoner transfer, and the costs that any changes in duration of stay or in legislation affecting probation or sentencing might have. With the University's IBM computer at their disposal, lawmakers can propose various pieces of legislation, send it to LSU for analysis, and receive a response within 48 hours. For further information, contact IBM, 7701 Stemmons Fwy, Dallas TX 75247.

\section*{Apple Computer \\ Introduces a Repair Service}

Apple Computer Inc, 10260 Bandley Dr, Cupertino CA 95014, has announced a nationwide repair program featuring same-day computer repairs.
Level I repair requires no special technical knowledge and will be dealt with by a local dealer using new diagnostic software and Apple's Modular Parts Exchange Program (MPEP). The diagnostic program tests the motherboard, power supply, memories, keyboard, tape I/O, paddles, disk drive, and peripheral interface cards. When the problem is located, the diagnostic program identifies it and informs the dealer, through the video display, which component needs repair or replacement. The Level II (more complex) repairs will take place at a regional distributor, and Level III ser-
vice will originate from the Apple Service Center in Cupertino CA.

\section*{A California School District Uses Computers}

Five hundred and fifty boys and girls from elementary grades and the six high schools in the Huntington Beach school system are now using a powerful IBM System/370 Model 135, which is reserved exclusively for instructional purposes. The students take courses in mathematics, science, social studies, business, English, and computer programming languages in teacher-
supervised classrooms on 56 terminals. A group of high school students wrote a series of online programs to carry all scoring and results of an academic decathlon hosted by a Huntington Beach high school. One student wrote a program to survey all county school professional salaries. Another 7th grade pupil won the county science fair with a computer project. Children can develop their own academic computing programs and make any program selection they want. For further information, contact Glen Dysinger, 5201 Bolsa Ave, Huntington Beach CA 92647.

> LSU Professor and Computer Develop New Ways to Deal With Environmental Problems

An IBM 3033 processor and Richard C Farmer, professor of chemical engineering, are solving complex equations devised in the 1880s that describe the motions of solid particles in fluids. Computed results may show where to deposit sediment from dredging operations that are necessary

\title{
We're about to make anew name for ourselves.
}

Not that the old one was so bad. As Ithaca Audio, we've made quite a name for ourselves. As the source for CPU, memory, video display and disk controller boards to upgrade other makers' mainframes and peripherals. The company that makes those neat little RAM expansion kits. And the folks behind the world's.only Z-80 Pascal compiler.

But as much as we've enjoyed improving other people's equipment, we've been quietly moving towards larger endeavors, with a lôt of encouragement from our customers. Listening to people's problems, as well as their needs. And, as a prime mover behind the IEEE S-100 Bus Standard, answering some really knotty questions.

One of the results is our new identity: And our first new product: the Intersystem's DPS-1. An IEEE S-100 compatißle mainframe with features that live up to its looks. Dependable operation to 4 MHz . Twenty-card capacity. A modular power
supply. And something no one else has-built-in breakpoints to give you a faster, more powerful tool for testing software as well as hardware. Directly accessible from an easy-to-use front panel that's as reliable as it is functional. In short, an intelligentlydesigned computer for the intelligent user.

There's a lot more to Interrsystems. In hardwáre. And software. All available through the nationwide dealer network we're now assembling.

You can watch this magazine for updates. Or.contact us directly for straight, friendly answers and detailed information from key staff people. Just the way you always have. Because even though we're making a new nazne for ourselves, we'll never forget who made it possible. Lumemysicomis Ithaca Intersystems Inc. 1650 Hanshaw Road/P. O. Box 91 Ithaca, NY 14850/607-257-0190

\section*{UNIVERSITY MODULE}

We offer TI's 16-bit educational module and back it up with support products and services to provide a complete learning package. The University module includes: 16 -bit microprocessor; on-board alphanumeric terminal and 10character, 7 -segment alphanumeric display; firmwareresident debug monitor and symbolic assembler; audio cassette interface; user -addressable LEDs; 16-bit programmable I/O controller; optional EIA and TTY interface; 4 K bytes of ROM (expandable to 6 K) and 1 K bytes of RAM (expandable to \(2 K\)).

\section*{MEMORY AND I/O EXPANSION MODULE}

To make the University module even more useful, we designed the Expansion module to provide 8K bytes of additional memory! It has sockets for 8 K bytes of EPROM and sockets for 8 K bytes of static RAM, which are address configurable on 1 K byte boundaries. Included is an EPROM programmer for Tl 2708's and 2716's. This module is the mother board for 15 additional 32 -bit I/O expansion ports.

\section*{DOCUMENTATION PACKAGE}

To support your hardware and software, we offer the 550-page textbook, Introduction to Microprocessors. Included in the book are exercises and lab experiments designed specifically for the University module. Application notes are available, along with a set of demonstration programs on audio cassettes. Courses and workshops are also offered. Write or call today for more information on dates and times.
Buy through GGA, Inc. and save! University module with demonstration programs on audio cassettes - \$299. Memory and I/O Expansion module - \(\$ 199\). Power supply for University module - \$65.

Contact: Educational Products Department 12840 Hillcrest Road, Suite 113, Dallas, Texas 75230
(214) 980-0730

な』

to maintain shipping lanes, without endangering precious oyster beds. Professor Farmer hopes to find a way to halt the silting that blocks shipping, without creating other environmental problems. Before a computer approach was developed, marine scientists had to depend on photos and dyed water, and civil engineers used scale models to study environmental problems. The Tennessee Valley Authority uses Professor Farmer's approach to determine optimum methods, from an environmental standpoint, to dispose of the waste heat from power plants. The Louisiana State University, Office of Information Services, Baton Rouge LA 70803 has more information on computerassisted programs in environmental studies.

\section*{Short Course Series}

Integrated Computer Systems Inc, 3304 Pico Blvd, POB 5339, Santa Monica CA 90405, has announced their winter and spring schedule for their Short Course series. Courses on computer graphics, digital signal processing, troubleshooting microprocessor systems, and other topics will be covered. The courses are being held in major cities around the US. These courses are structured for technical and managerial personnel.

\section*{Computer Courses for Nonspecialists}

\section*{Human Computing}

Resources Corp is presenting short courses on introductory programming in BASIC, programming in Pascal, introduction to computing and personal computers and microprocessors, how to buy a computer for a small business, computer graphics, word processing, computers in law and medicine, and more. For price and schedules
for the next year, contact Human Computing Resources Corp, 10 St Mary St, Toronto Ontario, CANADA M4Y 1P9.

\section*{Call for Papers}

The Instrument Society of America (ISA) is sponsoring a conference on the theory, design, manufacture and use of instrumentation, computers and systems for measurement and control entitled "Instrumentation of Challenge," to be held October 20-23, 1980, in Houston. Papers concerning theory, applications, technique or innovations in the fields of aerospace, analysis, cryogenics, data handling and computation, metals, power, textiles, pulp and paper, maintenance, biomedical, and more, are welcome.

To submit a paper for consideration, request abstract forms from ISA headquarters, 400 Stanwix St, Pittsburgh PA 15222. Deadline for unsolicited papers is February 11980.

\section*{BVTE's Bugs}

\section*{Some Refreshing Bugs}

Thanks go to Steve Ciarcia for uncovering several bugs in his October 1979 BYTE Circuit Cellar article, "Self-Refreshing LED Graphics Display." In figures 2 (page 59) and 4 (page 62) the light-emitting diodes (LEDs) are shown with their polarities reversed. For proper operation, they should be reversed from their appearance in the figures. Also, in figure 2 the signal decode I/O write strobe is shown as a high-tolow transition. It should be a low-to-high transition for proper operation.

FCC TO ALLOW ASCII COMMUNICATION VIA OSCAR: The Federal Communications Commission (FCC) has granted the American Radio Relay League (ARRL), the largest amateur radio association in the world, a waiver to allow ASCII communications via the OSCAR satellite. Radio amateurs who have personal computers will soon be able to transmit and receive ASCII anywhere in the world. The waiver covers "experimental use only," as there are still some problems. The problems involve radio frequency (\(R F\)) interference in the satellite receiver and a lack of a clear-cut protocol for the ASCII format. Progress is being made in solving these problems, and it is expected that amateurs will utilize this service heavily.

UNIX-LIKE SYSTEM AVAILABLE FOR 8080/Z80 SYSTEMS: Ån operating system modeled after UNIX (registered trademark of Bell Labs) is now available from the Computer Systems Design Group, 3632 Governor Dr, San Diego CA 92122. UNIX is a high-level, timeshare operating system developed by Bell Labs to run on large DEC PDP-1l systems. It has proven very popular at educational institutions, research organizations, and the like, because of its power and flexibility.

COMPUTER BULLETIN BOARDS MULTIPLY: Computerized bulletin board systems are multiplying like rabbits! These systems, which allow people to communicate with others via terminal/modems and personal computer systems, are skyrocketing in popularity. From only three computerized bulletin board systems in operation at this time last year, their number has increased to nearly 60 systems in operation across the country. These systems are run by individuals, clubs and businesses who are using the computerized bulletin board systems' software to set up computerized intelligent answering machines. Many are tailored to the special needs of the sponsors by altering the software. California has nearly twenty computerized bulletin board systems in operation and Texas approximately ten. A majority of the computerized bulletin board systems can be contacted via computer club newsletters.

NEWS BRIEFS: Bell Labs, Murray Hill NJ, has fabricated experimental bubble memory chips with 11.5 M bit density to yield working storage of at least 1 M bytes Bell Labs has also announced an extension of the conventional doping methods used in manufacturing integrated circuits that could double their speed National Semiconductor, Santa Clara CA, has announced a CMOS microprocessor which executes the Z 80 instruction set. However, it is not pin-compatible with the Z80 Texas Instruments is the leader in microprocessor production. So far they have made over 9 million TMS-1000 microprocessors. The TMS-1000 is a 4 -bit processor used mostly in toys and games.

8-INCH HARD DISK DRIVE MARKET SHAPING UP: It is now apparent that manufacturers are going to use the new 8 -inch hard disk drives in a big way next year. The 8 -inch hard disk drives will fill a gap that exists between floppy drives and the 14 -inch hard disk drives. The IMI-7710, made by International Memories Inc, Cupertino CA, is the only drive currently in production. IMI appears to have at least a 6-month, and possibly greater, lead on the rest of the manufacturers. The 7710 stores 11 M bytes and sells for under \(\$ 2000\) in quantity (\(\$ 2990\) for a single unit).

At least a dozen manufacturers will have 8 -inch hard drives in production by the end of the first quarter of next year. They will range from 2.1 M bytes all the way up to 51 M byte units, with prices ranging from \(\$ 1900\) to \(\$ 4000\) in single-unit quantities. Shugart will be a late entry into this market and is keeping development efforts under wraps. However, Shugart is expected to introduce a very low-cost small storage size drive.

It is expected that manufacturers of double-sided floppy drives will have all the bugs solved in 1980 and that these drives will hinder the low-end, 8 -inch hard disk drive market. On the high-end, the 14 -inch hard disk drives, although physically larger, have a lower cost per bit and hence may limit the growth of 8 -inch drives. It is expected that the more popular 8 -inch hard disk drives will be in the 5 to 20 M byte range.

RANDOM RUMORS: General Electric is interested in the personal computing area. They have invested some money in Intelligent System Corp (ISC), the maker of Compucolor systems. But they have not decided on their approach Shugart is producing 10005 -inch floppy disk drives per day, while Micropolis, ranked second in the industry, is turning out 200 per day . . . A 2 M byte

5-inch floppy disk drive will be announced this coming spring by Tandon Magnetics, Chatsworth CA. The drive will be double-sided and double-density with 96 tracks per inch and 12,000 bits per inch.

16-BIT MULTIPROCESSOR UNIT PERIPHERAL INTEGRATED CIRCUITS BEING INTRODUCED: All of the 16 -bit microprocessor manufacturers are introducing peripheral integrated circuits which increase the power and flexibility of the new 16 -bit microcomputer systems. These integrated circuits will allow these microcomputers to take over applications once considered the province of mini or large computer systems. These include memory management (MMU), bus arbitration, direct memory access (DMA), and floating point arithmetic. Also being introduced for the 16 -bit devices are dualdensity floppy disk, bubble memory, and super fast printer controllers.

The memory management unit allows the microprocessor to partition off its own memory space. Motorola and Zilog plan to have memory management unit integrated circuits for their 68000 and Z8000 multiprocessor units, while Intel includes the memory management unit with their 8086 16-bit multiprocessor unit.
Bus arbitration controllers are used in multiprocessor systems where there is more than one master unit on the bus. The bus arbiter provides the necessary timing and control signals, including establishing priorities among masters. Intel has already announced such an integrated circuit and Motorola and Zilog are designing theirs.

AMD has released its arithmetic processor which performs single-precision (32-bit) and doubleprecision (64 -bit) add, subtract, multiply, and divide operations with 16 -bit wide data paths.

WHAT'S AHEAD FOR 1980?: This is a good time to make some predictions for next year. What can we expect? Let me stick my neck out a little. I expect to see the following:
- The first Japanese personal computer systems will become available in this country.
- Competitive pressures will increase on small manufacturers. This will cause some liquidations and several mergers, consolidations or acquisitions.
- A sizable number of audio and office equipment retailers will enter the computer retailing business. This will create pressures on conventional computer stores. We may even see the appearance of stores that sell only software, much like audio record stores.
- 16-bit microcomputer systems will be commonplace. They will have multiuser, multitasking and multiprocessing, and greater real-time operating capabilities. They will offer far more sophisticated editors, debuggers, compilers, assemblers, and other system software.
- IBM, Digital Equipment Corp, Data General, Hewlett-Packard and other minicomputer makers will introduce low-cost microcomputer systems to compete with current microcomputer systems.
- Several personal computer manufacturers will introduce "second generation" machines with significant increases in power.
- The emphasis will shift from hardware to software. BASIC will continue as the dominant
language. Enhancements will continue to be made to the available BASIC interpreters. BASIC compilers will be more available. Pascal will increase in popularity, but will still be used by only a small percentage of system programmers. New COBOL compilers will also become available and increase in popularity. APL will also increase in popularity, particularly for financial and statistical applications. Also a large number of data base managers will be introduced.
- Business application software for microcomputer systems will finally "come of age" and provide the needed performance that suppliers have been promising but not delivering during the past two years.
- The first low-cost microcomputer-based robot kit will be introduced.
- Typewriters will have built-in intelligence, using microprocessors and built-in microdisks naturally, and will have many word processing features. They will be able to store 10 to 50 pages of text. The "dumb" typewriter will soon be a thing of the past.
- Personal computer time-sharing systems will proliferate. The greatest use will be for accessing data bases.

MAIL: I receive a large number of letters each month as a result of this column. If you wish a response, please include a stamped, self-addressed envelope.

Sol Libes
Amateur Computer Group
of New Jersey (ACG-NJ)
1776 Raritan Rd
Scotch Plains NJ 07076

\title{
The body's beautiful, but you'll love your Companion for her mind! \\ accompanies the clear and concise
}

\section*{INTRODUCING THE PERSONAL GENIE: COMPANION I \& II}

Beneath her beautiful teakwood roll-top desk exterior, there beats a heart of pure Radio Shack TRS-80 Microcomputer.

But don't let her good looks fool you. Your Genie has a brain that's right at home in your office, home, classroom or laboratory.
Two versions are available, each designed around the TRS-80 system with video monitor, keyboard, cassette recorder, expansion inter-face, mini-disk system and printer.
Both include the latest version of the TRS-80 disk operating
system, disk BASIC and Level II BASIC as well as the assurance of Radio Shack's reputation, warranty and national service network.

The Companion I features 16 K of memory, the TRS-80 Quick Printer I and a single mini-disk drive.
The Companion II highlights include 32 K of memory, the TRS-80 tractor feed line printer and dual mini-disk drives.

Either version can be expanded to accommodate additional memory and mini-disk drives. And we haven't forgotten her brain food either. A full set of cassettes, diskettes and paper
instructions of the Companion User's Manual. All this brain matter comes pre-assembled in a body you can love and live with.
The perfect Companions from PRODATA.
Companion
Computer
\(\qquad\)

\title{
Text Compression
}

\author{
James L Peterson \\ Dept of Computer Sciences \\ University of Texas \\ Austin TX 78712
}

A continuing problem on any computer system is storage. There is never enough computer memory for all the information we wish to store. This is true both for programs in main memory and for the information which resides on peripheral devices.

One solution to this problem is simply to buy more memory. Particularly in the case of storage devices with removable media such as cassettes, floppy disks, magnetic tape and even paper tape, additional media can be purchased and used as necessary. But even here economics will eventually limit the amount of storage available.

An alternative approach is to try to make better use of existing storage media. This is where text compression can be of great use. The idea of text compression is to reduce the amount of space needed to store a file by compressing it, making it smaller.

Compression is accomplished by changing the way in which the file is represented. The encoding procedure is performed in such a way that it is reversible; that is, it can later be decoded to produce the original uncompressed file. This is illustrated in figure 1 . The hope is that the encoded version of the file will be smaller than the original file, and hence space will be saved.

The cost of this space saving is processor time. Additional processor time will be needed to encode and decode the compressed files as they are processed. However, it should be noted that microprocessors are seldom processor bound, but more commonly have extra processor cycles available. In fact, the total execute time of many programs will be less on a compressed file despite its encoded form. This is because the I/O(input/output) transfer time for a compressed file is less than the

Figure 1: The text compression process.
transfer time for an uncompressed file, since there are fewer bits to read or write. Hence, I/O bound programs (like assemblers and loaders) may execute faster on compressed files.

The basic idea of text compression is to find an encoding method that takes up minimal space. Many algorithms for text compression have been invented, and we present some of them here. In general, these algorithms will work for any type of data, such as numeric, character string, and so on; but for purposes of this article we limit ourselves to text, ie: strings of characters. This will include programs, documentation, mailing lists, data, and many other files stored in computers. In fact, object programs, if considered as simply strings of bytes, can also be compressed, although this must be done carefully.
Text compression is accomplished by careful selection of the representation of the information in the compressed file. For many small computer systems, the ASCII code is generally used to represent characters. The main advantage of the ASCII code is that the representation is standard and easy to define. A major disadvantage is its poor space utilization. ASCII is a 7-bit code, while most processors handle 8 -bit bytes. Thus, 1 bit out of \(8(12.5 \%)\) is wasted simply because a 7 -bit character code is used in an 8-bit byte. Further, most control codes are seldom used, and many applications do not need both upper and lower case characters. Thus, another bit can generally be reclaimed with ease, providing at least \(25 \%\) savings in storage space. Many of the algorithms presented here can turn these extra bits into even greater savings of space.

Notice, however, that this approach requires a description of how the compressed file is to be represented. This description commonly consists of the encoding and decoding routines. The savings which result from text compression must be balanced against both the additional processor time for encoding and decoding, and the storage space necessary for the encoding and decoding routines. Also, different types of files may be best encoded by different methods, so several different encoding and decoding routines may be necessary.

\section*{mean you get "cheaper" computers?}

Do TRS-80's new lower prices

\section*{No Way}

\section*{Here's why . . .}

Production costs drop and manufacturing efficiency rises when you deliver more than 100,000 TRS-80 \({ }^{*}\) Model I systems built in your own factories in less than two years. No other computer - ever - has had customer acceptance on such a scale.

Sure, TRS-80 Model I is the price leader, but then you know better than to make your decision based on price alone. You've got to be convinced you get 1) full quality and features, and that 2) our more than 100 service locations furnish faster service, and that 3) we continue to add new software and hardware for TRS-80, even though our list is already one of the industry's longest.

Level I-4K Ideal Starter System
\$499
Was \({ }^{\text {s } 599 ~ l a s t ~ y e a r ~}\)

Level II-16K Advanced System with Calculator Keypad
\(\$ 849\)
Was 988 last year

\section*{New Model I/II Catalog}

Come in and get your copy of our new 24 -page computer catalog and you'll decide that TRS-80 is your unique opportunity to own a full-featured, fully serviced, fully supported microcomputer at a really nice price.

\section*{New TRS-80 Model II}

A bigger, more powerful "brother" to the TRS-80. Completely new, it's a business microcomputer with capabilities beginning where Model I approaches upper limits. Storage capacity up to 2 megabytes. Order now for early delivery.

\section*{Radio Shaek}

The biggest name in little computers \({ }^{\text {©TD }}\)
A Division of Tandy Corporation • Fort Worth, Texas 76102 Over 7000 Locations in 40 Countries

Figure 2: A file which can benefit from simple text compression techniques. The original file is a 24 by 80 character video display image consisting of 1920 characters. Deleting trailing blanks and using tabs set for every 8 columns will reduce the size of this file to 412 characters \(-a\) savings of 78.6 percent.

\section*{Trailing Blanks and Tabs}

A simple approach to compression for text files (but not for object code files) is eliminating blanks which come at the ends of lines before the carriage return and line feed characters. These are known as trailing blanks. For systems which store large amounts of assembly language, BASIC or FORTRAN programs, much of each line will be blank. Any trailing blanks can be deleted without changing the meaning of the file.
Tabs can be used to reduce the number of blanks elsewhere in a line. Particularly with block structured programs, such as ALGOL, Pascal, or PL/I, or with column oriented languages such as FORTRAN or assembly language, tabs can be quite effective in text compression. Two varieties of tabbing mechanisms can be used. One is called fixed tab stops. In this case, tab stops occur every \(n\) columns, where \(n\) is a system-wide constant. Typically \(n=8\), although some studies have shown that \(n=4\) or \(\mathrm{n}=5\) will produce additional savings.
\(\$ 32 \$ 3^{*} \$ 4\) l \(^{* *} @ \$ 30 / \$ 5^{*} \backslash \$ 6^{*} \backslash @ \$ 30 \$ 7^{*} \$ 7^{*} @ \$ 30 \$ 5^{* \prime \prime}\) '\$6*@\$31**/\$6**'@\$30
 \(\$ 6^{*} 1 @ \$ 36 \backslash \$ 4^{*} \backslash @ \$ 43 \backslash @ \$ 43 * @ \$ 43 * @ \$ 43 / . / \$ 3^{*} \backslash @ \$ 30 .-\$ 9.1 / \$ 7^{*} \backslash @ \$ 27\) \(1 \$ 6^{*} \backslash \$ 6^{*} / \$ 3^{*} I^{\prime} @ \$ 26 /^{* *} \cdot \backslash * * \backslash \$ 3 . * / \$ 3^{\prime} @ \$ 26 \cdot \$ 6 \backslash * * l^{\prime} @ \$ 35^{*} \$ 3 \backslash @ \$ 35 \backslash * / @ \$ 36 \backslash\) *@\$37\@\$37\@

Figure 3: Further compression of the file shown in figure 2 done by replacing multiple identical characters with an escape sequence. The escape sequence in this case is the escape character \(\$\) followed by the number of repetitions and the character to be repeated. This scheme is useful only when the repeat count is greater than 2. The count would normally fit into 1 byte, but is here shown in decimal. The character @ represents the carriage return and line feed. Only 287 characters are needed to represent the file in figure 2 using this representation. This reduces the file to 14.9 percent of its original size.

The other possibility is to use variable tab stops. In this case, tab stop positions are selected for each file separately. This would require a decision as to which tab stops are best (ie: which would produce the best compression). In addition it would be necessary to indicate with each file what tab settings are to be used. This can be done easily by appending a tab stop dictionary at the head of each file. Such a dictionary would be used to initialize tables for the decoding routine which would replace each tab with an appropriate number of blanks. This approach allows different tab settings to be used for different programming languages or data sets.

\section*{Multiple Characters}

Trailing blanks and tab mechanisms are used for compressing strings of multiple blank characters. Some applications may result in strings of identical nonblank characters occurring frequently. For example, picture processing by computer often requires storing long sequences of identical characters, such as the characters which produce figure 2. The approach here is to replace a string of \(n\) identical characters by the number \(n\) and 1 character, thus saving \(n-2\) characters. The count can be represented as a byte. If the count exceeds 256 , it can be output as a count of 256 followed by the character, and then another count and character for the remainder.

Encoding consists of simply counting identical characters until a different one is found, and then outputting the count and character. Decoding simply expands each count and character to the appropriate number of characters.

Obviously, n should be greater than 2 most of the time for this approach to succeed. If \(n\) were generally 1, this approach would actually double the size of the file. Since this is commonly the case for text files, a more sophisticated approach is generally used.

We wish to replace sequences of identical characters by a count and character, but leave single or double characters alone. The problem is representing the multiple characters in such a way that the count is not misinterpreted as a character. A common solution is to use an escape sequence, which is a means of indicating that a special interpretation should be applied to the characters which follow. To create an escape sequence, choose any character which is seldom (preferably never) used. For example, in ASCII one of the control codes or special characters might be used. ASCII even provides an escape character, but if it is already being used for another purpose, any other character code can be used. Now a sequence of \(n\) identical characters would be represented by the escape character, the value \(n\), and the character to be repeated. Figure 3 shows the text of figure 2 compressed by this method.

This allows normal text to be represented normally, except for the escape character. The problem we must now solve is how to represent the escape character if it occurs in the input (uncompressed) text. If we simply copy it to the compressed file, the decoder will (incorrectly) think it is the start of an escape sequence and interpret the following 2 characters as indicating a sequence of identical characters (this is essentially the same problem that language designers face in trying to represent a quoted string consisting of a quote). Several approaches to this problem can be used: outlaw all occurrences of the escape character; replace all escape char-

\section*{VOICE CHESS}

Brand new from Fidelity-the grand daddy of them all. VOICECHALLENGER. It may look something like the "7," but it's a great deal more. Increased microprocessor brain offers all of the 7's ability plus three additional levels beyond the seven: Excellent (6 minutes), Expert (11 minutes) and Infinite (from 5 seconds to days). But, you needn't wait days. You can command this level to move at any time. So many readers have asked for maximum skill. This is it.

Most incredible, it TALKS. In addition to its display, an electronic miracle of voice synthesis permits this phenomenal Challenger to speak. It's not a tape, but a computer-created voice distinctively announces each move it makes. It verbalizes your moves, too. It has a vocabulary of over 50 words which will also suggest a move for you if you take too long.

If the Voice Challenger is about to set up a mate-in-two offense, it will flash, "Mate-in-Two." From here on, you'd better be a whiz to avoid defeat. This set (same size as " 7 ") comes in a black enamelled hardwood cabinet. Hand-carved Staunton pieces in tan and black are magnetized to stay put. The unit is complete with a durable ABS carrying case

Both units are backed by a 90 -day manufacturer's limited parts and labor warranty.

\section*{PLAY CHESS FOR 10 DAYS}

\section*{AT OUR EXPENSE}

As a gift or for yourself, the " 7 " and the "Voice" are unquestionably the finest chess computers you can select... but, if within 10 days, you are not pleased, return your purchase for a prompt refund.

801 Green Bay Rd., Lake Bluff, IL 60044
A DIVISION OF UNITED EDUCATORS, INC
\begin{tabular}{|c|c|}
\hline 10 READ A & \(10 \$ 5 \mathrm{~A}\) \\
\hline 20 IF A=0 THEN 110 & 20 \$2 A=0 \$6 110 \\
\hline \(30 \mathrm{IF} \mathrm{A}>0\) THEN 80 & \(30 \$ 2 \mathrm{~A}>0 \$ 68\) \\
\hline 40 LET B=-A & \(40 \$ 3 \mathrm{~B}=-\mathrm{A}\) \\
\hline 50 LET R = SQR \((\mathrm{B})\) & \(50 \$ 3 \mathrm{R}=\operatorname{SQR}(\mathrm{B})\) \\
\hline 60 PRINT A,R,' \$ '" & 60 \$4 A,R,' \({ }^{\text {P }}\) \$ \\
\hline 70 GO TO 10 & 70 \$1 10 \\
\hline 80 LET R = SQR(A) & \(80 \$ 3 \mathrm{R}=\operatorname{SQR}(\mathrm{A})\) \\
\hline 90 PRINT A,R & 90 \$4 A,R \\
\hline 100 GO TO 10 & \(100 \$ 10\) \\
\hline 110 END & 110 \$7 \\
\hline
\end{tabular}

Figure 4: Compressing a BASIC program by using keyword replacement. The keywords (1) GO TO, (2) IF, (3) LET, (4) PRINT, (5) READ, (6) THEN and (7) END have been replaced by an escape sequence consisting of an escape character \(\$\) followed by a keyword number. Note that the escape character occurred within the original program and was replaced by a special escape sequence \$\$. In actual use, all delimiting blanks around keywords would be subsumed into the keyword. Thus line 10 would be 10\$5A, and \(\$ 5\) would mean "READ".
acters by a special escape sequence such as one with a 0 count; replace all escape characters by an escape character, a count of 1, and an escape character, treating it as a sequence of length 1. Any of these approaches will allow a file to be encoded and decoded easily and correctly.

Note that, in choosing an escape character, we can always use the same one (a system-wide constant) or we can select a different one for every file. If we choose a different one for every file, we must make a preliminary pass through the file to look at all characters used and find one which is not used. We should then append the escape character at the beginning of the file to allow the decoding algorithm to know what character is used as the escape character.

\section*{Keyword Replacement}

A very common type of file stored in computer systems is a program file. Programs offer great possibilities for
text compression because of their stylized form and syntax. The techniques of deleting trailing blanks and using tabs to replace leading blanks can reduce storage requirements considerably. But an even larger gain can be made from keyword replacement.

Most programming languages use a number of keywords or reserved words: in FORTRAN, such words as INTEGER, FORMAT, CALL and so on; in BASIC, such words as LET, READ, PRINT, REM and so on. These words are used throughout these programs and are prime candidates for text compression.

Two techniques are commonly used. First, one can replace each keyword by an escape sequence. The escape sequence might consist of the escape code, followed by a number which indicates which keyword is being used. This has the advantage of allowing a large number of reserved words up to the number which can be held in 1 byte, and can be particularly
useful for assembly language symbolic op codes.

An alternative approach is to look through the existing character code for unused character codes. For example, if ASCII is being used, many of the control codes, some of the special characters, and perhaps the lower case characters are not normally used. If 7-bit ASCII is being used with 8-bit bytes, then the extra bit can be used to define 128 new unused codes. These unused codes are paired up with the most frequently occurring reserved words. One code should be reserved for use as an escape or quote character, in case any of the codes assumed to be unused should happen to be used in an input file.

For encoding, the input file is scanned for reserved words and each reserved word is replaced by the appropriate special code as illustrated by figure 4. If any of the special codes should show up in the input stream, they are replaced by the 2-character sequence of the escape code followed by the input character. For decoding, all special codes are replaced by their equivalent keyword, except that any character preceded by an escape code is copied directly to the output, with no replacement.

At this point, a problem may become apparent. Note that the keywords for any particular language are fixed and relatively small in number, but that the keywords vary from language to language. Hence, the appropriate correspondence between special codes and reserved words may vary greatly. In single language systems (such as those which offer only BASIC) this is not a problem, but more general systems need to consider this problem.
\[
\Gamma_{m_{5}} \text { PET ANALOG INPUT }
\]

\section*{Analog to Digital Conversion System for the Commodore PET Computer}

\footnotetext{
Give the FET the abilits to sense, weasure, and control the world around it with InM SYSTEMS mookles. Just. Flus the FETSET1 into the FET Lo sel 16 channels of analos infut.. Screw terminals are frovided for each channel so tou can hook ur jossticks, fot.sy or whetever zrfrofrizte sensors sou have. Each of the 16 enalos infuts, in the ranse of 0 t.o 5.12 volts, is converted to a decimal number belween 0 and 255 (20 millivalt.s Fer count.). Conversion tine is 100 microsconds. IEEE fort.s and one user fort. 35 W0 ILEE Fork Software is frovidert. A Software is frovided. A one line read a channel.
}

The kanimow zU00 is the first of terminal systems.
a new generation in color peripherals providing a cost effective way to upgrade to full color and high resolution graphics.

By using standard RS232 C communication interfacing, we made the Rainbow 2000 adaptable to any existing mini or advanced system. ABuilt-in 6 K RAMmemoryallows the Rainbow 2000 to "stand alone" using just a keypad and color monitor, or it can be utilized with multi-
-TRS-80 is a registered trademark of Radio Shack, a Tandy Co

When we at Digitus designed the Rainbow 2000 , we had the industrial and scientific user in mind, so we didn't skimp on the specs. We test each board extensively before it is packaged for sale, we use prime quality parts and we back each board with a full one-year guarantee.

So whether you're plotting family expenses on your *TRS-80, or monitoring a factory with an *IBM 370, let the Rainbow 2000 be your step up to color graphics.
-IBM 370 is a trademark of International Business Machine Inc.

The Rainbow 2000, Vincent would have given his right ear for one!

\section*{FOR FURTHER INFORMATION CALL OR WRITE} DIGITUS CORPORATION
P.0. 80X 10095

TOWSON, MARYLAND 21204
800-638-4259 DEALER INQUIRIES WELCOMED

slutions are available. an simply use separate enand decoding routines for .nguage, leaving it to the promer to use the appropriate one. -ond, one can tag each compressed .le with a byte which indicates if this is a BASIC compressed file, or a FORTRAN compressed file, or a type \(X\) compressed file. Then the encoder must either be told how to encode the file or be able to guess (or compute) that it is a FORTRAN, BASIC, or type \(X\) file and apply the appropriate compression algorithm. The compressed file is tagged as it is encoded. The decoder looks at the tag and uses the appropriate decoding scheme.

A third approach is more general, but potentially more expensive. The difference between the encoding and decoding algorithms for the different types of files is simply the table of pairings between keywords and character codes. Therefore, another approach is to prefix each compressed file with a dictionary of character code and reserved word pairs. The dictionary explains the meanings of the special character codes by indicating the reserved words for which they stand.

\section*{Substring Abbreviation}

The idea of appending an abbreviation dictionary to the front of a compressed file opens the way to using the keyword replacement scheme for more general files. The idea is quite simple. Pick out those sequences of characters which occur most frequently in a file and replace them with a special character code. To allow decoding, we append a dictionary at the beginning of each file to show which special character codes

> Dictionary: \$A "the"
> This paper is concerned with \(\$ A\) use of \(\$ B\) in \(\$ C\) systems, where \(\$ A\) amount of \(\$ C\) storage is limited.

Figure 5: Text compression by substring replacement. Substrings are replaced by abbreviation codes (here we use escape sequences). A dictionary is placed at the beginning of the file to define the meanings of the abbreviations.
correspond to which replaced character strings. This approach can yield very good text compression, especially for programs or natural language text, since keywords, variable names and some words (like the, and, and so on) are used very frequently.

But there are some problems with this approach also. The major problem is selecting the character strings to be abbreviated. With programs written in particular languages, keywords occur frequently and so are a safe bet for substitution, but what constitutes appropriate character strings for general replacement? These can be determined only by examining the file, since the appropriate strings will vary from file to file.

The objective, of course, is to realize the greatest savings in space. Here we are limited mainly by the number of codes available for substitution. If we use unused codes in the existing character set, we are limited to from 10 to 50 abbreviation codes, typically. If we extend the character set (say by using 8 -bit codes with 7-bit ASCII) then we may have as many as 128 codes available. Using an escape sequence may provide up to 256 , but at a cost of at least 2
characters per abbreviation. In all cases, the number of codes available will always be limited to, say, m. Thus we need to pick those \(m\) strings for abbreviation which will result in the greatest space savings.

We do not always want to pick merely the most frequently occurring \(m\) strings. Consider the 2 strings to and text compression. If to occurs 100 times and text compression only 15 times, which should we replace? Replacing the 2-character sequence to by a single abbreviation code saves only 1 character (assuming 1 byte abbreviation code) per occurrence, or a total of 100 characters. Replacing the 16-character sequence text compression saves 15 characters per occurrence, or 225 characters total. Thus, in general we wish to replace that character sequence whose product of length and frequency is greatest. An example of substring replacement is shown in figure 5.

The encoding problem then becomes that of finding the \(m\) sequences whose length-frequency product is greatest, replacing all occurrences of them with the \(\mathbf{m}\) abbreviation codes, and appending the abbreviation dictionary at the front of the compressed file. The decoding problem reduces to

\section*{[HES5-B}

Chess for the Heath H-8 computer. CHESS-8* transforms your computer into a challenging chess playing opponent. Multi-level play options match CHESS-8 \({ }^{\circ}\) to your playing ability. Plays full U.S. Chess Federation rules, including castling, "en passant" capture and pawn promotion. Does not permit nor make illegal moves!
Use your CRT terminal to input moves using modified chess notation, display board status or game move summary. Order today and match your skill against CHESS-8 \({ }^{\circledR}\). Supplied on disk with complete instructions, requires HDOS. Send \(\$ 24.95\) to QC Systems
O.C Quantum Communications Systems

13195-87th Place North, Largo, Florida 33542

\section*{TARBMTL VDS \(=\mathbb{I R}\) Uertical Disk subsystem}

\section*{SYSTEM INCLUDES:}
- 2 Siemens 8" Disk Drives
- 1 Cabinet with Fan and Power Supply.
- 1 Tarbell Floppy Disk Interface, assembled \& tested.
- 1 CP/M Disk Operating System.
- 1 Tarbell BASIC.
- All Cables and Connectors.
- Complete User Documentation.
- Fully factory assembled and tested.
VDS-II Single Density . . . \(\$ 1888\) VDS-IID Double Density \(\$ 1999\)

\section*{TARBELL DOUBLE DENSITY INTERFACE FOR 8" FLOPPY DISK}

Under Tarbell Double-Density CP/M, single and double density disks may be intermixed. The system automatically determines whether single or double density is in place.
- Software select single or double density.
- Phase-locked-loop and write precompensation for reliable data recovery and storage.
- On-board phantom bootstrap. PROM is disabled after bootstrap operation so all 64 K memory address space is available to user.
- DMA in single or double density permits multi-user oper ation.
- Extended addressing provides 8 extra address bits, permitting direct transfers anywhere in a 16 megabyte address range.
- Select up to 4 drives, single or double-sided.
- New BIOS for CP/M included with interface on singledensity diskette.
Double Density Interface only, assembled \& tested. \$425.
\(C P / M\) is a registered trademark of Digital Research.
merely reading in the abbreviation dictionary and replacing all abbreviation codes with the appropriate character sequence.

The only real difficulty is finding the \(m\) sequences to be abbreviated. No really good solution to this problem is known. The best solution I have seen works as follows: first, make 1 pass through the file to compute the most frequently occurring pairs. There should be no more than 2500 of these, and probably many fewer. Compute the frequency of these pairs and keep only the m or 2 m most frequent. Now consider that any sequence of length 3 both begins and ends with a subsequence of length 2 , and that these 2 subsequences of length 2 must be at least as frequent as the length 3 sequence. That is, if there are 23 occurrences of \(a b c\), then there must be at least \(23 a b\) and at least \(23 b c\). Thus we can make another pass through the file, counting the frequency of subsequences of length 3, but limiting ourselves to those sequences which begin and end with subsequences of length 2 (which
are also frequent). Next we can make another pass for length 4 (limiting the sequences to those with frequent length 3 subsequences), another pass for length 5 , and so on until we decide to stop. We can stop either when our last pass has produced no new sequences whose frequency-length product exceeds the previous set, or after a fixed number of passes.

\section*{Huffman Coding}

All of the schemes for text compression discussed so far are similar in the sense that they confine themselves to working within the given character code and byte structure. Even more savings can result from recoding the character code representation itself. Almost all character code representations use a fixed code size: 6 bits for binary coded decimal(BCD), 7 bits for ASCII and 8 bits for EBCDIC. This can be very wasteful of space.

Consider the simple problem of encoding the 4 characters \(A, B, C\), and \(D\). If we use a fixed code size, then we could encode each character with 2 bits, as follows:

\title{
Introducing... MINHFLEX Designed Specifically to Protect 5" Diskettes
}

> The Newest Member of The Advance Access Diskette Protection Family

For Further Information CALL TOLL FREE \(800323-0254\)
ADVANCE ACCESS GROUP
10526 W. Cermak Westchester, IL 60153312 562-5210
"Manufacturers of Information Processing Supplies"

A 00
B 01
C 10
D 11
But suppose that the letter \(A\) occurs \(50 \%\) of the time in the text, \(B\) occurs \(25 \%\) and \(C\) and \(D\) split the remaining \(25 \%\) equally. Then the following variable length character code will produce a shorter average text length.
\[
\begin{array}{ll}
\text { A } & 0 \\
\text { B } & 10 \\
\text { C } & 110 \\
\text { D } & 111
\end{array}
\]

To compute the average text length, consider that, out of \(\mathbf{n}\) characters, \(\mathbf{n} / 2\) will be \(A\) which requires only 1 bit, \(\mathrm{n} / 4\) will be \(B\) for 2 bits each and the remaining \(n / 4\) will be \(C\) or \(D\) for 3 bits each. Thus the total number of bits to represent \(\mathbf{n}\) characters is:
\(1(n / 2)+2(n / 4)+3(n / 4)=1.75 n\)
Comparing this with the 2 n bits needed for the fixed length code, we see that we have saved \(12.5 \%\) of the total file size.

Variable length coding and decoding is somewhat more complex than fixed length coding, but not really difficult. It involves much more bit manipulation. To encode a string like \(A B A A B C D A B\), we simply concatenate the bit representations of each character, packing across byte boundaries as necessary.
\[
\begin{array}{ccccccccc}
\text { A } & \text { B } & \text { A } & \text { A } & \text { B } & \text { C } & \text { D } & \text { A } & \text { B } \\
0 & 10 & 0 & 0 & 10 & 110 & 111 & 0 & 10
\end{array}
\]

To decode, we must scan from left to right, looking at each bit. For the string 01001100 , we notice that the 1st bit is a 0 . Only \(A\) starts with 0 , so our 1st character is an \(A\). The next bit is a 1 , so it could be a \(B, C\) or \(D\), but looking at the next bit we see that the next character must be a \(B\). We remove the 2 bits for the \(B\), and continue. The next bit is 0 , so the next character is an \(A\). The following bit is a 1 , signifying either a \(B, C\), or \(D\). The next bit is a 1 , signifying a \(C\) or \(D\). Finally the next bit indicates a \(C\). The last character is an \(A\). So our decoded text is \(A B A C A\).

Computer stored text files can benefit greatly from Huffman coding. Huffman coding can be used anytime

\title{
IDS Announces S-100 Energy Management Module
}

The 100-EMM Energy Management Module provides temperature measurement at four separate locations indoors or out; monitors eight (8) doors, windows, or fire sensors; controls six external devices via relay or optoislator; and provides an intrusion alarm with battery backup (alarm operates even during primary power outages). Put the 100-EMM to use in your home or business and claim a 30\% tax credit for the cost of your S-100 computer system including the 100-EMM. (Purchasing the 100-EMM can actually save you several times its cost in tax credits. Full instructions for filing are included in the 100-EMM manual.)

\section*{BUY THIS S-100 BOARD AND GET A 30\% TAX CREDIT BASED ON THE COST OF YOUR COMPUTER SYSTEM!}

\section*{100-EMM Energy Management Module Assembled and Tested \(\$ 395.00\) Kit \(\$ 345.00\)}

\section*{Options for 100-EMM:}

CP-52 Cable Panel - Terminates two 26-conductor flat cables in 26 screwlugs. Use it for convenient interconnection of the 100-EMM to the "outside world". \$45.00

CABL-26-STD 26-Conductor Flat Ribbon Cable - Four feet in length with connectors for 100-EMM and CP-52 above. \(\$ 35.00\) Other lengths available on special order. Add \(\$ 1.00\) per foot.

OTHER PRODUCTS FROM IDS. The most complete source of S-100 compatible modules for process control, data acquisition, energy management, and data communications.

88-UFC UNIVERSAL FREQUENCY COUNTER
Four software selected inputs. Measure frequency from O-650 MHz and period from .lus to 1 Second. Extensive software included.
Assembled and Tested \(\$ 299.00\) Kit \(\$ 199.00\) TemperatureCompensated Crystal Oscillator option \(\$ 145.00\)

\section*{88-SAI SYNCHRONOUS/ASYNCHRONOUS INTERFACE}

The most versatile serial interface on the market. Computer access/control of all data and handshake lines and provision for masked interrupts, inversion of any input or output signal, and onboard baudrate generation for \(110,134.5,150,300,600\), 1200, 2400, 4800, 9600, and many other baud rates. Many more features.

88-MODEM S-100 ORIGINATE/ANSWER MODEM WITH AUTODIALER. Software selectable baudrate provides any baudrate from 66600 baud. Provides 1.5 stop bits when operated in 5 -bit code mode. Auto-answer programs available for CROMEMCO CDOS, CP/M, North Star Horizon and MDS, and Alpha Micro.
Assembled and Tested \(\$ 395.00\) Kit \(\$ 245.00\)

Figure 6: Huffman code for the letters of the English language, based on the probabilities (frequency of occurrence) of the letters in English. The code length is inversely proportional to the frequency of occurrence of a given letter (in much the same manner as Morse code). Code lengths vary from 9 bits (for 2 and j) to 3 bits (for \(e\) and \(t\)). The average length is 4.1885 bits per letter. Five bits would be necessary for a fixed length code, a space saving of 16 percent.
the probabilities of the character codes are not equal. In fact, the more unequal the probabilities, the better the compression with a Huffman coding. Looking at a table of frequencies of the letters in English, we can see that they are quite unequal, and hence can be compressed nicely with Huffman coding.

To construct a Huffman code, a very simple algorithm is used (refer to figure 6). First, it is necessary to compute the probabilities of the characters to be encoded. This requires 1 pass through some sample text, a part
of a file, the whole file or several files, as desired, counting the occurrences of different characters. Then we need to sort the characters according to their frequency. Take the 2 least frequently occurring characters, and combine them into a super character whose frequency is the sum of the 2 individual characters. The code for each of the 2 characters will be the code for the super character followed by a 0 for one character and 1 for the other. Now delete the 2 least frequently used characters from the list and insert the new super character
into the list at the appropriate place for its frequency. Continue this process until all characters and super characters are combined into 1 super character. The result is a Huffman code of minimal average code length. The Huffman code may best be seen as a binary tree with the terminal nodes (leaves) being the characters which are encoded.

Huffman coding can be quite successful in text compression, in extreme cases reducing the size of a file more than half. The basic technique can be improved upon in a number of ways. For example, pairs of characters, rather than single characters, can be used as the basis of encoding. This requires a much larger table of character frequencies, since now we need to compute the frequencies of character pairs, and larger tables of character pair and Huffman code associations, but can result in greater savings.

Another possibility is to use conditional Huffman coding. The objective here is to utilize the fact that the probability (frequency) of a character will vary depending upon what character precedes it. For example, compare the probability of a \(U\) following a \(Q\) (nearly 1) to the probability of a \(U\) following a \(U\) (nearly 0). So an optimal encoding should use a very short code for a \(U\) which follows \(Q\) and can use a very long code for a \(U\) which follows a \(U\). The encoding algorithm involves computing the frequency with which each character follows every other character. A separate Huffman code is then computed for the characters which follow each character. The encoding scheme remembers the last character encoded and uses that to select the code to be used for the next character. The decoding algorithm must also remember the last character decoded in order to be able to select the correct decoding algorithm.

Huffman codes are really quite simple, but they can be made more sophisticated to achieve increased text compression. However, even with simple Huffman codes, some problems can arise. First, notice that Huffman encoding and decoding both involve a great deal of bit manipulation, which can be very slow to program. Second, the best compression is achieved if a Huffman code can take advantage of the unequal fre-

\section*{Isnititime you put some of yourideas inmotion? -}

Well now you can. The Terak 85 I0/a was built to bring graphics to life.

This unique, completely selfcontained, stand alone, desk top graphics computer gives you an animation capability that, until now, could only be obtained with a larger, more expensive system.

The nerve center, a powerful 16 -bit microcomputer, allows effective animation, making it ideal for design, simulation, and modeling.

And an independently controlled 4 K read/write memory allows the creation of an unlimited number of character sets.

This, coupled with the two ported main memory, allows the \(8510 / a\) to simultaneously display animated graphics and text. Until Terak, this capability could only be found in far more expensive systems.

What's more, Terak supports U.C.S.D., PASCAL, DEC RT-11, BASIC and FORTRAN IV software.

But the best part is the price. Only \(\$ 7,850\). That's roughly half the cost of our nearest competitor's system-with roughly twice the competitor's capability.

So if you want to make the most of your ideas, put 'em in motion with a Terak
\(8510 /\) - the best priced performer on the market.

For more information, write Terak Corporation, 14405 North Scottsdale Road, Scottsdale, Arizona 85254. Or call (602) 991-1580.

quencies of characters in a file, but these will differ from file to file. Thus a separate encoding may be best for each file. This can be done by appending the code at the front of a file (as with the dictionaries used for abbreviations) but this increases the size of the file (significantly for small files).

Third, the variable length code nature of Huffman coding can make them extremely vulnerable to transmission or storage errors. In a fixed length code, if 1 bit is changed, only that 1 character is affected, while with Huffman codes, both that character and all succeeding characters may be decoded incorrectly because of a mistake in the assumed length of the incorrect character. (A similar problem would happen to a fixed length code if a bit were dropped or added.) Thus, for safety, it is necessary to add error detection and correction redundancy back into the file, increasing its size.

Still there are environments in which Huffman coding can be quite useful. Consider a word processing system storing files on a low speed serial device such as a cassette. Since
the system is special purpose, one can compute the expected frequencies of English characters and use 1 Huffman code for all files. Encoding and decoding would be done automatically by the tape driver routines. Alternatively the encoding and decoding could be built into the tape drive hardware itself as special purpose logic or a small processor with a read only memory encoding/ decoding table. This encoding/ decoding approach would be totally transparent to the user. The only effect on the user would be the ability to store a larger, but variable number of "characters" on a fixed amount of tape.

\section*{Conclusions}

The amount of storage space needed to store information can be greatly reduced by simple text compression techniques like the ones we have presented here. Each of the techniques presented can save some space in many files. And many of the techniques can be used one after another to achieve more and more compression. Text compression can be a sim-
ple and effective method of increasing the amount of storage available in exchange for some processor cycles. -

\section*{REFERENCES}
1. deMaine, P A D, The Integral Family of Reversible Compressors, Computer Science Department, Pennsylvania State University, 1971.
2. Dishon, Y, "Data Compaction in Computer Systems," Computer Design, volume 16, number 4, April 1977, pages 85 to 90.
3. Huffman, D A, "Method for Construction of Minimum-Redundancy Codes," Proceedings of the IRE, September 1952, pages 1098 to 1101.
4. Knuth, D E, The Art of Computer Programming: Volume 1, Fundamental Algorithms, second edition, Addison-Wesley, Reading MA, 1973.

5 . Peterson, J, Bitner, J, and Howard, J, On the Selection of Optimal Tab Settings, Department of Computer Sciences, University of Texas, December 1977.
6. Rubin, F, "Experiments in Text File Compression," Communications of the ACM, volume 19, number 11, November 1976, pages 617 to 623 .

\section*{A Delicious Slice of applé Pie.}

The Standard APPLE || Business System: APPLE || PLUS personal computer with 48K RAM memory, 2-DISK II floppy Disk Drives, Video Monitor, THE CONTROLLER business software, PRINTER IIA

\title{
OUTPERFORMS THEM ALL!
}

[7]CHECK THESE FEATURES...
- 80 or 120 columns (sottware selectable)
- Double width printing
- Non-thermal paper, pin feed
- 125 CPS, 70 lines per minute
- \(9 \times 7\) dot matrix
- Vertical format unit
- 96-character ASCII (upper and lower case)
- Adjustable forms width
- Parallel, serial (RS-232), and IEEE-488 interfaces available

We've researched the under- \(\$ 1,00080\) column dot matrix printers currently available, and have made some key comparisons in the chart to the right. Check it out.
All the printers support the full 96 character ASCll set, print on pin feed non-thermal multi-copy paper, accept forms in various widths up to \(9.5^{\prime \prime}\), and easily interface to all popular small computers.
If you want to print graphics or feed single sheets of paper through your printer, we can't help you. But if you want as much data buffer storage as you can get, a \(9 \times 7\) dot matrix for better looking characters, a condensed character set that's great for printing multiple columns of numbers, a readily available low cost ribbon, and documentation that includes complete schematics and troubleshooting procedures, then we can help you a lot. And we can offer you something else that's new to the low-cost printer market. Our 30 day BUY BACK guarantee. If you buy a MICROTEK printer and are unhappy with it, for any reason, you can return it within 30 days for a full refund. it's that simple.

Does MICROTEK really outperform them all? You be the judge.
\(\square\) CHECK THIS CHART...
\begin{tabular}{|l|c|c|c|c|c|c|}
\hline \multicolumn{1}{|c|}{ Features } & \begin{tabular}{c}
MICROTEK \\
MT-8QP
\end{tabular} & \begin{tabular}{c}
Anadex \\
DP-8000
\end{tabular} & \begin{tabular}{c}
Centronics \\
730-1 \\
(Radio Shack \\
\(26-1154)\)
\end{tabular} & \begin{tabular}{c}
Super Brain \\
LP-80
\end{tabular} & \begin{tabular}{c}
Integral \\
Data \\
440
\end{tabular} & \begin{tabular}{c}
MPI \\
88 I
\end{tabular} \\
\hline \(9 \times 7\) Dot Matrix & Yes & Yes & No & No & No & No \\
\hline \begin{tabular}{l}
Sustained thruput \\
for full lines
\end{tabular} & 70 LPM & 84 LPM & 21 LPM & 63 LPM & 42 LPM & 60 LPM \\
\hline \begin{tabular}{l}
Selectable condensed \\
character set
\end{tabular} & Yes & No & No & No & Yes & Yes \\
\hline Full function VFU & Yes & Yes & No & No & Yes & No \\
\hline Built-in self test & Yes & No & No & No & Yes & No \\
\hline Graphics option & No & No & No & No & Yes & No \\
\hline \begin{tabular}{l}
Accepts single sheets \\
of paper
\end{tabular} & No & No & Yes & No & No & Yes \\
\hline Ribbon costs & \(\$ 2.00\) & \(\$ 3.00\) & \(\$ 4.50\) & \(\$ 4.00\) & \(\$ 12.00\) & \(\$ 9.95\) \\
\hline Cost of 2k/4k buffer & \(\$ 42 / \$ 80\) & \(\$ 45 /\) NA & NA/NA & NA/NA & \(\$ 199 * / N A\) & \(\$ 50 /\) NA \\
\hline Unit price & \(\$ 750\) & \(\$ 995\) & \(\$ 970-\$ 995\) & \(\$ 890\) & \(\$ 995\) & \(\$ 749\) \\
\hline
\end{tabular}
- Memory buffer alone not available, includes graphics option

Comparison data from manufacturer's current (September '79) literature.

\section*{NOW CHECK THIS COUPON...}
\begin{tabular}{l}
\(\square\)\begin{tabular}{l}
Send me more information \\
MICROTEK, Inc.,7844 Convoy Court, San Diego, CA 92111 \\
(714) 278-0633
\end{tabular} \\
\begin{tabular}{l}
Name \\
Address \\
City \\
Phone
\end{tabular} \\
\hline
\end{tabular}

\title{
Analysis of Polynomial Functions with the TI-59 Calculator
}

\section*{Part 1}

\author{
Pierre Chancé \\ 20 Rue de Longchamp \\ 75116 Paris FRANCE
}

Between the elementary functions accessible by direct calculation and higher-order equations reserved for the computer, there exists an intermediate domain where programmable calculators are useful.
Certain concrete problems sometimes lead to such equations without this creating an exceptional volume of calculation. Some have been encountered, for example, in the handling of small 6 by 6 matrices concerning medical data. Other technicians are also familiar with this type of obstacle in their fields. Consequently, the feeling is that it is worthwhile proposing a convenient program worked out on the Texas Instruments TI-59 and designed for sixth-order and lower-degree polynomial functions.
Independent of the advantages in mathematical terms, I hope that this article will give the user a meaningful introduction to this highly advanced calculator. For practical reasons, the original goals were as follows:
- calculate all the characteristic elements of the function (roots, maximums, minimums, and points of inflection where applicable)
- automatically plot the function curve
- control the program with a single key

Obtaining these conditions virtually eliminates any chance of operating error, and frees the user for other tasks once the calculation has begun. This is especially the case since the main program can be stored on a single magnetic card as can the printout program. Altogether, this provides a simplified procedure which nonetheless permits execution of the successive steps in the following
sequence:
- obtaining the appropriate boundaries of the interval to be studied
- choice of the increment
- recall of the maximum error
- calculation of roots in increasing order
- printout of correctly sampled tables of values

All of the above is applicable both for the initial polynomial and for derived polynomials. Because of the geometric significance of the derivative, these provide the maximums and minimums of the function as well as possible points of inflection.

Given that excessive automation can be inconvenient in certain cases, a manual procedure has been provided to permit using the keys to enter the lower and upper boundaries of the interval to be studied along with the value of the increment desired.

After a brief discussion of the calculation principles, the main program and then the automatic printout program for the function curve will be examined. A commentary on numerical applications will conclude the examination.

\section*{Calculation Principles}

Here is the type of polynomial that will be dealt with:
\[
P(x)=a_{0} x^{n}+a_{1} x^{n-1}+\ldots+a_{n} \quad\left(a_{0} \neq 0, n \leq 6\right)
\]
where \(x\) is a real number and coefficients \(a_{0}, a_{1}, \ldots, a_{n,}\) are known real numbers.

The method used to determine the roots of \(\mathrm{P}(\mathrm{x})=0\) is

Sometimes the true value of a product fails to relate to its selling price. Van Gogh's paintings once sold for less than \(\$ 1,000\). Base 2's MODEL 800 printer sells for lots less than \(\$ 1,000\), but it does more than printers costing twice its price (and a lot more than a Van Gogh painting).
Besides being beautiful to look at, the MODEL 800 prints up to six different character fonts with embedded elongation in any of five line densities (\(72,80,96,120\) and 132 characters per line), prints up to three copies and is equipped with a long-life cartridge ribbon. With such versatility as four interface modes (IEEE 488, industry standard parallel, 20 ma current loop and RS232), baud rates up to 19,200, and with accommodations for 115 VAC or 230 VAC operation, the MODEL 800 matches any system decor.

As a note of further new world refinement, the MODEL 800 can be optionally equipped with high speed paper advance and graphics output, a versatile tractor feed mechanism, terminal buffer memory, tabs and form feed.

Requiring only a square foot of space, the MODEL 800 is smaller than its contemporaries; its rugged aluminum construction is designed to stand the test of time.

Isn't it time you added a new masterpiece to your collection?

Recommended retail price:
Standard MODEL 800
\$499
High. speed paper advance 50

Tractor mechanism 50
Terminal buffer memory 5050

The most widely used Pascal system. Compilers to complete development software. For most popular microcomputer systems. With full documentation and support. From one source.

\section*{9494 Black Mountain Road}

San Diego, CA 92126 714/578-6105
UCSD Pascal is a trademark of the Regents of the University of California.

Find out more. Send this coupon.
\(\square\) Please send UCSD Pascal description and order form.
\(\square\) Please send distributor and volume license information.

\section*{Name}

Title
Company
Address
City/StatelZip
Computer system
Send to: SofTech Microsystems
9494 Black Mountain Road
San Diego, CA 92126
Byte 12
bipartition. This consists of successive dichotomies of the interval (a, b) chosen with the function being continuous over this interval. The calculation is performed sequentially, and the step increment is designated by \(\Delta x\).

To determine the root of the equation which belongs to the segment \(\triangle x\), the latter is divided in two, and the calculator retains that half at whose extremes the function has opposite signs. The new shortened segment is further divided in two, and the process is repeated iteratively until the upper value of the residual interval is limited by the error limit. The middle of this final interval represents a root of the function to within the error.

This method provides only a single value in an interval \(\Delta x\) and requires more calculating time if boundaries a and \(b\) are taken too far apart. If they are taken too close together, the risk is obviously one of losing a root; the same applies if \(\Delta x\) is too large. Therefore we attempt to eliminate these drawbacks due to too much and too little by programming Lagrange's theorem. This replaces a subjective estimation of the boundaries by a calculation guaranteeing a reliable interval (a, b).

Let \(a_{0}>0\) and \(a_{k}(k \geq 1)\) be the first of the negative coefficients of the polynomial \(\mathrm{P}(\mathrm{x})\). The following number as the upper limit of the positive roots of equation \(\mathrm{P}(\mathrm{x})=0\) can then be used:
\(R=1+\sqrt[k]{\frac{B}{a_{0}}}\)
where \(B\) is the largest of the absolute values of the negative coefficients of the polynomial \(\mathrm{P}(\mathrm{x})\). Now the user no longer has to distinguish the two values of \(x\) between which the roots are supposed to fall. The calculator finds and prints them. To determine the possible limit of the negative roots of the equation, use \(x=-z\). This involves changing the sign of the coefficients of the odd registers. However, if the latter equation has no positive roots, the initial equation has no negative roots and the calculator will not provide any.

Optimization of the process is completed by another method. As soon as a root is found, it serves as the lower boundary of the cycle of the following calculation. This sets the increment interval in the new segment to be explored. The correction is aimed at improving the reliability of root detection: this is an essential point.

Observe that details of the program code depend on some of the special capabilities of the TI-59 and PC-100A printing cradle. Naturally, the reader is referred to the instruction manual for full details. In passing, it is merely my intention to mention the decisive factors in my work.

The user has 960 program statements or 100 storage locations available with the possibility of adjusting their respective size as a function of the problem. Each memory block occupies eight program statements. The standard distribution adopted uses 480 program statements and sixty data-storage locations which will be filled entirely. The micromemory connects to the calculator and provides a library of twenty-five programs totalling 5000 steps.

Of the forty functions to which the OP key provides

\section*{DOUBLE DENSITY A CAN OF WORMS?}

DATASPEED believes it's time
standing rumor to rest. Double density disk recording is alive and well and living in hundreds of DATASPEED disk controllers around the world. Many companies are advertising double density disk controllers - some have even delivered a few - but hundreds of delivered AND WORKING systems prove that DATASPEED is the front-runner in double density disk systems.

\section*{½ MEGABYTE OF DISK STORAGE \$295 ASSEMBLED}

The DATASPEED CONDUCTOR \({ }^{\text {M }}\) disk controller will put \(1 / 2\) megabyte of storage on any standard 8 " disk - reliably. It also alows DOUBLE-SIDED recording for a fantastic 1 megabyte of storage on a single flexible diskette - reliably. We guarantee it.

THE CONDUCTOR can also offer the same guaranteed reliability for \(5 \frac{1}{4}\) " diskettes in either single or double density and single or double sided modes. THE CONDUCTOR comes fully assembled and fully tested and can even be ordered with a customized, ready to go CP/M \({ }^{\text {M }}\) that performs disk accesses almost twice as fast as most other double density CP/M's.

\section*{DRIVE SYSTEMS - FROM \$1095}

DATASPEED is also offering COMPLETE DISK systems. For instance, you can order a single drive system for just \(\$ 1095\) that includes:

1 Shugart SA800 8" disk drive (\(1 / 2\) megabyte)
1 DATASPEED CONDUCTOR disk controller
1 cable with connectors for 2 drives
1 attractive horizontal cabinet with space for 2 drives
12 drive power supply
The above system also includes everything you need to upgrade to a dual drive system at a later date - just plug in any standard \(8^{\prime \prime}\) disk drive and you've got 1 megabyte of disk storage - or you can order a double drive system from us (as above but with 2 Shugart drives) for just \(\$ 1649\)

\section*{IEMINDER}

PECIAL OFFER EXPIRES ANUARY \(15^{\text {th }}\)
RIVE SYSTEM- \(\$ 1095\) 'ITH FREE SOFTWARE

\section*{E OSBORNE ACCOUNTING SOFTWARE}

For a limited time. DATASPEED will include with any drive system - FREE - the entire Osborne accounting software package (CBASIC-2 \(2^{\text {m }}\) Version) on double density diskettes. (Requires CBASIC-2 available from DATASPEED for \(\$ 95\) - manuals available separately). The software is available elsewhere in this publication for up to \(\$ 750\) !!!
(OFFER EXPIRES JAN. 15, 1980)
AVAILABLE NOW!!
'DATASPEED is shipping controllers and drive systems off the shelf. Not in three months or six months - NOW!!! To order, see your local
computer retailer - or order directly from us. (Because of the extraordinary prices, the complete drive systems are only avallable directly from DATASPEED). We accept checks. Master Charge and Visa

\section*{ASK ABOUT OUR VIDEO CONTROLLER}

Also, ask about the new DATASPEED memory-mapped video controller!! It features an \(80 \times 24\) character format, user programmable character set, 128 bytes of user RAM, 1 or 2 K of user ROM and HARDWARE SCROLLING!!

access, special mention can be made of the following:
- printout of alphanumeric characters
- sign indicator
- error indicator
- incrementing and decrementing of memories
- listing of memory content
- listing of labels

Lastly, the T register is very important. Here, it is possible to store and recall a number and test it with respect to the contents of the display register.

In the final analysis, the TI-59 has the quantitative and qualitative features which prove useful in writing a program of the type that is being presented.

\section*{Main Program}

\section*{Data entry:}

For reasons of efficiency, the initialization sequence and data entry is not placed at the beginning of the program but at statement 066 with the LBL A instruction and statement 073 with the LBL B instruction (see listing 1). The coefficients of the polynomial are stored by conventional indirect addressing from \(x^{6}\) at \(R_{16}\) to \(x^{0}\) at \(R_{10}\) with a zero introduced when a corresponding term of a power of \(x\) is missing.

\section*{Evaluation of the polynomial:}

This is the role of the LBL \(A^{\prime}\) instruction placed at location 000 to save calculating time, since this sequence is called frequently.

Determination of boundaries and step increment:
The calculation is monitored by LBL C which, in particular, uses subroutines RCL and STO and PGM 08 of the Solid-State Software. After execution of the sequences the following results are given:
- the lower boundary a is printed out at location 091
- the upper boundary \(b\) is printed out at location 099
- the absolute value of the interval (b-a) is printed out at location 117
- the step increment \(\triangle x\) is printed out at step 124 immediately after steps 120 thru 122 which contain the variable number of partitions of interval (\(a, b\)) or 020 in our listing

The appearance of a zero as a boundary value means the absence of roots for the interval considered, the coefficients of the polynomial being positive or zero. And by three successive calls (PGM 08 A, PGM 08 B, PGM 08 C) program \(C\) finally aligns the assignments with those of the library by storing \(a\) at \(R_{01}, b\) at \(R_{02}\) and \(\Delta x\) at \(R_{03}\).

\section*{Program execution:}

This discussion of the mathematical method used will save the trouble of describing the principles again. As for execution:
- LBL RCL (statement 133) changes the sign of the coefficients of the odd registers (\(\mathrm{R}_{15}, \mathrm{R}_{13}, \mathrm{R}_{11}\))
- LBL STO (statement 155) plays a complex role. At statement 176, it stores the first coefficient which is

Listing 1: Main program listing of the polynomial-function analysis on the TI-59.

. . . "Though it may look like many other microcomputer systems . . . Prodigy One literally speeds away from them . . ." - Max Schindler, Sottware EditorELECTRONIC DESIGN.

Your local Prodigy dealer maintains an extensive library of field proven application software. Available applications include General Ledger, Accounts Receivable, Accounts Payable, Payroll, Medical Billing, and a remarkable system for the Personnel Placement Industry. All are easy to use yet provide a level of sophistication unheard of in its price class. And Prodigy also does word processing!

Prodigy systems are supported by a nationwide organization of thoroughly trained, experienced professionals. Your Prodigy dealer is a SINGLE source for hardware, software and a level of service that continually insures effective, trouble free operation.
Speed, sophistication, and low cost; an incredible combination for a small business computer. Would you expect less from a PRODIGY?

Listing 1 continued:

not zero in register \(R_{07}\) and recalls its rank in \(R_{00}\) to store it at STO 20.

At statements 182 thru 192, all the terms of the polynomial, starting with the first, are divided by the first coefficient which is not zero. This make \(a_{0}\) positive and equal to 1 . This operation must be kept in mind to correctly interpret the change from one polynomial to the next when reading the results.

Location of the first negative coefficient to determine its value and rank begins at statement 196 and uses two loops, statements 203 thru 205 and 207 thru 219. Finally, if the negative coefficient exists, its absolute value is stored in register \(\mathrm{R}_{07}\) and its rank in register \(\mathrm{R}_{02}\), and then its relative position with respect to the first coefficient which is not zero is stored in register \(R_{20}\). Incidentally, the register number of a coefficient (\(\mathrm{R}_{01}\)) can be determined easily by adding 9 to its ordinal number (\(\mathrm{R}_{00}\)).

The calculation of the negative coefficient which has the highest absolute value starts at statement 233 and uses the T register with a relatively sophisticated process. This employs four loops, 251 thru 242, 245 thru 267, 271 thru 249 and 279 thru 249. The evaluation of R in Lagrange's formula takes place at statements 255 thru 265.

On the whole, the STO program can be considered to end with the RTN instruction of statement 218 with a long conditional branch with multiple options which operates as a subroutine and ends at the RTN of statement 266.

\section*{Maximum error:}

This factor is introduced by LBL D (statement 283) which is none other than the assignment of the error \(\epsilon\) in \(\mathrm{R}_{03}\) in accordance with the assignment of PGM 08 D in the library. From experience it can be seen that repetition of the error coefficient for each calculation sequence constitutes a constraint, and that setting it at 0.01 in the absence of error entry, as provided by PGM 08, does not really spare the user from this preoccupation.

The fact is that although the precision required varies from one operator to the next, everyone generally uses a rather constant factor for a series of calculations.

It is thus practical to keep \(\epsilon\) in the program, even if this means modifying it to the programming mode as soon as the need arises. This is the role of LBL D' (statement 399) where statements 400 thru 410 can contain \(\epsilon\) up to \(1 \times 10^{-10}\) unless less precision is preferred. It is then sufficient to fill the empty spaces with NOP instructions or simply with zeros after the first significant figure. Since LBL D' calls \(D\) at statement 411 but is itself called by \(C\) at

\section*{S－100，6－PORT COMMUNICATIONS}

－INTERFACES MULTI TERMINALS，COMPUTERS， PRINTERS，MODEMS，ETC．
－2，4，OR 6 CHANNELS； 2 OPTIONAL RTC＇S
－SELECTABLE I／O ADDRESS
－PROGRAMMABLE SYNC．CHARACTERS
－SYNC AND ASYNC
－HARDWARE ERROR CHECKING（CRC－16，CCITT）
－COMPLIES WITH：EIA RS－232C STANDARD；IEEE PROPOSED S－100 BUS STANDARD
FULL 6－PORT CONFIGURATION（ASSEMBLED AND TESTED）
\(\$ 895.00\)
For information，contact：Dianne Polk（703）893－4330 \(\times 100\)
Inco，Inc．
7916 Westpark Drive a McLean，Virginia 22102

\section*{กスニムรスベ＂}

\section*{KEYED FILE MANAGEMENT SYSTEM}

Sophisticated applications made simple．
Put data at your fingertips．．．easily accessed．displayed，and updated by key．MAGSAM＂allows your CBASIC programs to create and access sophisticated keyed file structures through simple CBASIC statements．
Poweriul，allordable，and easy to use．
MAGSAM \({ }^{*}\) is now available in three versions offering an array of features and capabilities．Standard MAGSAM＊features include random by key，sequential by key，generic by key．randomly by record number，and physical sequential access techniques．Each MAGSAM \({ }^{\text {T }}\) Package incudes the MAGSAM \({ }^{\text {＂}}\) file manager，tutorial program，file dump utility，User Guide，Reference Card，and one year update service
－MAGSAM \({ }^{\text {－}}\)－Most advanced version．Secondary Indexing with any number of keys，and Record and Key Deletion with automatic reuse of freed space
\＄145 \(\dagger\)
－MAGSAM II \({ }^{\text {T }}\)－Single Key support with full Record and Key Delete capability．．．\(\$ 99 \dagger\)
－MAGSAM I＇4－Entry level version．Single Key support without Delete functions．．\(\$ 75 \dagger\) －MAGSAM＇User Guide only－comprehensive tutorial and reference manual．

Available for \(8^{\prime \prime}\) soft sector．Micropolis，and TRS－80 disk formats． Requires CP／M＇or derivative and CBASIC．Distributed as CBASIC subroutines in source form．
Visa and Masterchagre welcome．Dealer and OEM inquiries invited．

\section*{SYNCHRO－SOUND NOW OFFERS} The Personal，Affordable Home Computer by ATAR \({ }^{\text {® }}\)

Designed for education，entertainment，business and household management applications．．．connected to your home TV，with Color Graphics in 16 colors．

ATARI \(400^{\text {TM }} 57\) key monopanel keyboard with U／L case．8K RAM． 8 K ROM expandable to 16 K ．

ATARI 800 \({ }^{\text {TM }} 57\) fullstroke keyboard with U／L case． Cassette recorder．8K RAM expandable to 48 K ． 8K ROM expandable•to 16 K ．Printer and floppy disk accessories available．

CALL FOR LOW INTRODUCTORY PRICES

\section*{HOLIDAY SALE ON TELETYPE Good until December 31}

\section*{TELETYPE MODEL 43}
- 4320 AAA (TTL interface) \(\$ 945\)
- 4320 AAK (RS232 interface) \$1,045
with transformer to operate on \(50 \mathrm{~Hz}, 220 \mathrm{v}\), installedinside cabinet add \(\$ 75\)We stock paper and ribbontor the Teletype Model \(4 \dot{3}\)
PET, NEC SPINWRITER, DIABLO, CENTRONICS, TRS-80, PER SCl also available.
HAZELTINE 1500 (assembled only) \(\$ 945\)
1510. \$1,085
with \(50 \mathrm{~Hz}, 220 \mathrm{v}\) current adaptation \$100
also available with Danish, German or French character sets add \(\$ 30\)
INTERTUBE II \(\$ 800\)
IMS 5000 SERIES, COMPLETE Z80 SYSTEM2 /O ports, 1 K EPROM bootstrap loader, doubledensity, dual \(51 / 4\) " disks, CP/M. S-100, 12 slot main-frame. A new rising star! No waiting.
MARINCHIP SYSTEMS M9900
ELEGANT 16 BIT CPU, S- 100 COMPATIBLE
Multi-user, multi-processor operating system. PASCAL, Extended precision commercial BASIC, FORTH, META \& applications package. Complete kit and DISCEX soft- ware \(\$ 550\); Assembled \(\$ 700\). We configure systems to meet your budget \& your needs. Hard Disk interface (with software) available.
IMS MEMORY, 16K Fully static, 250 ns \$285
TEI S-100 Mainframes
12 slot - MCS 112 \(\$ 433\)
22 slot - MCS 122 \(\$ 609\)These mainframes are completely assembled, testedand contain everything required for plug-in operation.
TARBELL Floppy Disk Controller \(\$ 255\)
Other Tarbell products available.
UPGRADE DECWRITER IIFor 1200 Baud operation.Microprocessor-based Controller from Datasouth . . \$750
INNOVEX - the most reliable 8 " floppy drive on themarket! MTBF greater than 8,500 hours. Head life greaterthan 15,000 hours under normal operating conditions.Shugart compatible.
Drive alone \$ 522
2 drives with power supply and cabinet \$1,565
SIEMENS DRIVES
8" Double Density, Shugart Compatible \(\$ 420\)
MODEM: "THE CAT" from Novation \(\$ 190\)Originate/Answer. 300 baud.

TO ORDER: We ship within 24 hours after receipt of certified check, money order or cashiers check. Credit cards: add 4\%. Personal checks: allow ten days. \(\$ 12\) shipping for terminals. \$3 for memories and modem. New York residents include sales tax. Prices and availability subject to change without notice.
-WE EXPORT TO ALL COUNTRIES-
-OVERSEAS CALLERS USE (212) 448 '6298 ONLY -
We have no reader inquiry number. Please call or write.

\section*{JOHN D. OWENS ASSOCATES INc. 12 SCHUBERT STREET (New Address) STATEN ISLAND, NEW YORK 10305 (212) 448-6283 \\ (212) 448-6298}
statement 129 , it is clear that key \(C\) finally controls recall, printout and then entry of the maximum error \(\epsilon\) programmed by the operator.

\section*{Calculation of roots:}

The heart of this calculation is PGM 08 E from the library which we call at statements 292 and 309. Determination of the successive roots is implemented by our LBL E (statement 291). From the second root, the lower boundary a takes the value of the preceding root augmented by a minimum quantity equal to \(\epsilon \times 10\). This augmentation is an artifice designed to move the calculator off the solution it has just found.

The process continues up to unsuccessful exploration of the last interval. At printout this initiates the characteristic series of \(9.999 \ldots\) ? provided by the manufacturer's PGM 08. LBL E itself is controlled by LBL \(C\) at statement 130 . This is why key \(C\) in fact initiates determination of the roots at the right time.

Tables of values of \(x\) and \(P(x)\) :
These two tables are successively printed out by LBL \(C^{\prime}\) (statement 323) which samples thirty-nine suitable stored values of \(x\) from registers \(R_{21}\) thru \(R_{59}\) and replaces them immediately in the same registers with the thirtynine corresponding values of \(P(x)\). The median of \(x\) may be very close to zero. This means that the median of \(\mathrm{P}(\mathrm{x})\) corresponds to the value of the polynomial for \(x=0\) when \(P(x)=P(-x)\).

The sequence \(C^{\prime}\) starts with restoration of the lower boundary a in \(\mathrm{R}_{01}\) and stores a new increment in \(\mathrm{R}_{03}\) taken from forty statements between \(a\) and \(b\). An automatic listing of the memories with loop and error-indicator control provides indexing of the values.

Sequence \(C^{\prime}\) is itself controlled by LBL \(E\) at statement 320 after FLAG 07 has used the error signal from the end of root determination. Given that LBL E is subordinate to LBL C, as was stated earlier, sequence \(C^{\prime}\) is finally implemented by key \(C\) also. Given the partition used, the thirty-nine sample values of \(x\) and then of \(P(x)\) occupy statements 480 thru 959. Those of \(P(x)\) can be recorded on a magnetic card in groups 3 and 4 for automatic printout by points of the function curve. The polynomials derived from \(P(x)\) could obviously be recorded in the same manner.

Calculation of derived polynomials:
The derivation of each polynomial term of the general expression \(a x^{n}\) gives a term of the expression \(a n x^{n-1}\). The calculation is performed by LBL B' (statement 414) which, by depressing key \(B^{\prime}\) once, prints out all the coefficients from \(x^{6}\) to \(x^{0}\). The sequence has been designed to provide \(P^{\prime}(x)\) from \(P(x), P^{\prime \prime}(x)\) from \(P^{\prime}(x)\) and so forth as long as the polynomial remains differentiable. Since the program then divides the polynomial by its first nonzero coefficient, it will come as no surprise to find a derivative divided by this term. This in no way changes the final results.

As soon as key \(B^{\prime}\) has played its role, it is sufficient to depress key \(C\) for the derived polynomial to be handled in accordance with the same complete cycle as described for the initial polynomial. No other intervention is necessary, unless it is desired to return to the initial

Maxell has the best quality control record in the industry. So we're certain to always give you the best Floppy Disks in the world.

\section*{Some reasons why Maxell is so good.}

Every Maxell Floppy Disk is guaranteed to be perfect. We tolerate no ifs, ands, buts, excuses, or dropouts. It's that simple . . . and that tough.

In fact we have developed innovative manufacturing techniques that actually slow down certain processes, sacrificing speed to gain quality. And our unique binder system, developed by our own engineers, applies the magnetic oxide with amazing uniformity and surface smoothness.

\section*{Ten out of ten: a perfect record.}

Of course, Maxell Floppy Disks conform to ISO and IBM specifications. They also have been recommended by major OEMs, because Maxell works best with their hardware.

So open a box and know in advance that it holds ten perfect floppys. You're right to not settle for anything less. Neither do we.

Maxell offers the full range of Floppy Disks, from standard 8-inch to \(51 / 4\)-inch, plus Data Cassettes. Dealer inquiries invited.

maxell.
DATA PRODUCTS
The Quality Alternative
Maxell Corporation of America. Data Products Group 60 Oxford Drive, Moonachie, NJ 07074 Tel. (201) 440-8020
polynomial to evaluate it as a function of the roots found for the derived polynomials. This determination is only made after all the derived polynomials that are deemed useful have been used in sequence by the automatic procedure just indicated.

When the coefficients of the initial polynomial have been reentered from \(R_{16}\) to \(R_{10}\) as at the beginning, enter each root on the keyboard, and each time depress \(\mathrm{A}^{\prime}\). This evaluates the corresponding \(\mathrm{P}(\mathrm{x})\). The function curve is then completed by virtue of the geometric significance of the derivative by the following coordinates:
- to the root of \(\mathrm{P}^{\prime}(\mathrm{x})=0\) taken as the abscissa corresponds an ordinate by \(\mathrm{P}(\mathrm{x})\) which defines a maximum or minimum of \(P(x)=0\)
- to the root of \(\mathrm{P}^{\prime \prime}(x)=0\) taken as the abscissa corresponds an ordinate by \(\mathrm{P}(\mathrm{x})\) which defines a point of inflection of \(P(x)=0\) if there is one

\section*{Program of Function Curve \\ Principle:}

The curve of the polynomial is automatically plotted as shown in the program in listing 2 . It was necessary to conceive an algorithm that compensates for the relative weakness of the TI-59 in this area, since it accepts only twenty whole positive values on a 2.5 inch tape.
With the exception of special cases, the spacing of the plotted points is manifestly insufficient. It can be seen that to cover an 8.5 by 14 inch sheet of paper (a standard European A4 sheet, 21 by 29.7 cm), six strips of machine

\section*{Retro-Graphics \({ }^{\text {™ }}\)}

For your Dumb Terminal. The Retro-
Graphics PC card mounts easily in the Lear Siegler ADM-3A to provide you with an affordable graphics computer terminal.
Features:
- Z-80 Based
- Point Plotting
- 512 by 250 Dot Matrix
- Simple Plug-in Interconnect
- Automatic Vector Generation
- Optional TEKTRONIX Software Compatibility
You will be impressed with the packaging, performance and price of the Retro-Graphics card. Write or phone today for complete specifications. DIGITAL ENGINEERING, INC.

1775 Tribute Road
Sacramento, CA 95815
(916) 920-5600

Listing 2: Listing of the program that will plot the function curve.

Microcomputer Systems Division

The PET is now a truly sophisticated Business System with the announcement of these peripherals and software packages.

PET-DISK BASED BUSINESS SOFTWARE

SOFTWARE/APPLICAIION WORDPRO II / WORD PROCESSING WORDPRO III / WORD PROCESSING GENERAL LEDGER ACCOUNTS PAYABLE ACCOUNTS RECEIVABLE MAILING LIST NEECOLEDGER

NEECOMAILER
\begin{tabular}{ll}
REQUIRES & AUTHOR \\
\(2040+16 K\) PET & PRO/MICRO \\
\(2040+32 K\) PET & PRO/MICRO \\
\(2040+32 K\) PET & CMS SOFTWARE \\
COMPUTHINK. 4 & NEECO \\
\begin{tabular}{ll}
M DRIVE + 32K PET
\end{tabular} \\
\begin{tabular}{ll}
COMPUTHINK. 4 & NEECO \\
M DRIVE + 32K PET
\end{tabular} &
\end{tabular} AVAILABILITY PRICE IMMEDIATE \(\$ 100\) DECEMBER \(\$ 200\) IMMEDIATE \$295* DECEMBER \$295* DECEMBER \$295* IMMEDIATE \(\$ 100\) IMMEDIATE \(\$ 795\) IMMEDIATE \(\$ 150\) M DRIVE + 32K PET
\begin{tabular}{ll}
AVAILABILITY & PRICE \\
IMMEDIATE & \(\$ 100\) \\
DECEMBER & \(\$ 200\) \\
IMMEDIATE & \(\$ 295^{*}\) \\
DECEMBER & \(\$ 295^{*}\) \\
DECEMBER & \(\$ 295^{*}\) \\
IMMEDIATE & \(\$ 100\) \\
IMMEDIATE & \(\$ 795\) \\
& \\
IMMEDIATE & \(\$ 150\)
\end{tabular}
*The CMS Software (G/L, A/R, A/P) are based on Osborne \& Associates trial tested business basic software. Software is complete with full documentation and user instructions. All packiages require a printer for output. Commodore recommends the NEC Spinwriter (available from NEECO) as the output printer for WORDPRO.

DEALER INQUIRIES INVITED ON SOFTWARE \& NEC (PET) SPINWRITER

\section*{FOR WORD PROCESSING NEC IS BEST!}
* 55 characters per second output speed
* Changeable thimble for different typestyles
* Less than 1\% warranty malfunction rate
* IBM quality letter output
* Dealer inquiries invited

* Price includes IEEE interface to PET. IEEE Port is available for use with 2040 Dual Disk.

\section*{THE NEC SPINWRITER MODEL 5530-P \(\begin{gathered}\left(\begin{array}{c}\text { Centronics } / \text { /O } \\ \text { modified } \\ \text { for PET }\end{array}\right)\end{gathered}\)}
*The NEC 5530-P is the output printer recommended by Commodore for their Word Processing System.

NEW ENGLAND ELECTRONICS CO., INC.
679 HIGHLAND AVE., NEEDHAM, MASS. 02194
SHOWROOM HRS.: MON. - FRI. 9:30-5:30. EST.
paper must be juxtaposed. In practice, this means making the data positive, preparing a suitable format and then dividing it into six parts. Thus, the calculator can sequentially print the asterisks corresponding to the thirty-nine values of registers \(\mathrm{R}_{21}\) thru \(\mathrm{R}_{59}\). This can be accomplished in six runs.

Since asterisks will be printed for only thirty-nine pieces of data on 39 by 6 runs, a printout arrangement by points on the base line is used to mark the nonoperation. The interval between points is equal to the increment of the table of the values of \(x\).

Location in the plane is completed by two other arrangements:
- a sign in the shape of a triangle, in place of a point, marks the middle of the base line when there is no value on the zero abscissa
- the ordinates are marked laterally by a column of points with twenty per tape

\section*{Initialization and data entry:}

These operations are performed by LBL A (statement 047) and LBL B (statement 053). The lower data item entered first is stored in register \(R_{07}\), and the upper data item, entered second, is stored in register \(R_{08}\). The choice of these values determines the amplitude of the graphic reproduction. If it is desired to cover a maximum field, it is necessary to determine the extremes of the values to be reproduced by concurrently consulting the table of the values of \(P(x)\) and the group of values of \(P(x)\) for \(x\) taken from the roots of \(P^{\prime}(x)=0\).

Note that LBL B continues (statement 057) with the ad-
dition of the tenth of each value entered. This automatically provides a margin for the sheet.

Service labels:
Since there is no point in spreading signs on a page without identification, a certain number of sequences permit projections along the abscissa and ordinates. LBL ADV (statement 001) prints one point on the base line of the strip when no data appears on the corresponding abscissa. You will recognize the alphanumeric code controlled by instructions OP 00, OP 01 and OP 05.
Instead of a point, LBL PRT (statement 201) prints a small triangle in the middle of the base line. This distinctive sign marks the zero abscissa when no data item corresponds to it . This median is recognized by monitoring register \(\mathrm{R}_{40}\) in passing and, by subtracting its ordinal number, it checks for the zero condition using the T register (\(=\mathrm{t}\) or \(\neq \mathrm{t}\)). The conditional transfer is executed by means of the LBL \(=\) instruction at statement 220 and LBL PGM at statement 243 (the first being called as a subroutine at statement 043 by the LBL - instruction and the second at statement 232 by the LBL = instruction). Naturally, the T register is restored to its previous value immediately after statement 234 and before returning to the main program to serve in the test of the upper limit for the following data item.

Incidentally, it can be observed here that the user is dealing with a structure with four levels of subroutines (main program \(-\mathrm{SBR}--\mathrm{SBR}=-\mathrm{SBR}\) PGM - SBR PRT). The calculator can handle them with no difficulty, since it can accept up to six successive calls. The ordinate location is provided by LBL E' (statement 250), called at

\section*{SPECIALIZING IN QUALITY MIGROGOMPUTER HARDWHRE}

INDUSTRIAL • EDUCATIONAL • SMALL BUSINESS • PERSONAL
BUILDING BLOCKS FOR MICROCOMPUTER SYSTEMS, CONTROL \& TEST EQUIPMENT

132 December 1979 © BYTE Publications Inc
Circle 120 on inquiry card.
statement 181, which prints a column of points at the end of the tape. For reasons of economy, the alphanumeric characters are grouped in LBL D' at statement 269 and recalled as a subroutine whenever needed.

\section*{Data printout:}

LBL LOG (statement 020) prints an asterisk when the value of \(R^{*}{ }_{00}\) recalled by indirect addressing is between the lower and upper limits of the tape considered. Printout uses a special instruction OP 07. Conditional transfer is provided by LBL - which transfers execution to LBL LOG if the data item is acceptable after subtracting the value of the lower limit stored in register \(R_{20}\). Finally, the data item processed is excluded from the printing field by addition of the group of seven instructions of the tape format contained in register \(\mathrm{R}_{06}\) (statements 029 thru 035).

\section*{Data conversion:}

This operation is executed by LBL D (statement 072). It assigns the thirty-nine data items collected by recording in groups 3 and 4 of registers \(R_{21}\) thru \(R_{59}\) on completion of calculation of the initial \(\mathrm{P}(\mathrm{x})\) polynomial. However, this could just as well be a polynomial derived for another calculation purpose. The positive value and formatting of this data for printout are obtained with a better spread by dividing them by the increment of the table of values of \(x\) contained in register \(\mathrm{R}_{03}\). Each converted data item replaces the previous data item term for term in the same register \(\mathrm{R}_{21}\) thru \(\mathrm{R}_{\text {s }}\).

\section*{Tape printout:}

Printout of the six tapes is controlled by LBL E (statement 127). This sequence begins with calculation of the tape format stored in register \(\mathrm{R}_{06}\). Tape indexing depends on register \(\mathrm{R}_{01}\), initially loaded with zero at statement 146, then incremented at statement 166 and printed at statement 173. The lower tape limit is calculated at statement 165 (STO 20) and the upper limit at statement 177 for loading in the T register.

Transfer to the test of the upper tape limit is executed by instruction SBR - at statement 181. The mechanism of LBL E uses a double loop:
- 149 thru 198 for register \(R_{09}\) for data counting loaded at 39
- 179 thru 185 for register Ros for tape counting loaded at 6

The entire system is actuated by simply depressing key C, since LBL C at statement 067 monitors D and E. Part 2 of this article will discuss the numerical applications of this program. Samples will be provided to illustrate the initialization and plotting procedures to be followed to output the function curve.

\section*{Glossary}

Lagrange's method: Several theorems exist that can solve for the real root(s) of a polynomial equation by means of successive approximations. Lagrange's method obtains the real root using only integer calculations, thereby eliminating any roundoff error. This process is therefore very useful for separation of roots located in a small interval.

\section*{Newforthe APPLEII\&TRS-80*...}

\section*{the sublocic -} Gight

Experience the excitement of a new era in computer simulation as you make your landing approach after a practice flight in your FS1. Then return to the skies where enemy fighters are waiting to intercept you.
The FS1 is a visual flight simulator that gives you realistically stable aircraft control. And its beautifully accurate graphics are produced by a high-performance driver capable of drawing 150 lines per second.
Please DO NOT confuse the FS1 with other software claiming to offer flight simulation. The FS1's sophistication, speed, and beauty are way beyond the ordinary.
See the FS1 package demonstrated at your dealer's, or order directly from subLOGIC. Either way, it's only \(\$ 25\) plus 756 for UPS or \$1.50 for first class mail. VISA and Mastercharge accepted.
*16K required. Specify your system: Apple II or TRS-80 Level I or Level II.

The engineering and graphics experts opening a new era in computer simulation.

\title{
Minimizing Curve-Plotting Calculation
}

\author{
Timothy G Bowker \\ Systems Research Labratories Inc 2800 Indian Ripple Rd \\ Dayton OH 45440
}

Are you plotting the results of time-consuming calculations? The efficient routine described here will give you accurate curves with fewer calculated points.

This article is written for the most common type of plotter/software combinations which draw straight lines between calculated points. Figure 1 shows superimposed curves, both of which are plots of the function \(2^{x}\) as an example. The smooth curve is produced using a very small \(\triangle X\), while the other is created with a \(\triangle X\) equal to 2 . The marks below the \(X\) axis indicate the values of \(X\) (and \(\triangle X\), between two marks) used for the non-smooth curve. A comparison of the two curves illustrates where the greatest error occurs. When \(\triangle \mathrm{X}\) is constant and large, and straight lines are drawn between calculated points, the accuracy of a plot is less in regions of sharper curvature. The accuracy decreases in regions of greater slope (given equal curvature and constant \(\triangle X\)) because the plotted line-segment length is greater at steeper slopes.

It is often desirable to have consistent accuracy throughout a plot, and yet minimize the number of points required to plot a curve (to minimize calculation and running time). In such a case, it would be more efficient to use small values of \(\triangle X\) in regions of steep slope and/or sharp curvature, and large values of \(\Delta X\) in regions of little slope and little curvature.

Ideally, \(\triangle X\) could be adjusted so that with a minimum number of calculated points, a curve would be plotted (with discrete, straight-line segments) such that the curve appeared accurate. This result may be achieved as illustrated in figure 2. (Again, the \(\triangle X\) values used are marked below the \(X\) axis.) Note the smaller number of points calculated in the low slope/low curvature (\(\mathrm{X}<0\)) area of the curve. Compare this with figure 3 which was plotted with a constant \(\triangle X\) of 0.1 . Figure 2 has slightly better resolution at the steepest part of the curve (\(\triangle X \min \cong 0.09\)) as well as having been plotted with less than half the points required for figure 3.

Figure 4 sheds additional light on the technique. The plot is identical to figure 2 except that crosses have been marked at each plotted point. Note that line-segment lengths are similar at both ends of the plot (where curvature is slight) but that the value of \(\triangle X\) on both ends is

Figure 1: True curve superimposed on curve plotted with \(\Delta X=2\). Notice less accuracy in regions of greater slope or curvature using constant \(\triangle X\).
vastly different, as may be observed by the \(X_{i}\) markers below the \(X\) axis. Also note that where curvature is greater, \(\Delta X\) is adjusted to yield shorter line-segment lengths (as around \(X=2\)).
Figure 5 is a duplicate of figure 3 , with crosses added at plotted points, which further emphasizes the effort wasted in low slope/low curvature areas using a constant \(\Delta \mathrm{X}\).

\section*{The Method}
\(\triangle X\) may be automatically varied during the running of a plotting program by estimating the curvature and slope

\section*{Leł your LSI-II*break the 28Kkarrier \\ With our Bank-Switching family}

In LOCAL mode our memory is functionally just like DEC memory. But when you run out of memory space you're not lost. Add an inexpensive Bank-Switch Controller (BSC-256) and you can go to two megabytes. Add another and go to four megabytes.
So don't get boxed in with other brands of LSI-11* memory. Break free. Join the family:
RMA-032 32K by 16 bit RAM. \(\$ 1200\) On-board refresh (Single qty.)
RMS-016 16K by 16 bit ROM. \(\$ 300\) (Intel 2716) (Single qty.)
BSC-256 The Bank-Switch \$300 Controller (Single qty.)

Substantial quantity discounts are available. For a free copy of our Bank-Switching manual, call or write on your company letterhead.
Digital Pathways Inc.
4151 Middlefield Road
Palo Alto, CA 94306
(415) 493-5544
*Registered trademark of Digital Equipment Corporation

Figure 2: Accurate curve plotted with more efficiently selected \(\Delta X\) values (the increments for \(\Delta X\) are indicated by marks below the \(X\) axis).

Assembled, Tested and Guaranteed

Static TMS 4044 or equivalent - Fully Static \(4 K \times 1\) Memory Chips for full DMA capability, no tricky timing problems.
Fully S-100 Bus Compatible - All lines fully buffered, Dip Switch Addressable in two 8 K block, 4 K increments. Write Protectable in 2 blocks, Memory Disable using Phantom, Battery back up capability.
Bank Select - Using output port 40 H (Cromemco software compatible)-addressable to 512 KB of Ram for time share or Memory Overlap, also has alternate ports \(80 \mathrm{H}, \mathrm{COH}\).
Guaranteed - Parts and labor for one year. You may return the undamaged board within 10 days for a full refund.
Orders - You may phone for Vi.sa, MC, COD (\$4 handling charges for COD) orders. Personal checks must clear prior to shipping. Shipping-Stock to 72 hours normally. Will notify expected shipping date for delay beyu'rd this. Illinois residents add 5\% tax. Please include phone number with order.

Figure 3: Accurate curve plotted with constant \(\triangle X\). Note the unnecessary points calculated and plotted in lower-left straight line portion of curve.
of the upcoming curve. This is based on the slope of the last two plotted points and the curvature of the last three plotted points.

When there is no curvature, the plot segment length must still be limited, due to the look-back nature of the \(\Delta X\) determination routine. In other words, the routine cannot assume that the rest of the plot is straight simply because the last portion was perfectly straight. Therefore, when dealing with a curve with no curvature, no matter what the slope, this routine will plot a line segment of approximately constant length. This length is selected by the programmer to accommodate the nature of the curve being plotted and resolution requirements.

This routine may be conveniently implemented using slope, trigonometric functions, angles, and changes in angle. A strictly geometric approach, while possibly appearing better than a trigonometric one, has serious difficulties.

The present routine stores the last two values of both \(X\) and \(Y\) and finds the appropriate "plot" slope of the last plotted curve segment. (lt is necessary to be concerned with the slope as it appears plotted. The mathematical slope \(\left(Y_{i}-Y_{i-1}\right) /\left(X_{i}-X_{i-1}\right)\) will probably not equal the plot slope due to difference between the \(X\) and \(Y\) scales. If 1 inch on the \(Y\) axis covers a \(\triangle Y\) of \(M\) and 1 inch on the \(X\) axis covers a \(\Delta \mathrm{X}\) of \(N\), then the mathematical slope, \(\triangle Y / \triangle X\), should be multiplied by \(N / M\) to yield the plot slope. \(M\) and \(N\) should be fairly accurate for proper program operation.)

\title{
\({ }^{\text {Wung }}\) IC INSERTION/ExTRAGTION KIT
}

Kit includes
24-28 CMOS SAFE INSERTER
- MOS-40 36-40 CMOS SAFE INSERTER

\begin{tabular}{|l|c|c|}
\hline INS-1416 & 14-16 PIN DIP IC INSERTER & \(\$ 3.49\) \\
\hline MOS-1416 & 14-16 PIN MOS CMOS SAFE INSERTER & \(\$ 7.95\) \\
\hline MOS-2428 & 24-28 PIN MOS CMOS SAFE INSERTER & \(\$ 7.95\) \\
\hline MOS-40 & 36-40 PIN MOS CMOS SAFE INSERTER & \(\$ 7.95\) \\
\hline EX-1 & 14-16 PIN EXTRACTOR TOOL & \(\$ 1.49\) \\
\hline EX-2 & 24-40 PIN CMOS SAFE EXTRACTOR TOOL & \(\$ 7.95\) \\
\hline WK-7 & COMPLETE IC INSERTER/EXTRACTOR KIT & \(\$ 29.95\) \\
\hline
\end{tabular}

MINIMUM BILLING \$25.00. ADD SHIPPING CHARGE \$2.00. NEW YORK RESIDENTS ADD APPLICABLE TAX.

Figure 4: Identical to figure 2 except that crosses are used to indicate plotted points. Note similar line segment lengths at both ends of the curve, but vastly different \(\triangle X_{s}\) (distances between marks below \(\chi\) axis). Note also the shorter line segments in area of greater curvature.

Figure 5: Same as figure 3 with the crosses at all plotted points. Note the reasonable line segment lengths in the upper-right portion of curve, but unnecessarily short line segments in the lower left portion of curve due to the use of constant \(\triangle X\).

The arctangent of the last plot slope is computed to yield the last plot angle. Taking the cosine of the last plot angle and multiplying by the value of the desired line-segment length (using \(X\) axis units) yields the required \(\triangle X\) estimate for the next point as illustrated in figure 6. That is, when the last two line segments' curvature is zero:
\(\Delta X_{i}=X_{i+1}-X_{i}=L \cos \left\{\arctan \left[\frac{\mathrm{~N}\left(\mathrm{Y}_{i}-\mathrm{Y}_{i-1}\right)}{\mathrm{M}\left(\mathrm{X}_{i}-\mathrm{X}_{i-1}\right)}\right]\right\}\)
where:
\(\mathrm{L}=\) desired maximum line-segment length,
\(\mathrm{N} / \mathrm{M}=\) scale difference adjustment factor.

This determines the contribution to \(\triangle X\) from the plot slope (or first derivative) effects.

\section*{Notes on Figure 6}

Assume (\(X_{4}, Y_{4}\)) and (\(X_{5}, Y_{5}\)) have been plotted, and \(\triangle X_{4}\) and \(Q_{4}\) (the corresponding slope angle) have been calculated, but that \(\Delta X_{5}, X_{6}, Y_{6}\), and \(Q_{5}\) are not yet known. It is assumed that \(Q_{5}\) will be approximately equal to \(Q_{4}\), which is generally true for small line-segment

\title{
GET FREE GAMES! ...When you subscribe to SPI magazines
}

\section*{Subscribe to Strategy \& Tactics}

\section*{The Magazine of Conflict Simulation}

Now in its second decade of continuous publication, \(S \& T\) is the prime magazine of strategy gaming and military history. Every issue comes complete with a full fledged simulation game - diecut cardboard playing pieces, \(22^{\prime \prime} \times 32^{\prime \prime}\) map, and rules of play bound in the magazine. Plus fascinating historical articles, reviews, and game related material. All the great battles of history are yours to fight again in the games of Strategy \& Tactics Magazine.

\section*{Subscribe to Ares}

\section*{The Magazine of SF and Fantasy Gaming}

The first issue of this unique science fiction/fantasy magazine will appear February 1980. Each magazine will contain a brandnew ready to play sf or fantasy game PLUS stories, illustrations, reviews, articles on game strategy, as well as science-fact material. Ares will be the blending of speculative fiction and gaming, bringing new excitement to both interests. Be a subscriber and get your free bonus game!

\section*{Subscribe to MOVES}

The Magazine of Gaming Technique

A necessary companion to \(S \& T\) and Ares, MOVES carries analysis of play by experienced gamers, 'nuts and bolts' articles on game design and tough talking critiques of SPI games and those of other publishers.

YOURS FREE
When you subscribe to MOVES you'll get Arnhem the exciting re-creation of the Allied air-drop on Nazi occupied Holland. A \(\$ 4\) game - FREE!

Send check or money order to:

Dept 1101
257 Park Avenue South
New York, N.Y. 10010
Please enroll me as a subscriber to:
\(\square\) Strategy \& Tactics; 1 yr. (6 issues) plus free Chickamauga game: \$16
\(\square\) Ares; 1 yr. (6 issues) plus free Creature game: \(\$ 14\)
\(\square\) MOVES: 1 yr. (6 issues) plus free Arnhem game: \(\$ 9.60\)
\(\square\) SPECIAL: All three magazines for one year plus a fourth Mystery Free Game (worth \$4) for only \(\$ 35.64\) (a \(\$ 55.60\) values at only two-thirds the price)

ASSUME \(\Delta X_{5}, X_{6}\) AND \(Y_{6}\) ARE NOT YET DETERMINED.
\(Q_{4}=\operatorname{TAN}^{-1}\left[\frac{N\left(Y_{5}-Y_{4}\right)}{M\left(X_{5}-X_{4}\right)}\right]\) \(\cos Q_{5}=\frac{\Delta X_{5}}{H_{5}}\)
SINCE \(Q_{5}\) is UNKNOWN BUT \(Q_{4} \simeq Q_{5}\)
\(\cos \mathrm{Q}_{4} \simeq \frac{\Delta \mathrm{X}_{5}}{\mathrm{H}_{5}}\)
SINCE WE WANT \(H_{5} \simeq \mathrm{~L}\);

Figure 6: Illustration of the trigonometric estimation of next \(\triangle X\), with no consideration of curvature. The line segment lengths have been exaggerated for demonstration purposes. The plot was run with the listed program with \(L=2\) and \(C=0\).

lengths. Without considering curvature, you want \(\mathrm{H}_{5}\) to equal \(L\), the desired line-segment length. From figure 6:
\[
\frac{\Delta X_{5}}{H_{5}}=\cos Q_{5}
\]

Assume \(Q_{4} \cong Q_{s}^{\prime}\) so:
\[
\frac{\Delta X_{5}}{H_{5}} \cong \cos Q_{4}
\]

Substituting L for the desired value for \(\mathrm{H}_{5}\) :
\[
\begin{aligned}
\frac{\Delta X_{5}}{L} & =\cos Q_{4} \\
\Delta X_{5} & =L \cos Q_{4}
\end{aligned}
\]
which is the estimate used for \(\Delta X_{5}\) to yield a line-segment length approximately equal to \(L\), without consideration of curvature.

To adjust \(\Delta X\) for curvature (or second derivative) effects, the plot angle of the last plotted curve segment is subtracted from the plot angle of the previously plotted curve segment to yield the change in plot angle. This value yields a direct indication of curvature, which is not, however, equal to the second derivative.

Since you are not concerned with the sign of the curvature, only its magnitude, take the absolute value of the change in plot angle. (You were not concerned with the sign of the slope either, but since this program is designed only for plots of single valued functions of " \(X\) " (\(\Delta X>0\)), the cosine of the plot angle will always be positive, regardless of the sign of the slope, thus eliminating the need to take the absolute value.)

Taking equation 1 for \(\Delta X\) without curvature and setting the plot angle equal to \(Q\), you have:
\[
\begin{equation*}
\Delta X=L \cos Q \tag{2}
\end{equation*}
\]
for \(\triangle \mathrm{X}\) without curvature.
Perhaps the simplest way to include a contribution from the change in plot angle is in the following form:
\[
\begin{equation*}
\Delta X=\frac{L \cos Q}{1+C(P-Q)} \tag{3}
\end{equation*}
\]
where \(C\) is a weighting factor which controls the effect of the change in plot angle (curvature) on \(\triangle X\), and \(P\) is the plot angle previous to the last plot angle, Q . Thus, \(\mathrm{P}-\mathrm{Q}\) \(=\) the change in plot angle. It may be seen that equation 3 reduces to equation 2 when there is no curvature (\(\mathrm{P}=\mathrm{Q}\), \(\mathrm{P}-\mathrm{Q}=0\)). The weighting factor C is perhaps best determined by experimentation, but will probably be approximately equal to \(L\) when \(P\) and \(Q\) are in degrees.

\section*{Program Initialization and Operation}

Since the program in listing 1 utilizes a look-back algorithm, some initialization is required because there are no "previous three points" at the beginning of the program.

\section*{More than meets the eye.}

The new Series 5000 is mighty for its size. In more than several thousand ways!

In fact, it's the first small system offering over a megabyte of integrated mini-floppy capacity. And with its super memory management, you can have better than 300 k of RAM in desk or desktop versions. But hardware is just the tail of the whale...

It's the wide selection of software that really makes this system mighty.

Operating systems? Choose \(\mathrm{CP} / \mathrm{M}^{*}\) with CBASIC \(\dagger\) - the most widely accepted small computer operating system ever. Or MVT-FAMOS,** a multi-user, multi-tasking operating system with file management like the big guys. Or MICROCOBOL, \(\dagger \dagger\)
also for multiple users, but implemented in COBOL, familiar to commercial users the world over.

And application programs for these operating systems number in the thousands. From real estate to accounting, taxes to inventory control, they're all available at low cost - ready to run.

When you add these software and hardware features to Industrial Micro Systems' reputation for rugged, reliable quality products you'll begin to see it all. A lot more system than yourfirst glance reveals.

See even more at your dealer. Call us to find out the name of your nearest dealer. He'll tell you everything you need to know. And really open your eyes!

\title{
INDUSTRIAL MICRO SYSTEMS
}

The great unknown.
628 N. Eckhoff St., Orange, CA 92668, (714) 978-6281

\section*{Variable List}

C: curvature weighting facto
D: \(\quad \triangle X\) (variable \(X\) increment)
I: points counter
L: maximum line segment length
M: units per inch on the \(Y\) axis
N : units per inch on the X axis
P: slope angle previous to last slope angle last slope angle last independent variable independent variable dependent variable last dependent variable

Table 1: List of variable definitions that are used in the plotting routine that outputs the curve in figure 2.

Therefore, at the start of the program, an arbitrary small value (0.01 in the example) is assigned to \(\triangle \mathrm{X}\) (D in the program). I is initialized to zero and X is set to \(\mathrm{X}_{\min }-\mathrm{D}\).
When the program first starts, \(X\) is incremented by \(D\) to yield \(X_{\min }\). \(Y\) is then calculated, the point \(\left(X_{1}, Y_{1}\right)\) is plotted, and I is incremented by 1 to total the number of points that have been determined.
Since two points are needed to have a slope, I is tested to see if two or more points have been determined yet. If not, the program skips to line 15 where the first calculated \(Y\) value is stored in \(Z\). In line 16 , the first \(X\) value is stored in \(W\). Then the program returns to line 5 where \(X\) is incremented by the initial value of D , to yield the second value of \(X\).
Next, the second value of \(Y\) is calculated, the point (\(\mathrm{X}_{2}, Y_{2}\)) is plotted, and 1 is added to I . Since two points have now been determined \((\mathrm{I}=2)\), the test in line 10 causes the program to continue to line 11 , where the first slope and first slope angle are determined.
Since three points (two plotted line segments) are needed to determine a change in slope, the test in line 12 senses that only two points have been determined, and jumps to line 14 where the first plot angle is stored in P .
```

ent L,C
$4 \rightarrow \mathrm{M} ; 2 \rightarrow \mathrm{~N}$
$-5.01-\mathrm{X}$
$.01 \rightarrow$ D
$0 \rightarrow$ I
" $\mathrm{X}=$ " $: \mathrm{X}+\mathrm{D} \rightarrow \mathrm{X}$
$" Y=": 2 \mid X \rightarrow Y$
plt X,Y
$\mathrm{I}+\mathrm{I} \rightarrow \mathrm{I}$
if $Y>20$; gto "Stop"
if I < 1.5; gto " $Y-Z$ "
$\operatorname{atn}((N / M)(Y-Z) /(X-W)) \rightarrow Q$
if $\mathrm{I}<2.5$; gio " $\mathrm{Q} \rightarrow \mathrm{P}$ "
Lcos $(Q) /(1+\operatorname{Cabs}(P-Q)) \rightarrow D$
" $\mathrm{Q} \rightarrow \mathrm{P}$ ": $\mathrm{Q}-\mathrm{P}$
$" \mathrm{Y} \rightarrow \mathrm{Z}$ ": $\mathrm{Y}-\mathrm{Z}$
$\mathrm{X} \rightarrow \mathrm{W}$
gto " $\mathrm{X}=$ "
"Stop":stp

```
32105

Listing 1: Essence of program listing that will run on a HewlettPackard 9825A desktop computer and plot a function on the Hewlett-Packard 9872A plotter. The program is written in Hewlett-Packard's HPL language. The parameters in this particular listing will plot the curve in figure 2.
\(X_{2}\) and \(Y_{2}\) are then stored in \(W\) and \(Z\), respectively, and the program again returns to line 5 where \(X_{3}\) is computed. Then \(Y_{3}\) is calculated, \(\left(X_{3}, Y_{3}\right)\) is plotted, \(I\) is incremented to a value of three, and in line 11 the plot angle from points \(\left(X_{2}, Y_{2}\right)\) and (\(X_{3}, Y_{3}\)) is computed.

Since there are three points plotted (two line segments and two plot angles), the value of change in plot angle may be calculated. The test in line 12 allows the program to continue to line 13 where the change in plot angle (\(|\mathrm{P}-\mathrm{Q}|\)) is computed as part of the \(\triangle \mathrm{X}\) calculation equation.

The program returns to line 5 where, for the first time, \(X\) is incremented by a calculated \(\triangle X\), rather than the initialized value of \(\triangle X\).

The program continues in this way until \(Y_{i}\) is found to exceed \(Y_{\text {max }}\) in line 9, and then the program stops.

\section*{AGENS"}

\section*{LOW COST ASSEMBLY GENERATION SYSTEM}

You can assemble machine language programs for any of the popular 8 and 16 bit microcomputers.
You can use this meta-assembler to generate procedures and structures that best fit your applications.

This system is hosted on your Z-80 computer using CPIM and 24 K or more bytes of memory.

The Works. Iterative passes for forward ref optimization, subscripts, remote names, macros, functions, externals, relocation classes and more.

BONUS: Source link loader file so you can customize your system.
\$170: AGENS on 8" diskette, Loader, sample generators and manual.
\$27: Manual only.

\title{
THERE IS A DIFFERENCE IN TRS80 DISK DRIVES Carecir
}

Expansion interface - gives your TRS-80 the disk capacity it needs, and much, much more!

Single sided minifloppyup to 150 KBytes of storage capacity.

Single or double sided \(8^{\prime \prime}\) floppies - up to 2.5 MBytes in dual drive cabinet - for the serious TRS-80 user.

LOBO DRIVES' new family of disk memory products provides you with a choice of memory capacities you need to effectively execute the complex business software you've developed for your TRS-80*. LOBO DRIVES' selection of readily available, software compatible drives permits you to expand your inventory, payroll, customer list, and accounts receivable files as your business grows.
And LOBO DRIVES brings you more . . . a new plug-in expansion interface that provides an easy way to add hardware enhancements, communications capability, and programmable features . . . and it comes with the LOBO DRIVES famous 1 year, 100\% parts/labor warranty.
Call or write for the complete LOBO DRIVES story. Find out just how competitively priced a family of high capacity drives can be ...

NTERNATIONAL

\section*{Quantity discounts availableDealer inquiries invited}

Yes, I want to know more about LOBO Drives and what they can do for my TRS-80. Send me information on:
\begin{tabular}{cc}
\(\square 51 / 4-\mathrm{in}\). Floppy drive & \begin{tabular}{c}
\(\square\)-in. Winchester hard \\
disk, 10 Mbyte drive
\end{tabular} \\
\(\square 8\)-in. Fioppy drive & \(\square\) Double density \\
\begin{tabular}{l}
Single sided
\end{tabular} & expansion interface
\end{tabular}

Name
Company
Address
City
State \(\qquad\) -

Phone No.
It dealer, provide resale no. \(\qquad\)
*TRS-80 is a registered trademark of Radio Shack, a Tandy Company.

\title{
Noniterative Digital Solution of Linear Transfer Functions
}

\author{
Bryan Finlay \\ Chief of Biomedical Engineering \\ University Hospital \\ POB 5339, Postal Stn A \\ London Ontario \\ CANADA N6A 5A5
}

\section*{Introduction}

This article will develop a technique for the precise, noniterative, digital solution of the time-domain response of linear transfer functions with constant coefficients. A computer program written in BASIC is provided for use on the Hewlett-Packard 9830A desktop computer. The program is suitable for solving equations that, in the Laplace domain, exhibit up to ten roots in either the numerator or denominator.
This program is shown to be at least ten times faster than certain iterative solutions when used for checking analog simulation data.
A complex second-order transfer function is used to demonstrate the use of the program in evaluating responses to impulse, step, ramp, and sinusoidal forcing functions.
Due to the availability of desktop computers it is thought that this relatively simple program could help to enhance educational courses in automatic control theory, as well as being of interest to personal computer users.
Most digital solutions of differential equations with constant coefficients involve iterative procedures. The efficient use of such procedures requires the operator to have a good knowledge of both the solution to the equations and the iterative procedure. A "feeling" for the time-course of the solution is particularly important when the response is oscillatory, otherwise an iterative solution can become quite inaccurate.
In the design and development of a complex automatic control system it is a common practice to use an analog computer simulation. The accuracy of the initial simulation is generally checked by comparing the analog results with those obtained from a digital solution of the equations. If the differential equations can be considered to have constant coefficients, then a noniterative solution of
the time-domain response can be obtained by digital techniques.

Many automatic control theory problems present themselves in the form of the system transfer function and subsequent rearrangement to define the differential equations for iterative solution (as required by the Hewlett-Packard State Variables Pac). This can be a tedious, if not dissuading, process. It is the intention of this article to develop a technique that will permit the

Figure 1: Spring, mass, and damper model for a door-closing mechanism.

32K Board Pictured Above

\title{
New RAM Prices. From The Dynamic Memory Company.
}
\begin{tabular}{ll}
\(16 K-\$ 249\) & \(32 K-\$ 375\) \\
\(48 K-\$ 500\) & \(64 K-\$ 625\)
\end{tabular}

Ever since we started making these memory boards over a year ago we have continued to lower our prices to stay competitive. Due to your confidence in us, we are again able to lower our prices! Our reliability has been proven by months of superior performance in thousands of installations. Our low-power boards are being used by quality-minded systems manufacturers across the country and overseas.

\section*{4MHz boards now available.}

After receiving hundreds of requests, our engineering staff has come up with a new version of our board which runs on \(4 \mathrm{MHz} \mathrm{Z-80}\) systems. It wasn't easy to come up with a high speed board which would operate as reliably as our 450ns version, but after months of careful design and testing, we did it. The price of the 250 ns board is \(\$ 10\) per 16 K additional.

All of our features remain.
Our boards didn't become great sellers only because of the price. We still offer you our deselect feature which allows our RAM to overlap with any fixed memory areas in your system. Also, the RAM area of our board is fully socketed so that you can expand the board yourself.

Other standard features include: plug selectable addressing on 16 K boundaries (shorting plugs are placed over wire-wrap pins to address the board - located on the top of the board for easy changes), S-100 and Z-80 compatability and totally invisible refresh - no wait states.

Fully assembled, tested, and guaranteed.

All of our boards go through a rigorous testing procedure. They are then placed on burn-in running a series of memory tests to detect any other possible faults. After you receive the board, you are backed by us with a one year warrantee.

Low power consumption keeps your computer from ''losing its cool."

The total power consumption of our 16 K board is typically less than 4 watts (+8V @ 300ma, +16V @150ma and -16V @ 20ma). Boards with additional memory typically increase power consumption only 1 watt per 16 K !

\section*{Standard S-100 Interface.}

Our board is designed to interface with any standard S-100 CPU. All of the timing of the board is independent of the processor chip, and the board is set up for different processors by changing two plugs on the board.

\section*{Contact your local dealer.}

To find out more about our RAM boards, contact your local dealer. If he is unable to help you, call or write us for a fast response. Central Data Corporation, 1207 North Hagan Street, Champaign, IL 61820. (217) 359-8010

Central Data
digital solution of the time-domain response of linear transfer functions (or more generally Laplace transforms) by a noniterative process.

\section*{Analyzing the Response of Dynamic Systems}

In order to emphasize the power of using transfer functions to analyze the response of dynamic systems, an example is given here to cover both the derivation and use of the transfer function. Consider a relatively massless object being moved by a spring and damper (dashpot) as shown in figure 1; this type of arrangement could characterize a door closing mechanism. An idealized spring exerts a force, \(f_{r}\), that is directly proportional to the compression or extension, \(x\), applied to it:
\[
\mathrm{f}_{s}=\mathrm{k} x
\]

An idealized damper exhibits Newtonian viscosity such that the force, \(\mathrm{F}_{d}\), that it exerts is directly proportional to the rate of compression or extension:
\[
\mathrm{f}_{d}=\mathrm{k}_{1} \frac{\mathrm{~d} x}{\mathrm{~d} t}
\]

The constants of proportionality in these cases are k and \(\mathrm{k}_{1}\) and have units of \(\mathrm{N} / \mathrm{m}(\mathrm{lb} / \mathrm{ft})\) and N per \(\mathrm{m} / \mathrm{sec}\) (lb per \(\mathrm{ft} / \mathrm{sec}\)) respectively.

Figure 2 shows the three forces acting on the mass and so permits us to apply Newton's second law of motion which tells us that "the summation of forces in a given direction is equal to the product of mass and acceleration that will take place in that direction."
\[
\mathrm{f}(t)-\mathrm{k} x-\mathrm{k}_{\mathbf{1}} \frac{\mathrm{d} x}{\mathrm{~d} t}=M \frac{\mathrm{~d}^{2} x}{\mathrm{~d} t^{2}}
\]

If the mass-acceleration term is small in relation to the other forces then this equation can be estimated as follows:
\[
\mathrm{k}_{1} \frac{\mathrm{~d} x}{\mathrm{~d} t}+\mathrm{kx}=\mathrm{f}(t)
\]

In the simplest case this equation can be solved by separation of variables and integration. However, the problem is compounded by the fact that the applied force \(\mathrm{f}(t)\) may be a time-dependent quantity itself. A few examples of such time-dependent functions are: impulse, step, ramp, or sine wave functions.

Virtually all automatic control systems contain elements that, in mathematical terms, require the use of differential equations. Consequently, aerospace, industrial, process-control and biological investigators have latched on to a convenient and consistent technique for solving these equations. The technique is summarized in the block diagram below:

Figure 2: Free-body diagram illustrating the total forces and the resultant mass-acceleration acting on the mass \(M\) of figure 1.

Using standard tables each element in the differential equation is transformed to its Laplace transform. The transformed equation is rearranged to form the transfer function which is defined as the Laplace transform of the output divided by the Laplace transform of the input. In the example, if we consider the force \(f(t)\) to be the input quantity and the displacement \(x\) to be the output then the transfer function is:
\[
\mathrm{T}(s)=\frac{\mathrm{X}(\mathrm{~s})}{\mathrm{F}(s)}=\frac{1}{\mathrm{k}_{1} s+\mathrm{k}}=\frac{1 / \mathrm{k}}{1+\frac{\mathrm{k}_{1} s}{\mathrm{k}}}
\]
where \(\mathrm{X}(\mathrm{s})\) and \(\mathrm{F}(s)\) are the Laplace transforms of \(x\) and \(\mathrm{f}(t)\) respectively. The transfer function is a simple version of the Laplace transform since it assumes that all initial conditions are zero. This assumption effectively says that it does not matter whether the spring moves from 50 cm to 100 cm or moves from 150 cm to 200 cm ; the resultant movement is 50 cm and the assumption of ideal springs means that the changes in forces will be the same. Note that it is the changes in forces from a steady state that will determine the dynamic behavior.
In the absence of a computer, the normal procedure to follow from this stage would be to choose an input quantity \(\mathrm{f}(t)\) and substitute its Laplace transform, \(\mathrm{F}(\mathrm{s})\), into the transfer function. The transfer function could then be manipulated algebraically by separating it into partial fractions to produce standard forms that may be found in a table of Laplace transforms. This set of standard equations in the Laplace domain could then be retransformed back to the time domain. For those seeking a more complete approach with detailed examples the Thaler and Brown textbook will provide good reading. The major

\section*{to your data acquisition and display problems with COMPCO'S Analog - Digital I/O System.}

The complete ADI/OS system includes everything required for a research and development laboratory, and many OEM systems: 16 channels of single-ended analog input (or 8 differential channels); two double-buffered D/A channels for driving a X-Y display (display not included); 32 bits of programmable digital I/O; 4 completely independent RS232 serial ports with software-selectable Baud rates; a Microterm MIME-I CRT terminal; a Houston Instruments HIPLDT incremental plotter; and an ALTOS 8000-2 microcomputer system, with 4 MHz Z8O* processor, 64K of RAM memory, twin Shugart double-density floppy disk drives, CP/M operating system, and Microsoft FORTRAN. COMPCO's GSP interactive graphics package is included to provide graphics output on the CRT terminal, HIPLDT plotter, and/or a X-Y display. A FORTRAN-callable subroutine package is also provided to perform the analog data acquisition. In addition, two unused serial ports may be used to drive a modem (permitting the system to talk to a larger machine), an additional CRT terminal for color graphics, or a serial line printer such as a \(\mathrm{TI}-810\) or NEC Spinwriter. *Z8O is a trodemark of Zilog tim. Digiol Research

This entire ADI/OS e from COMPCO for \(\$ 000\)
OEM, Institutional and Dealer Inquiries Invired

Compco
8705 North Port Washington Road Milwaukee, Wis. 53217 414/351-3404
COMPUTER SPECIALISTS

Figure 3: Time-domain response of system in figure 1 when subjected to a step change in the force \(f(t)\).
portion of this article provides a computer approach to the solution of the differential equations by means of the transfer function.

If the input, \(f(t)\), is a step change in force of unit value then the resulting value for \(x(t)\) is given by:
\[
x(t)=\frac{1}{k}\left(1-e^{-t / \tau}\right)
\]
where \(\tau\) is a characteristic of the system and is defined as the time constant; in fact it is the ratio \(\mathrm{k}_{1} / \mathrm{k}\). The displacement \(x\) will be \(63.2 \%\) complete after a time \(t=\tau\) and will be \(98 \%\) complete when \(t=4 \pi\). Consequently, the facility to read a time constant from a transfer function is valuable in describing the time-domain response of a system. A typical displacement response to a step change in force for a system with a one second time constant and stiffness \(k\) of unit magnitude is shown in figure 3 .

High fidelity enthusiasts will know that the performance of a system is not clearly conveyed by its response to a step change in input. The frequency response provides a more informative set of data and concerns the response of a system to the input of a sine wave. Any linear system when subjected to a sine wave input will produce a sine wave of the same frequency at its output. However, the output sine wave will have an amplitude that is dependent upon the applied frequency. The peak of the output wave may also occur at a different time to that of the applied input. This phase shift, as it is called, is also frequency dependent.

A good high fidelity system will have a constant plot of amplitude versus frequency over its desired operating range, usually around 50 Hz to 20 kHz . In practice a voltage variation of \(30 \%\) is considered to be good and
would be expressed in logarithmic terms as a 3 dB variation.

The transfer function is an extremely powerful tool in the plotting of frequency response data since it can be shown mathematically that the substitution of \(j \omega\) for \(s\) in the transfer function gives the amplitude and phase for a given frequency \(\omega\) radians per second (note \(\omega=2 \pi \mathrm{f}\)), after initial transients have decayed.

The operator \(j\) is used to indicate a vector at \(90^{\circ}\). A vector \(a\) would lie on the \(x\)-axis of a graph and go from zero to \(a\). The vector \(j a\) goes from zero to \(a\) on the \(y\)-axis of a graph. A vector \(j j a\) would mean that the vector \(a\) had been rotated through \(90^{\circ}\) and \(90^{\circ}\) again, or \(180^{\circ}\). This means that \(j^{2} a\), as a vector, has the same meaning as \(-a\). Consequently, the operator \(j\) can be looked upon mathematically as \(\sqrt{-1}\) (note \(j^{2}=-1\)).

Applying this knowledge to the transfer function for the spring and damper system yields:
\[
\mathrm{T}(j \omega)=\frac{1 / \mathrm{k}}{1+j \omega \tau}
\]

The denominator of this equation is a vector with a real part (x-axis) of unity and complex part (y-axis) of \(\omega \tau\). For small values of \(\omega\) this vector has a value of 1 and lies along the \(x\)-axis, indicating it has a phase of \(0^{\circ}\). At very high frequencies the vector will have a magnitude of \(\omega \tau\) and lie along the \(y\)-axis, indicating a \(90^{\circ}\) phase shift.

If we consider a system with a time constant of one second and unit stiffness of k then the resulting graphs of amplitude and phase versus frequency are shown in figures 4 and 5 . When the amplitude versus frequency data are plotted on this log-log scale, the response is seen to approximate a horizontal low-frequency asymptote
 MINIMAX COMPUTER

THE MINIMAX SERIES COMPUTER WAS DESIGNED BY INDUSTRY PROFESSIONALS. COMPARE THE PRICE AND FEATURES TO ANY OTHER COMPUTER IN ITS CLASSI

MINIMAX I-
- THE MINIMAX SERIES COMPUTER ISAN INTEGAATED,COMPACT UNIT CONTAINING THE CPU, DUAL DENSITY DISK STORAGE, 12 INCH CRT, AND FULL STYLE KEYBOARD, WITH SEPARATE NUMERIC ENTRY PAD. ALL KEYS (INCLUDING CUASOR) WITH FULL REPEAT HYERID 2 MEGAHERTZ6502CPU 108K SYSTEM RAM (48KUSER) FASTEST FLOPPY OISK ACCESS (24KLOADS IN 4.2 SECONDS) - 16K ROM CONTAINS COMPUTHINK BASIC (AN EXTENDED MICROSOFT BASIC) WITH EXTENDED PRECISION. OOS INCLUDES COMPLETE FILE I/O WITH FULL RANDOM ACCESS. COMPLETE MONITOR WITH DEBUG \& TRACE, AND TINY 6502 ASSEMBLER - COMPLETE HIGHRESOLUTION GRAPHICS WITHINDIVIDUALDOT (\(240 \times 512\)) POINT SCREENADORESSABILITY • FULL SCREEN TEXT EDITING WITH OVERWRITE, INSERTION OR DELETION SPLIT SCREENNINDOW MODES - INDIVIDUAL FIELD EDITING WITH FIELD PROTECT AND AUTO SKIP TO NEXT FIELD - DISK STORAGE SYSTEM TRANSFERS 6K PER SECOND WITH AUTO VERIFY AND PARITY CHECK - 12 INCH CRT-64 CHARACTERS BY 30 LINES. UP TO THREE PROGRAMMABLE CHARACTER FONTS FOR LANGUAGES OR SPECIAL CHARACTERS - SWITCHABLE 110 OR 220 V OPERATION E E O HYBRID CPU IS MICROPROGRAMMABLE WITH GA USER DEFINABLE OPCODES. CHOICE OF \(800 K O R 2.4\) MEGABYTE DISK STORAGE - FULL SERIAL RS-232C PORT WITH PROGRAMMABLE BAUD RATES AND MODEM CONTROL SIGNAL © DEDICATED DISK PORT PAINTER PORT SUPPORTS PARALLEL COMMERCIAL PRINTERS 24 PIN I/O USER PORT P PAGEMATE DATABASE AVAILABLE - PLM COMPILER AVALLABLE EUSINESS PACKAGES AVAILABLE COMPLETE DIAGNOSTICS \& SCHEMATICS INCLUDED - COMPLETE USER MANUAL INCLUDED
MINIMAXI-.8 MEGABYTE MINIMAXII- \$5995 MINIMAXII-2.4 MEGABYTE ON LINE MINIFLOPPY STORAGE MINIMAX II - \$5995 ON LINE 8" FLOPPY STORAGE

THE MINIMAX WAS DESIGNED AND IS MANUFACTURED BY COMPUTHINK
COMPUTER CORP. DISTRIBUTED IN EUROPE AND THE EASTERN U.S. BY NEECO.
CONHUTE CORIDISTRIBUTED EUATE AND THE EASTER

disk systems include diskmon opernating
SYSTEM IN ROM AND INTERFACE TO 16/32 PETS!
- Dual Miniffoppy Drives with 200 K per diskette side lor total 400 K 800 K on line
- 800 K model accesses all 4 diskette sides via dual read and write arm systern

Dual Density Hard ware and DOS loads \(20 k\) (with verthcatan) in 42 seconds complete
- System comes complete with plug in intemal board contaning 8 K RAM. DOS and Disk Contro Hardware- Board plugs directly onto internat memory expansion pins
- System does not utilize JEEE or USER Port. systerri functions directly from memory port
- All DISKMON DOS commands reside interacively with BASIC-disk directory command and lormat command do not interfere with program in RAM-DOS command were designed for simplicity of use Systern was manulactured for heavy commercial use
- Systern installs completely in less than ten munutes - immediately ready tor use
- '1295 and '1 595 prices include all hardware, DOS, complete user manual, and demo/ ulility diskelte - Avalable sottware includes PLM Compiler ('250). Relocatable Assembler ('370). Source-Editor - Call or write lor complete product information and soecifications-User manual \({ }^{10}\)
(small keyboards)

Storage for 8K PETS!
(Requires Expandamem)
400K-8S DISK SYSTEM INCLUDES RANDOM ACCESS IN DOS-LOADS 20K IN 4 SECONDS!
\(\begin{array}{ll}\text { 24K Expandamem Memory }{ }^{\text {s }} 525 & \text { M } 25 \\ 32 K \text { Expandamem Memory }{ }^{5} 615 & \mathbf{2} 95\end{array}\)

Figure 4: Amplitude versus frequency data for the system in figure 1.

\section*{DATA TERMINAL EQUIPMENT - FROM MICROMAIL}

\section*{LA34 DECwriter IV \$1,199.00}
- Upper/lower case, \(9 \times 7\) dot matrix
- 10, 12, 13.2, 16.5 characters/inch
- 2, 3, 4, 6, 8 or 12 lines/inch
- 22 'W x 7'H x 151/2'D, 25 lbs .
- 110 or 300 baud, RS 232C serial ASCII
- Friction feed, paper width to \(15^{\prime \prime}\)

SOROC IQ \(120 \quad \$ 795.00\)
- RS 232C, upper/lower case, fuil ASCII
- Nurneric keypad, protected fields
- Cursor keys plus addressable cursor
- Auxiliary extension port

New from DIABLO
diablo 1640 \$2,690.00
Heceive-only \(\$ 2,331.00\)
High-quality daisywheel printing at 45 cps .
DIABLO 1650
\$2,779.00
Receive-only \(\$ 2,419 .{ }^{00}\)
Metal daisywheel printing at 40 cps .
T.I. 810 printer \(\$ 1,695.00\)
- Inciudes upper/lower case
- 150 characters per second
- RS 232C serial interiace
- Adjustable forms tractor

\section*{NEC Spinwriter \\ Call or write for prices}

To Order: Send certified check (personal or company checks require two weeks to clear) including handling* and \(6 \%\) sales tax if delivered within California.
*Handling: Less than \(\$ 2,000\), add \(2 \%\); over \(\$ 2,000\), add \(1 \%\). Everything shipped freight collect in factory cartons with manufacturer's warranty.

Figure 5: Phase versus frequency data for the system in figure 1.

\section*{MRS 100 FEATURES}
- Connects directly with any ASCII or Baudot Teletype®/Terminal
- Operates from 1 to 150 WPM with AutoSync.
- Displays WPM rate of copied signal plus FIFO buffer status.
- Contains a built-in 80 Hz bandpass filter and sidetone oscillator

\section*{XMAS SPECIAL}

Full Kit \$179 Assembled \(\$ 236\)

NEW FROM XITEX...ABM-100
Universal Converter ASCII - Baudot - Morse The ABM-100 is a universal code converter for translating between ASCII and Baudot, or between Morse and ASCII (or Baudot). Also used as a TTY® speed converter. Assembled and tested the ABM will operate from a single +5 V supply and sells for \(\$ 129\). Write for complete details

\title{
TheComprint 912 Nooneelsecanm: ourspeed, our pri quality,ourquiet operation,orour
} reliability. Not for \(\$ 660\) thevcan't.

Our Comprint 912 is the best printer for the money. Period. Any printer that can match our price can't even begin to match our performance And any printer that boasts performance like ours doesn't even come close to our price. No matter what your application; computer reports, listings, CRT hard copy, message

receiving, scientific/ industrial data logging, or anything you can Comprint 912 is the performance leader in printers under

First consider

CRT hardcopy is an excellent application for the Comprint 912.
think of, the \(\$ 1000\). our performance.

The Comprint 912 prints nearly 3 lines every second. - - - - - -

At 225 characters per second (170 LPM) the Comprint 912 is up to 4 times faster than impact printers costing hundreds of dollars more. With our printer you don't waste time and money waiting for your print-out.

Print Quality.
Our 9x12 matrix provides sharp, crisp characters. Compare that with our competition. Their very best is a 9x7 matrix, which means no lower case descenders and cramped letters. With the Comprint 912 you don't have to put up with the irritation of fuzzy, hard to read computer printing. This

\section*{Speed.}

\footnotetext{

}
xceptional print quality in Iy by the Comprint 912 in 7 nless reliability, 5 month rallel \(1 / 0\) and \(81 / Z^{\prime \prime}\) wide been shipped to happy custe The superior print quality provided
by the Comprint 912 is obvious in this
actual size sample.
means increased productivity. And because the Comprint 912 makes better originals, our originals make better Xeroxes.

\section*{Quiet Operation.}

Most computer printers are irritatingly noisy. They can disrupt concentration and reduce the efficiency of anyone working near them. They're noisy because they're

The Comprint 912 is quiet because it's electronic not mechanical.
impact. The Comprint 912 has no mechanical print head banging on the paper. It's electronic. It's quiet.

\section*{Reliability.}

Since the Comprint 912 prints electronically, rather than mechanically like ordinary impact printers, we have fewer moving parts and less vibration. The Comprint 912 has fewer things to go wrong and less wear. That's why we
offer a 6 month warranty, twice the industry standard. The key to all this superior performance is our special
need a plain bond paper copy, just run your Comprint 912 printout through your plain bond copy machine and you've got it. Even though our paper is special, it's available everywhere; from your dealer or distributor, or from us.
Now consider our price.

\section*{The Comprint 912.} \(\$ 660\) with parallel interface, \(\$ 699\) with serial interface.
We could talk about
Fewer moving parts in the Comprint 912 mean greater reliability.
paper. This aluminized "silver paper" works just like ordinary paper. It won't fade or discolor and actually costs less than plain paper and one time ribbons. For the vast majority of printing applications it's just plain better than plain paper. Especially when you consider the hidden costs of plain paper printers due to their inferior performance compared to the Comprint 912. And on those rare occasions when you really do

our other advantages, like our 80-character lines on \(8-1 / 2^{\prime \prime}\) wide paper, or our compact, light-weight size, and the fact that the Comprint 912 has no ribbons to mess with, no chemicals, nothing to add but paper.

But you have to see for yourself. Before you buy any printer, insist on seeing the Comprint 912, the performance leader, at your local computer store or industrial distributor. Or contact us for a descriptive brochure, a sample print-out, and applications literature.

The performance leader.

Computer Printers International, Ine.
340 E. Middlefield Rd.
Mountain View, California 94043 415 969-6161
\begin{tabular}{|c|c|}
\hline & \\
& 80 \\
& 120 \\
1 & 140 \\
& \(160-220\) \\
& \(250-310\) \\
\hline
\end{tabular}

COMPUTE
- For each root of denominator
- magnitude (P) and phase (Q) of each term in numerator
- MULTIPLY MAGNITUDES AND SUM THE PHASES
+ magnitude (\(P\)) and phase (Q) of each term in denominator EXCEPT THE ROOT UNDER CONSIDERATION
+ divide magnitudes into total magnitude from numerator and subtract phases from total phase in numerator
NOTE: This process provides L matching values of magnitude (P) and phase (Q) corresponding to \(\mathrm{M}_{\mathrm{x}}\) and \(\emptyset_{\mathrm{x}}\) in equations 9 and 10.

DETERMINE MAXIMUM AND MINIMUM OUTPUT FOR PLOTTING PURPOSES

Figure 6: Flow diagram and guide to the computer program which is provided in listing 1.

Text continued from page 148：
and a high－frequency asymptote with a slope of \(-20 \mathrm{~dB} /\) decade．The frequency at the point of intersection of these two asymptotes is 0.159 Hz in this example and， in general，is known as the break frequency and is given by：
\[
\omega=\frac{1}{\tau} \quad \text { or } \quad \mathrm{f}=\frac{1}{2 \pi \tau}
\]

It is at this frequency that the actual frequency response curve is 3 dB below the break point．

This simple example illustrates the use of transfer func－ tions and helps to relate the response of a system in both the time domain and the frequency domain．The transfer function，therefore，provides a ready starting point for obtaining either time－domain or frequency－domain solu－ tions．Since the substitution of \(j \omega\) for \(s\) in the transfer function permits easy computation of the frequency response，it would be nice if a computer program was readily available to obtain plots of the time－domain response from the transfer function．It is the intent of this article to develop and illustrate the use of such a pro－ gram．

\section*{General Solution of Laplace Transforms}

Given a general Laplace transform \(F(s)\) which is the ratio of two polynomials：
\[
F(s)=\frac{P(s)}{Q(s)}
\]
with the order of \(Q(s)\) equal to，or greater than，the order of \(P(s)\) ，then an inverse Laplace transform，may be tion．


```

$\begin{array}{cc}20 & \text { FFIMT } \\ \text { SI FFIHT }\end{array}$
4 FFINT "ENFFESS T.F.THUS:- K S
50 FREIHT
613 FRIHT
TG DISF "WHAT ISK"
EG IHIFUT ki

```

```

16GIMEI:HISFI! II[1]
11 IISE "HON MANH RGIOTS IH NUMEFATOR";

```

```

13G IISF "HOU MAlY RODTS IN IEHONINATOR";
146 INFUT L
150 IF $E=5$ THEH 240
10 FOR $\Omega=1$ TO E
176 IISF "WHAT IS Aく"以")";
1ESIHFIDT $\mathrm{H}[\mathrm{G}]$
190 IISP "WHRT IS Eは"G")";
2GG INFIIT E[G]

```


```

己この HEXT
$2: 6$ FFIHT
Z4G IF $L=0 \quad$ THEN 330
25GFOR $H=1$ TOL
26日 IISF "dHAT IS E\&"H")";
27D IHFITT E[H]
2SG IISF "WHAT IS [I("H")";
29GIHFITT ICH]

```

```

HE HESTH
2 FRIHT
FOE FOR GOL
$346 \mathrm{~F}[\mathrm{~L}]=1$

```

```

360 IF $E=5$ THEN 456
37 FDR $H=1$ TO E

```

```

$390 \mathrm{~N}=\mathrm{ATM}(\mathrm{CE}[\mathrm{H}]-\mathrm{I}[\mathrm{B}])(\mathrm{CH}[\mathrm{H}]-\mathrm{E}[\mathrm{G}])$ )

```

```

40 IF (A[H]-C[C] $\rangle=\Leftrightarrow$ THEN 420
$4101 /=H-F I$
$420 \mathrm{~F}[\mathrm{G}]=\mathrm{F}[\mathrm{G}]+4$

```

```

44 HESTH
$450 \mathrm{FDR} \mathrm{K}=1 \mathrm{TOL}$
$4 E 0$ IF $R=1, T$ THER 503

```



```

$515 \mathrm{~F}[\mathrm{G}]=F[\mathrm{G}] \times N$

```

```

EGI HEST F:

```

```

5S6 EHII
$(S+E 1+J I 1)(S+C 2+J L 2)(S+\ldots)$

```

- SILENT 50 CFM FAN FILTERS AIR AND VEN. TILATES DISK DRIVE AND DISKETTE STORAGE AREA.
- LEFT CABINET IS 15w x 14h x 24d HOLDS 4 DISK DRIVES AND 90 DISKETTES.
- FOUR ELECTRICAL OUTLETS INSIDE CABINET.
- SIX OUTLETS (5 USABLE) ON BACK OF DESK. ALL CON. TROLLED BY MASTER SWITCH.

Right cabinet of same dimensions is open in back to feed paper to printer. Eliminates paper on floor. Front provides storage for manuals or notebooks.
Completely assembled. Price FOB Wakarusa, Ind. Allow two weeks for shipment.

\author{
UP TO 60\% TIME SAVINGS! MAILING LIST \\ by DONTHO
}

\footnotetext{
ELIMINATES AT LEAST 60\% OF TIME REQUIRED TO ASSEMBLE DATA IN MAILING LIST - REPEAT KEY (@) ENTERS LAST DATA SUCH AS SURNAME, CITY AND STATE, ZIP CODE ETC. - DOES AWAY WITH MOST TYPING ERRORS. - SORTS 650 NAMES IN TWO MINUTES. - PRINTS ON STANDARD LABELS BY NAME, CITY, STATE, ZIP CODE, SELECT CODE \#1 OR \#2, OR ANY TWO OF THESE. KEYBOARD ADJUSTMENT' OF L \& R PRINT POSITIONS.
REQUIRES \(32 K\) MEMORY, DISK DRIVE \& DOS. HOLDS ABOUT 250 NAMES ON DOS, AND ABOUT 650 ON CLEAN DISKETTE.
ANY IMPROVEMENTS TO PROGRAM WITHIN ONE YEAR WILL BE FURNISHED TO PURCHASERS FREE OF CHARGE.
```

MAILING LIST $\$ 79.95$ delivered
ORDER BY MONEY ORDER-PERSONAL CHECK. VISA OR MASTERCHARGE
DONTHO SCIENTIFIC, INC.
P.O. BOX 864 MICHIGAN CITY, IN 46360 PHONE (219) 872-2364 OUR POLICY
MAILING LIST \$79.95 delivered
ORDER VISA OR MASTERCHARGE CHECK.
DONTHO SCIENTIFIC, INC.
PHONE

```
}

We will ship no product we are not fully prepared to guarantee.
\$369.00
DEALER INQUIRIES INVITED

\author{
DESK
} PRICE
 OU
evaluated to define the time-domain solution.
Inversion to the time domain may be accomplished by applying a partial fraction expansion and thus expanding \(\mathrm{F}(\mathrm{s})\) to a sum of simpler expressions each of which may be found in tables of Laplace transforms (refer to W D Day's Tables of Laplace Transforms). This system is illustrated below for a relatively simple transform:
\[
\begin{equation*}
\mathrm{F}(s)=\frac{4}{(s+2) \quad(s+3)}=\frac{A_{1}}{(s+2)}+\frac{A_{2}}{(s+3)} \tag{1}
\end{equation*}
\]

Giving \(\mathrm{F}(\mathrm{s})=\underset{(s+2)}{-4} \begin{gathered}-4 \\ (s+3)\end{gathered}\)
In equation 2 , the value of \(A_{1}\) has been derived by multiplying both sides of equation 1 by (\(s+2\)) and letting \(s=-2\). Similarly, \(A_{2}\) was obtained by multiplying by \((s+3)\) and setting \(s=-3\). More precisely:

\section*{WHEN THE FUN AND GAMES ARE OVER, you shouldn't}
have to gamble on your microcomputer's ability to get down to business. You won't with Outpost 11. It's a serious unit with quality components: Cherry, full ASCII keyboard; Setchell-Carlson CRT, \(24 \times 80\) characters, \(7 \times 9\) dot matrix; inverse, grey, blink; form generation characters; Shugart floppy disk drives; M6800 CPU; 32 k bytes RAM; glass-epoxy PCboards, manufact ured and tested to Mil Q 9858-A; entire unit 100-hour burn in tested; IC's tested to Mil P 883; I/O interrupt prioritizing structure; softsectored disk format; business BASIC; FLEX 2.0; TSC BASIC; self diagnostics; software development packages; etc; etc; etc. All this and more at only \$2,595, suggested retail price. See Outpost 11 at a dealer listed or write us for the name of a dealer near you. ZANO Corporation, 4301 Poche Court West, New Orleans, La. 70129

\section*{THE SERIOUS MICROCOMPUTER}

Dealers: ATLANTA, GA. Magaro and Associates - 404-252-6609. Professional Indexing - 404-572-4177 - BEAVERTON, OR, DataTools International - 503-645-4604 - BEND, OR, Control Industries - 503-389-1969 - COOKEVILLE, TN, Cumberland Computers - 615-526-7651 DADE CITY. FL. Sabatelli Computer System Inc. - 904-567-7777 • DALLAS. TX, Eclectic Corp. - 214-358-1307 - DES MOINES, IA, H. Allen Hanna - 515-283-5130 • ELK GROVE VILLAGE, IL, Kramer DataPower Inc. - 312-894-0554 • GREENVILLE, SC, Plus Inc. - 803-242-9090 • HOUSTON, TX, Eclectic Corp. - 713-228-7798 • IDAHO FALLS, ID, Great Plains Computer Co - 208-529-3210 • LONG BEACH, CA, CTI Data Systems Inc. - 213-426-7375 - MOBILE, AL, Railway Express - 205-661-8889 - NEW ORLEANS, LA, TANOCorp. - 504-254-3500 • NEWTON CENTRE, MA, Daner-Hayes Inc. -617-969-4650 • PARKER, CO, Western Marketing Assoc - 303-841-2788 - SALT LAKE CITY, UT, Home Computer Store - 80t-484-6502 - SAN JOSE, CA, PBC Associates - 408-377-7001. SEAFORD, DE, Robert Underwood - 302-629-8438 • SEATTLE, WA, Empire Electronics - 206-244-5200 - WALTHAM, MA, Computer Mart Inc. - 617-899-4540 - WESTFORD, MA, Thorstensen Labs - 617-692-2051 • ONTARIO. CANADA. Combined Systems - 416-549-2900 • GOUDHURST,

Figure 8：Computed unit step response for the transfer function in figure 7．Computing／plotting interval is 0.04 ．

\section*{BOOT－ STRAP}

TURN ON YOUR TRS－BO DISK SYSTEM AND GO RIGHT INTO YOUR BASIC PROGRAM－YOUR TRS－80 WILL LOAD AND RUN PROGRAMS－BY ITSELF！Yes，with this unbelievable program your computer will take command of itself whenever power－on or reset is pressed．Go from DOS all the way into your Basic program，execute DOS or Basic commands，load and execute any machine－language programs or subroutines you need（such as printer drivers，machine language sorts，etc．），set your file buffers and memory size，then run any Basic pro－ gram you want，without lifting another finger！ BOOTSTRAP＇s custom files make turn－key end－user applications simple！Requires disk system，works with DOS 2．1， 2.2 and NEWDOS，completely docu－ mented for easy implementation．
\(\$ 15.95\)

\section*{PRACTICAL APPLICATIONS \({ }^{\text {TM }}\) \\ （415）592－6633} 1313 Laurel St．，Suite 15，San Carlos，CA 94070
\(\square\) Please send me TRS－80 BOOTSTRAP （ \(\$ 15.95\) each enclosed．Calif．residents add tax）．Send your catalogs．
Name \(\qquad\)
Address
City
 State \(\qquad\) Zip TRS－80 is a trademark of Tandy Corp．
\[
\text { e__Zip } \varlimsup_{\text {BY1279 }}
\]
denominator of \(F(s)\) ，the inverse transform of all the terms due to the repeated root，\(r_{x}\) ，may be found as follows：
（6）
\(\mathrm{f}(t)=\frac{1}{(m-1)!}\left|\frac{\mathrm{d}^{m-1}}{\mathrm{~d} s^{m-1}}\left(\left(s+r_{x}\right) \times \mathrm{F}(s) \times \mathrm{e}^{s r}\right)\right|_{s=-r_{x}}\) where \(m\) is the number of times the root appears（for example：\(m=2\) for two equal roots）．

Listing 2：This is a listing of the program designed to compute the total response，\(M\) ，of a system as given in equation 8 ．


```

*40
4G IISF" "WHHT IE TIME INTERUAL IIT";
50 IMF|'T S

```

```

75 IHFUTT T
SD FRIHT "IHITIFL TIHE=":O
OG FEINT "TIHE INTEF'UHL=";S
OW FRIHT "TIHE INTEFVHL=";B
110 FFINT
12G FOF U=O TL T STEF S
1%0}y=N=
14GH=1+JHT (CU-0), %)
150 F"FF
165 X=F6G]*E*F*-[G]*U%
17G Y=@[G]-1[[G]*!
1804 }\because=4+8,8105(%

```


```

206 REST
2| 2[H]=\&*SLH(\psi)*S日F(v+2+W+2)
20日 IIEF"COHFUTING"
230 HIEGT い

```

\section*{Hard Disk Solutions}
```

8Slot S-100 Bus \& Card Set,
Including:
4 MHZ, Z8O-A Processor
64K RAM
I/O
Tape Cartridge Controller
Hard Disk Controller

```

\section*{11 Convenient Function} Keys, Including One Spare (forfuture development)

OUR GOAL ... To provide a complete ‘Solution System' to the Dealer, OEM, or anybody with a job which requires a powerful computer.

2 Serial plus 2 Paralle̊! 24 Megabyte, \(8^{\prime \prime}\) I/O Ports

Winchester Technology Hard Disk Storage

IN SHORT ... To deliver a system which is ready to be used.
How do we do this? Very simply ... We don't stop with just a powerful set of hardware. Instead we've integrated an intelligent package of systems level software, Including:

PDOS - A Z80, CP/M (Ver 1.4) compatable Disk Operating System, Designed to equip you with large system power.
Not a floppy DOS modified to accommodate hard disks!
Back-Up - A comprehensive datarecovery system.
... And of course the entire CP/M library of programming languages \(\mathcal{G}\) applications programs.

Our System 1000 is available NOW, with second sources on all components. This means we can deliver systems today and continue to support them tomorrow.

Write for more details on our -
'End to Obsolescence Plan'.

\section*{Available Options:}

Floppy disk sub-systems
CP/M Ver. 2.00
NOTE: Our Bock-Up system is available in special versions for CP/M \& CDOS, for those who already hove S-100 Hard Disks Systems.
CP/M is aTM of Digital Research
PDOS is a product of Phoenix Software Associates Ltd.
CDOS is a TM of Cromemco

Figure 9: Unit ramp response computed for the transfer function in figure 7. Computing/plotting interval is 0.02. The equal real parts of the transfer function of the unit ramp have been set to differ by an amount \(1 \times 10^{-8}\).

Listing 2 continued:

```

<501:|F||\ 1
20 IF I= THEH 320
2T0 IISF "*10% DUTFUT";
ZOS INFUT M
2gO IISF "MIN OUTFUT";
Ga0 [HFUT H
31G GOTD E0
3201 H=H=2[1]
3NG FOF U=G TII T ETEF S
246 H=1+[1H-0, % S
S5H IF TIH丁H THE|ISG
S0[H=E[H]
GM FLTO ,000
SOTIF ZRHDN THEH 400
390 N-a[H]
400 HE::T II
H5 1F HNO THE|4SO
426 |=01
|CH EHII

```

\section*{Solution by Residue Theorem}

Digital programming of the differentiation of equation 6 is not the simplest process and, in practice, is unnecessary. Due to the number crunching capacity of small-scale desktop digital computers, the problem of two equal roots can be surmounted quite readily. When inputting the data on the roots, one of the two equal roots is changed by a relatively small amount (approximately 0.1 or \(1 \%\)). While electronic control systems may employ components with tolerances causing a \(1 \%\) error in the roots, experience tells us that the difference in the plotted curves will be virtually indistinguishable in any practical system.

The problem of repeated roots has effectively been
solved, and it is necessary only to develop equation 5 to a form capable of handling complex roots.

If \(r_{x}\) is complex (of the form: \(-\mathrm{a}-j\) b), then equation 5 tells us that the root \(r_{x}\) makes a contribution, \(\mathrm{f}_{1}(t)\), to the total response in the time domain at time \(t\) where:
\[
\mathrm{f}_{1}(t)=\left|\quad(s+\mathrm{a}+j \mathrm{~b}) \times \mathrm{F}(s) \times \mathrm{e}^{s t}\right| \begin{array}{l|l}
s=-\mathrm{a}-j \mathrm{~b}
\end{array}
\]
giving: \(f_{1}(t)=M_{x} e^{i \phi} e^{-[a+j b] t}\)
or rearranging: \(\mathrm{f}_{1}(t)=M_{x} \mathrm{e}^{-a t} \mathrm{e}^{j[\phi-b t]}\)
The real (Re) and imaginary (\(\operatorname{Im}\)) parts of \(f_{1}(t)\) are respectively:
\[
\begin{aligned}
& \mathrm{f}_{1}(t)(\mathrm{Re})=M_{x} \mathrm{e}^{-a t} \cos (\phi-\mathrm{bt}) \\
& \mathrm{f}_{1}(t)(\mathrm{Im})=M_{x} \mathrm{e}^{-a r} \sin (\phi-\mathrm{b} t)
\end{aligned}
\]

The total system response, \(M\), at a specific time \(t\) is given by:
\[
\begin{equation*}
M=\sqrt{M_{1}^{2}+M_{2}^{2}} \tag{8}
\end{equation*}
\]
\[
\begin{align*}
\text { Where } M_{1} & =\sum_{x=1}^{n} M_{x} e^{-r_{x} t} \cos \left(\phi_{x}-b_{x} t\right) \tag{9}\\
\text { and } M_{2} & =\sum_{x=1}^{n} M_{x} \mathrm{e}^{-x_{x}} \sin \left(\phi_{x}-b_{x} t\right) \tag{10}
\end{align*}
\]

Bit Pad One \({ }^{\text {Tw }}\) is the small; lowcost digitizer that lets you add a graphics or menu capability to any data processing system. It's perfect for data entry, CRT cursor control, games, mapping and countless business applications like order entry and inventory control.
- Bit Pad One is small in size, but big in reliable capability.

The \(11^{\prime \prime} \times 11^{\text {" }}\) active area has a resolution of \(0.005^{\prime \prime}\) which is comparable to digitizers found in expensive turnkey graphic design systems.

Best of all, Bit Pad One is designed and built by Summagraphics, the ieading manufacturer and OEM supplier of data tablets and digitizers.

Bit Pad One. It's bringing digitizing down to earth.

\section*{}

35 Brentwood Åve., Box 781 Fairfield, CT 06430 (203) 384-1344.

Central Office: 3785 Varsity Dr., Ann Arbor, MI 48104, (313) 973-1710.

Western Office: 1102 West 17 th St., Santa Ana, CA 92706, (714) 541-8261.

European Office: 14 rue de l'Ancien-Port, 1201 Geneva, Switzerland, phone 022/31 3940.

\section*{Bit by bit, the world is coming to Bit Pad One.}

\section*{DYNACOMP}

Quality software for: Altair
North Star
TRS-80 (Level II)
Sophisticated software written by recognized computer professionals. Each program is supplied with complete documentation. All programs can be run with standard terminals (32 characters or wider) and within l2K program memory space.*

\section*{FLIGHT SIMULATOR}
(as described in SIMULATION, Volume II)
- Realistic and extensive three-dimensional simulation of take-off, flight and landing.
- Based on aerodynamic equations and real airfoil.
- Practice instrument approaches and navigation using radials and compass headings.

Price: \$17.95
SIMULATION, Volume II (BYTE Publications): \(\$ 6.00\)
VALDEZ* (Requires 16 K of prograin memory)
- Exciting simulation of supertanker navigation in Prince William Sound and Valdez Narrows using radar map.
- Detailed physical model of ship response and tidal patterns.
- Chart course through ship and iceberg traffic. Price \(\$ 14.95\)

\section*{BRIDGE 2.0}
- Complete contract and duplicate bridge game.
- Computer both bids and plays.
- Computer will play offense or defense according to the bid.
- Challenging entertainment for the advance player.
- Excellent learning tool for the bridge novice. Price: \(\$ 17.95\)

\section*{HFARTS 1.5}
- An entertaining computer simulation of this popular card game.
- Play against two computer opponents.
- Beware the Black Maria!

Price: \$14.95

\section*{NORTH STAR TEXT EDITOR}
(Update of program described in BYTE, June 1979)
- Designed as an easy-to-use (and remember) basic text editor.
- Works through unmodified North Star DOS.
- Line-oriented editing, variable line width, simple paragraph indexing.

Price: \(\$ 10.95\) (Available only on North Star diskette)

\section*{NORTH STAR COMPRESSION PROGRAM}
- Removes all unnecessary spaces and remark statements from program.
- Requires only a single disk drive.
- Any size program may be processed.
- Increases execution speed of programs while using less memory.

Price: \(\$ 9.95\) (Available only on North Star diskette. Requires release 4 or higher North Star BASIC.)
Except where noted, all software is available on North Star diskettes, and Altair and TRS-80 cassettes.
Additionally, Microscoft BASIC ASCII listings are available on paper tape and cassette (modem compatible, 300 baud).
All orders processed within 48 hours. Write for more detailed descriptions of these and other programs available from DYNACOMP.

DYN ACOMP
P.O. Box 162

Webster, New York, 14580
New York residente please addror NYS eales tax.

\section*{Computer Program}

The BASIC program developed for solving these equations is shown in listing 1. \(\mathrm{F}(s)\) is assumed to have a maximum tenth-order numerator and/or denominator of the general form:
\(F(s)=\frac{K(s+A 1+j B 1)(s+A 2+j B 2) \ldots \ldots(s+A 10+j B 10)}{(s+C 1+j D 1)(s+C 2+j D 2) \ldots . .(s+C 10+j D 10)}\)
Obviously, any complex root must have a conjugate for the equation to have any meaning.
The flow diagram for the solution of the equations is given in figure 6. The program permits 201 output data points to be evaluated, or 200 time divisions. Full fourword accuracy is employed in the intermediate computations and, to save memory, two-word accuracy is employed in the stored values of the output.

In practice, three types of output have been found useful:

\section*{- A tabular printout of time and magnitude.}
- A thermal printer plot of output versus time provides crude but rapid viewing of the unknown response and so permits optimizing the time interval and total time to achieve the most informative plot.
- A digital, pen-plotted output for formal presentation.

Use of link statements on the HP9830A allowed this program to be run with 2 K words of memory. However, a 4 K word memory permitted simultaneous loading of all program files onto the key files.

\section*{Results and Discussion}

Consider the complex second-order transfer function with unity gain, damping factor (\(\zeta\)) of 0.1 , and natural angular frequency of 5 radians per second:
\[
\begin{equation*}
\frac{V_{0}(s)}{V_{i}(s)}=\frac{25}{s^{2}+s+25} \tag{11}
\end{equation*}
\]

For a unit impulse, \(v_{i}(t)\), then \(V_{i}(s)=1\) and:
\[
V_{o}(s)=F(s)=\frac{25}{(s+0.5+j 4.975)(s+0.5-j 4.975)}
\]

Since the computer interprets the real parts of these roots as being equal, it is necessary to change one of them by a small amount (approximately 0.5001 in this case).

The impulse response of equation 11 is shown in figure 7. This curve was computed for 201 points from \(t=0\) to 8 at 0.04 intervals.

Frequently, a digital computer solution is required as a check on the accuracy of an analog computer simulation. The efficiency of this computer program in providing such data is illustrated in table 1. The test is to compute the output at 0.5 -second intervals for the first 5 seconds of figure 7. The performance of the program was compared with a standard iterative procedure employed by the Hewlett-Packard Math Pac volume 1.

\title{
\({ }^{\circ}\) PEROOM SAMPIER
}

\section*{CASSETTE SOFTWARE}

\section*{For 8080/2-80 \(\mu\) Cs . .}

BASIC ETC - Developed by the coauthors of the original Tiny BASIC, BASIC ETC is easy to use yet includes commands and functions required for powerful business and scientitic programs as well as for hobby applications. 9.5 K bytes of RAM. 1200-baud cassette and 42 -page user's manual \(\$ 35.00\)
Cassette Operating System - EPROM (2708) COS for the Percom Cl-812 dual peripheral interfacing PC card . . \(\$ 39.95\)

If you're programming on a \(6800 \mu \mathrm{C}\) you'll want these development and debugging programs written by Ed Smith of the Software Works:
Disassembler/Source Generator - Disassembles SWTP Resident Assembler, TSC Mnemonic Assembler/Text Editor or Smoke Signal Mnemonic Assembler/Text Editor and produces compacted source code suitable for re-editing. Prints or displays full assembly-type output listing. 4 K bytes of RAM.
(Order M68SG)
\(\$ 25.00\)
Disassembler/Trace — Use to examine (or examine and execute) any area of RAM or ROM. 'Software-single-step' through any program, change the contents of CPU or memory location at any time, trace subroutines to any depth. 2.3 K bytes of RAM.
(Order M680T) \(\qquad\) \(\$ 20.00\)
EPROM Support/Relocator Program This program relocates a program in any contiguous area of RAM or ROM to anywhere in RAM. Use to assemble and test programs in RAM, adjust programs for EPROM operating addresses and then block move to your EPROM burner address. 952 bytes of RAM. Loads at hex 1000.
(Order M68EP)
\(\$ 20.00\)
Relocating Assembler \& Linking Loader (M68AS) \(\qquad\) \(\$ 50.00\)
Relocating Disassembler \& Segmented Source Text Generator (M68RS) \(\$ 35.00\)

Americana Plus - 14 tunes for the Newtech Model 68 Music Board in machine language ready to load and run. Cassette compatible with Percom \(\mathrm{CIS}-30+\) and SWTP AC-30. Order MC-1SW . . \$15.95

\section*{HARDWARE}

Newtech Model 68 Music Board - Produces melodies, rhythms, sound effects, morse code, etc. from your programs Includes manual with BASIC for writing music scores and assembly language routine to play them. Installs in SWTP I/O slot. Assembled \& tested \(\$ 59.95\)
The Percom ELECTRIC WINOOW \({ }^{\text {TM }}\) -Memory-resident and programmable, this video display character generator board for your SS-50 bus displays up to 24 80-character lines. Features dual character generators, dual-intensity high-lighting. One programmable register controls scrolling. Compatible with standard video monitors \$249.95

\section*{SS-50 Prototype Cards:}

Large card (up to 7040 -pin ICs) \(\$ 24.95\)
Prices include a comprehensive instruction manual. In addition to the EPROM Operating System, a Test Cassette, Remote Control Kit (for program control of recorders), and an IC Socket Kit are also available.

I/O size card
\(\$ 14.95\)

PERCOM \({ }^{\text {™ }}\) 'peripherals for personal computing'

To order products or request additional literature, call Percom's toll-free number: 1-800-527-1592. For detail technical information call (214) 272-3421.

Table 1: A measure of the efficiency of the computer program in verifying the accuracy of an analog computer simulation.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow{4}{*}{TIME (seconds)} & \multicolumn{5}{|c|}{OUTPUT} \\
\hline & \multirow[t]{3}{*}{RESIDUE THEOREM} & \multicolumn{4}{|c|}{ITERATIVE SOLUTION} \\
\hline & & \multicolumn{4}{|c|}{Integration Time (seconds)} \\
\hline & & 0.5 & 0.1 & 0.01 & 0.005 \\
\hline 0 & 0.000 & 0.000 & 0.000 & 0.000 & 0.001 \\
\hline 0.5 & 2.381 & 9.375 & 2.054 & 2.378 & 2.380 \\
\hline 1.0 & -2.943 & -43.36 & -2.757 & -2.940 & -2.943 \\
\hline 1.5 & 2.194 & 117.8 & 2.433 & 2.195 & 2.194 \\
\hline 2.0 & -0.9269 & -161.9 & -1.564 & -0.9322 & -0.9281 \\
\hline 2.5 & -0.1850 & -290.8 & 0.5962 & -0.1778 & -0.1834 \\
\hline 3.0 & 0.7909 & 2775 & 0.1653 & 0.7850 & 0.7895 \\
\hline 3.5 & -0.8654 & -10265 & -0.5901 & -0.8630 & -0.8648 \\
\hline 4.0 & 0.5901 & 22981 & 0.6902 & 0.5914 & 0.5903 \\
\hline 4.5 & -0.2045 & -15666 & -0.5620 & -0.2083 & -0.2053 \\
\hline 5.0 & -0.1051 & -130420 & 0.3283 & -0.1010 & -0.1042 \\
\hline Total Time for & & & & & \\
\hline Computation and Printout (seconds) & 25 & 10 & 25 & 200 & 390 \\
\hline
\end{tabular}

It is clear from table 1 that the cumulative errors for an iterative process with integration time, \(\delta t\), of 0.1 produced inadequate results at \(t=5\). Accuracies of \(4 \%\) and \(1 \%\) are obtained at \(t=5\), for integration times of 0.01 and 0.005 seconds respectively. However, the total computing times of 200 and 390 seconds respectively are drastically larger than the 25 seconds associated with the Residue Theorem approach. By employing fast memory in the HP 9830A the total computing and printout time can be reduced to 15 seconds. Use of the Infotek FP 30,
fast processor, can reduce this total time even further to approximately 8 seconds.

A unit step input (ie: \(V_{i}(s)=s^{-1}\)) in equation 11 gives \(\mathrm{F}(\mathrm{s})\) as:
\[
\begin{equation*}
F(s)=\frac{25}{(s+0+j 0)(s+0.5001+j 4.975)(s+0.5-j 4.975)} \tag{12}
\end{equation*}
\]

A unit ramp input (ie: \(V_{i}(s)=s^{-2}\)) in equation 11 gives \(\mathrm{F}(\mathrm{s})\) as:
\[
\mathrm{F}(s)=\frac{25}{(s+0+j 0)\left(s+1 \times 10^{-8}+j 0\right)(s+0.5001+j 4.975)(s+0.5-j 4.975)}
\]

Figure 10: Computed initial transients of the transfer function used in figure 7, when it is subjected to a unit sinusoidal forcing function of the same frequency (five radians per second) as the natural frequency of the system under test. Computing/plotting interval is 0.05. The equal real parts of the forcing function have been made to differ by an amount \(1 \times 10^{-8}\).

\section*{for Business and Home}

\section*{A PROFESSIONAL MICROCOMPUTER AT AN AFFORDABLE PRICE}

The NOBUS-Z COMPUTER has the hardware features needed for today's sophisticated small business, scientific, educational and personal systems.
- SINGLE BOARD technologr
- 4MHZ Z80A
- 64K 200ns RAM
- 8-INCH DRIVE dual density
- CP/M \({ }^{\circledR}\) operating system
- GRAPHICS IN COLOR
- SOUND GENERATOR
- 2-SERIAL PORTS
- 2-PARALLEL PORTS
- 4-COUNTER /TIMERS

Order a NOBUS-Z from your local Computer Dealer or write to EXO ELECTRONICS for complete information. OEM inquiries welcome. CIRCLE 134 ON THE INQUIRY CARD

\section*{DOLLAR FOR DOLLAR YOU WON'T FIND A BETTER SYSTEM}

EXO ELECTRONICS supplies complete integrated systems centered around our NOBUS-Z. Professional CRT editing terminals and line printers round out our hardware offering. Fully supported software languages and packages supply the muscle for the system. Business and Scientific Basics, FORTRAN, Pascal and COBOL are available. We offer a complete line of business systems including accounts payable/receivable, payroll, inventory, data base management, and a complete full screen edit word processing system.

VERSATILITY: A 4MHZ Z80A microprocessor and CP/M give you the most powerful processor and operating system available today. 64 K RAM is provided and parity checking is standard for critical applications. Up to four single or double density, 8 or 5 inch soft-sectored floppy disk drives are handled by the on-board controller. A video output gives dazzling displays on your TV set. A separate 6 K bank of memory allows up to \(256 \times 192\) pixel graphics without contending for main system memory. Text and
graphics can be mixed on-screen under program control with up to 16 rows of 32 characters of text. With our optional stand-alone keyboard and your TV the NOBUS-Z can be operated without a separate terminal. All electronics are socketed and readily serviceable on a single board.

NOBUS-Z with 8-IN. Shugart \({ }^{\text {® }}\) drive .. \(\$ 2295\) PRICES additional drive................................. \(\$ 610\)

HAZELTINE 1420 terminal \(\$ 895\)
CENTRONICS \({ }^{\text {® }} 730100 \mathrm{cps}\) printer ... \(\$ 995\)
EXO stand-alone keyboard.................... \(\$ 95\)

> The NOBUS-Z is also available with a 5-inch double density drive for \(\$ 1995\)

\author{
EXO \\ ELECTRONICS COMPANY
}

and the real part of the repeated root \((s=0)\) has been made negligible (\(1 \times 10^{-8}\)) in relation to the other roots. Due to the 12 -point accuracy employed by the HP9830A, roots smaller than \(1 \times 10^{-8}\) should not be used when handling trigonometric functions such as arctangent. Similarly, any two roots must have a difference that is greater than \(1 \times 10^{-8}\). While equation 13 may be solved using a value of \(1 \times 10^{-10}\) for the root at \(s=0\), the accuracy decreases rapidly, and the solution becomes meaningless with a value of \(1 \times 10^{-12}\). However, a root of \(1 \times 10^{-8}\) would represent a time constant of 3.17 years. If, for any reason, the time constants are in the order of months or years, then the whole problem should be timescaled before programming.
The solutions to equations 12 and 13 are plotted in figures 8 and 9 respectively.
In educational environments, these digital simulations help emphasize the transient behavior of systems subjected to sinusoidal forcing functions, without the possibility of causing a system overload. Figure 10 illustrates the effect of inputting equation 11 with a unit sine wave
\[
v_{i}(t)=\sin (w t) V_{i}(s)=\frac{w}{s^{2}+w^{2}}
\]
with a frequency of 5 radians per second, that being equal to the natural frequency of the system. Since \(\zeta=0.1\), this is almost the resonant frequency.

Figure 11 illustrates the effect of inputting equation 11 with a unit, 10 radians per second sine wave, which is twice the natural frequency of the system.

While the axis labels in figures 7 thru 10 are most convenient for the presentation of those results, the printout employed in figure 11 is more versatile when a great number of amplitudes and time scales are expected.

\section*{REFERENCES}

Day W D, Tables of Laplace Transforms, London: lliffe, 1966.
Thaler G J and Brown R G, Analysis and Design of Feedback Control Systems, New York, McGraw-Hill, 1960, pages 9-29.

Model DMB-6400 Series dynamic 64k byte RAMS incorporate the features which are standard in the DM-6400 Series and adds bank select for multi-user-timesharing applications.
- ALPHA MICRO, CROMEMCO, and NORTH STAR output port bank select.
- Memory bank size can be incremented to 64 k bytes in 16 k increments.
- Four (4) 16k byte, functionally independent memory banks.
- Eight (8) 64k byte banks of memory per output port for expansion to 5I2k bytes for each output port.

Model DM-6400 Series dynamic 64k memory boards feature IEEE S-100 compatible timing and on board transparent refresh.
- Memory selectable and deselectable in 4 k byte increments.
- 25 MHz on board crystal oscillator for independent timing.

\section*{DMB-6400 and DM-6400 Common Features:}
- 4 MHz Z80 operation with no wait states.
- Tested and burned-in.

\section*{ONE YEAR GUARANTEE}

THE FOLLOWING PRODUCTS ARE AVAILABLE
ㅁ DMB-6400/64K RAM
- DMB-3200/32KRAM
- DM-6400/64KRAM
- DMB-4800/48KRAM
\(\square\) DM-3200/32KRAM
ATTRACTIVELY DISCOUNTED OEM AND DEALER QUANTITY PRICES AVAILABLE
- Reliable, expandable memories.

\section*{MEASUREMENT systems \& controls incorporated}
Listing I continued from page 85:

3 SAVE FOR LOOOP
SAVE FO \(1 / 2\) DX
TARITK SHIFT RIGHT
BHIGH BYTE DONE
HHIGH BYTE DOV DO LDU BYTE
ALLLDONE
SAVE TB
DX
\(\begin{array}{lll}4 \\ 4 & 3 \\ 4 & 3 \\ 3\end{array}\)

\begin{tabular}{|c|c|c|}
\hline 1.3-5ET & \multicolumn{2}{|l|}{COORDINATE TRANSTORMATION TABLE} \\
\hline LXI & Ho MXT & 3 CaLCULATE CORRECT MOVES \\
\hline MOV & A, B & OPFSET IATO TABLE \\
\hline RLC & & P EACH EUTRY IS FOUR BYTES \\
\hline MLC & & 3) \\
\hline MOV & E. \(A\) & SADD TO BASE ADDRESS \\
\hline MVI & D. 8 & \\
\hline DAD & D & HHL' IS NOW ADDRESS OF 40x \\
\hline MOV & E. M & \% GET MaX \\
\hline INX & H & SAIM AT MEY \\
\hline HOV & D. \(M\) & YAND GET IT TOO \\
\hline XCHO & & SSHIFT TO H.L \\
\hline SHLD & M8x & SAND STORE IN MOVE 2ERO \\
\hline XCHO & & SNOH GET © CNE M MOUE \\
\hline INX & H & \% WHICH ARE THE NEXT 2 EXTRIES \\
\hline MOV & E. M & \% M1X \\
\hline INX & H & 1 \\
\hline MOV & D. H & IMIY \\
\hline XCHO & & 3 GET SET \\
\hline S FL, D & M \(1 \times\) & \% AND STORE \\
\hline
\end{tabular}

\section*{dOOT NOI 1 VasMBD 3NL IITVOLJV 3H2 \\ 2.1--DISPLAY THE CURRENT POINT}

\begin{tabular}{|c|c|}
\hline 0256 & CD7 761 \\
\hline 4257 & C1 \\
\hline 8266 & 01 \\
\hline 8281 & E1 \\
\hline 0262 & 7 D \\
\hline 8263 & BC \\
\hline 9264 & D2ECE \\
\hline 8267 & 2C \\
\hline 6268 & E5 \\
\hline - 269 & 2AA104 \\
\hline 8266 & 19 \\
\hline 926D & E5 \\
\hline -268 & 89 \\
\hline 0267 & DA7982 \\
\hline
\end{tabular}

\section*{1.2--PARAMETER INITIALIZATION}
\[
\begin{aligned}
& \text { XT }= \\
& \text { XP } \\
& \text { XP, X } \\
& \text { B, } \\
& \text { TA } \\
& \text { HoL } \\
& \text { DY } \\
& \text { DYETER }
\end{aligned}
\]
\(\times 0\)

10

LAOOR
H\&D
H
HL:
H
LAE
DY
ASD
LSA
HOFFH
\(H\)

\begin{tabular}{l}
8 \\
\(\stackrel{0}{0}\) \\
\hline
\end{tabular}

\section*{\$155 CASH DISCOUNT ON ANY OF OUR 64K BYTE} MEMORIES.

WITH A COPY OF THIS PAGE AND YOUR ORDER WE WILL SHIP A 64KB MEMORY TO YOU AT \(\$ 155\) OFF OUR REGULAR LOW PRICE OF \(\$ 750\). THIS OFFER GOOD ONLY FOR OUR 64KB S100BUS MODULE, MOTOROLA EXORCISOR® I MODULE, LSI 11/2® MODULE OR INTEL MULTIBUS® MODULE. THIS OFFER NOT GOOD ON SMALLER BOARDS OR OUR NEW EXORCISOR® II MODULE.

NEW!!
64KB MEMORY FOR EXORCISOR® \({ }^{\circledR}\) OPERATES AT 2 MEGA HERTZ. PARITY. \$995.00

CI-1103 32K \(\times 16\)

\(\mathrm{Cl}-8080\) 64K x 8

31352 Via Colinas • Westlake Village, CA 91361 • 213-991-2254

2: CALCULATE THE CHARACTER MATRIX ADDRESS
A \(=\) ASCII CHARAGTER D, \(\mathrm{E}=\mathrm{XPOS}\), YPOS

AOY hOL108 YOA \(\operatorname{HSVN}=\) :

Nociow icicicice
3TG UNCHANGEO UITH MOVE ZERO
BMEX IN LI MEY IN H

\title{
3rd Generation 5-100: Chosen by Professionals, Supported by Compupro" \\ Why S-100? Because S-100 machines are not consumer-oriented,
}
all-in-one microcomputers - but flexible, modular, professionallevel systems that are easy to upgrade, modify, and adapt to specific applications. As a result, over the years the \(\mathbf{S}-100\) buss has proven to be the ideal choice for commercial, industrial, and scientific applications. It doesn't obsolete itself, but simply adapts to innovation.

We use the experience we've acquired in the past, coupled with the very best technology offered by the present, to build products for the future... products that meet, and often exceed, the demands of the new wave of professional S-100 users. Our expanded \(\mathrm{S} \cdot 100\) line is the right approach at the right time; we invite you to write for further information.

19 slot: \$174 unkit*, \$214 assm 12 slot: \$129 unkit*, \$169 assm 6 slot: \$ 89 unkit*, \$129 assm
-Edge connectors and termination resistors are pre-soldered in place for assembly. These 3rd generation motherboards, designed to work with the latest 5 and 10 MHz CPUs corning on line, exceed the latest S-100 specs and offer superior performance. Includes true active termination (with half of the termination load at each end of every buss line), grounded Faraday shield between all buss signal lines to minimize crosstalk, and edge connectors included for all slots. All sizes fit Godbout, Vector, TEI, IMSAI, and similar enclosures.
These high quality motherboards are a welcome addition to any system - or the start of a great one.

\section*{25 "Interfacer" S-100 I/O board} \$189 unkit, \$249 assm, \$324 CSC
Dual serial port with 2 full duplex parallel ports for RS-232 handshake; EIA232C line drivers and receivers (1488,1489) along with current loop (20 mA) and TTL signals on both ports. On-board crystal controlled timebase with independently selectable Baud rate generators for each port (up to 19.2 KBaud). Hardware UARTs don't tie up the CPU. And, there's much more ... this is a noexcuses serial board that does things the others only dream about.

\section*{3P + 5 "Interfacer IIי" S-100 1/O board \\ \$189 unkit, \$249 assm, \$324 CSC}

Incorporates 1 channel of RS-232 serial \(1 / 0\) (with all the features of a port from the \(2 S\) "Interfacer", including handshaking), along with 3 full duplex parallel ports. The parallel section uses LSTTL octal latches for latched input and output data with 24 mA drive current, attentionfenablefand strobe bits for each parallel port (with selectable polarity), interrupts for each input port, and separate 25 pin connectors with power for each channel along with a status port for interrupt mask and port status. All in all, this is an incredibly ver. port for interrupt mask and
satile and flexible board.

\section*{2708 S-100 EROM board \(\$ 85\) unkit}

4 independently addressable 4 K blocks, with dipswitch selectable jump start built right into the board. Includes all support chips and manual, but does not included EROMs

\section*{Active Terminator Board \\ \(\$ 34.50\) kit}

Plugs into any S-100 motherboard (although ours don't need it) to reduce ringing, noise, crosstalk, and other buss-related problems. Here is an upgrade that is simple and effective.

\section*{The Godbout Box !}

By the time you read this, we will be shipping our industrial-grade enclosure. It's perfectly suited to creating a powerful system based on our line of S-1C0 boards (or anyone else's, if you're so inclined). It's rack mount or desk mount (with sliders for pulling it out of the rack if desired), neat-looking, heavy duty, and comes with the back panel pre-punched to accept a variety of connectors. Oh yes, and let's not forget the power supply for powering all your boards; it comes with the box, too. See your computer store for details, or write us direct.

Now you can add bank select and extended addressing to older S-100 machines like the Altair, IMSAI, Sol, Polymorphic, etc. Either use this board with our new extended addressing boards, or retrofit our high density Econorams (the ones with phantom or extra qualifier lines) for use with the Memory Manager Board to get up to \(1 / 2\) a megabyte of memory space for your computer.

\section*{We supply memory}

All our Econoram* memory is fully static, zips along at 4 MHz with the \(\mathrm{Z}-80\) or 5 MHz with the 8085 , supports a number of popular busses, is available from us through computer stores world-wide, in cludes a 1 year limited warranty, and comes in three configurations to suit your needs. For lowest cost, choose an "unkit" with sockets and bypass caps pre-soldered in place for an easy, one-evening assembly. When you just can't wait to get going, order our assembled and tested version. For critical systems, specify boards qualified under our Certified System Component (CSC) high-reliability program. These boards are extensively tested, burned in for 200 hours, and are immediately replaced in event of failure within 1 year of invoice date. Refer to chart below for pricing.

Name
8K Econoram IIA 16K Econoram IV 16K Econoram VIIA-16 24K Econoram VIIA-24 16K Econoram IX 32K Econoram IX 32K Econoram X 32K Econoram XI 16K Econoram XII 24K Econoram XII 32K Econoram XIII 16K Econoram XIV 16K Econoram XV-16 32K Econoram XV-32 16 K Memory Expansion
\begin{tabular}{|c|c|c|c|}
\hline Buss \& Notes & Unkit & Ass & CSC \\
\hline S-100 & \$149 & \$179 & \$239 \\
\hline S-100 & S269 & 5329 & \$429 \\
\hline S-100 & \$279 & \$339 & \$439 \\
\hline S-100 & \$398 & \$485 & \$605 \\
\hline Dig Grp & \$319 & S379 & n/a \\
\hline Dig Grp & \$559 & S639 & n/a \\
\hline S-100 & \$529 & S649 & \$789 \\
\hline SBC/BLC & n/a & n/a & \$1050 \\
\hline S-100 (1) & \$329 & S419 & \$519 \\
\hline S-100 (1) & \$429 & \$539 & \$649 \\
\hline S-100 (2) & \$559 & \$699 & \$849 \\
\hline S-100 (3) & \$289 & \$349 & \$448 \\
\hline H8 (4) & \$329 & \$395 & a \\
\hline H8 (4) & \$599 & \$729 & /a \\
\hline (5) & S87. & /a & /a \\
\hline
\end{tabular}

\section*{\(16 \mathrm{~K} \times 16\) or \(32 \mathrm{~K} \times 8\) Econoram XVI - coming soon!}

Notes
(1) Bank select board - 2 independent banks addressable on 8 K boundaries.
(2) Bank select board - 2 independent banks addressable on 16 K boundaries
(3) Extended addressing (24 address lines). Single block addressable on 4 K boundaries. (4) Bank select option for implementing memory systems greater than 64 K . (5) Chip set expands memory in Radio Shack-80, Apple, and Exidy Sorcerer machines.
*Econoram is a trademark of Godbout Electronics.

\section*{KEYBOARD SPECIAL:}

Microswitch keyboard, already encoded with upper and lower case ASCII. Silent switches (not reed type). Requires +5 and -12 V . With edge connectors'; just plug in and go. Normally \(\$ 99\), but order merchandise worth \(\$ 50\) or more and the keyboard is yours for only SASI

\section*{Season's Greetings and Happy New Year!}

Thant you for the sufptort that made 1979 a gieat year for us . . . on'll continue to eazn that sufifiove in 1980.

TERMS: Cal res add tax. Allow \(5 \%\) for shipping, excess refunded. VISAOI Mastercharge \({ }^{9}\) call our 24 hour order desk at (415) 562.0636 . COD OK with street address for UPS. Prices good through cover month of magazine.

Bldg. 725, Oakland Airport, CA 94614
from

Fhee catalug: Send us your name and address... we'll take calre of the rest. In retum, you'll get pages and pages of technical information, pricing, specials, kits, and lots more. Include 414 in stamps for ist class delivery.
\begin{tabular}{|c|c|c|c|c|c|}
\hline 0348 & D688 & & SUI & OBH & \\
\hline -34A & 77 & & HOV & M, A & \\
\hline 0348 & C9 & & RET & & \\
\hline -34C & FEOD & C536: & CPI & ODH & 3 CARRIAGE RETURN 7 \\
\hline - 342 & C25603 & & JNL & C528 & \\
\hline 6351 & AF & C587: & XRA & A & \(3 \times \mathrm{OS}=0\) \\
\hline d 352 & 32ADG4 & & STA & XPOS & \\
\hline -355 & C9 & & RET & & \\
\hline 6356 & reac & C508: & CPI & 0 CH & S FORM FEEDT \\
\hline 0358 & C26D93 & & JNZ & C518 & 8NO \\
\hline ©358 & 3AATE4 & & LDA & M ODE & \% UHAT RESOUTION? \\
\hline 635E & 47 & & MOV & B,A & \\
\hline -35F & 3E7A & & MVI & A 7 7AH & 3ASSUNE 128 BY 128 \\
\hline 6361 & 04 & & INR & B & 315177 \\
\hline 0362 & F26703 & & JP & C569 & 3 SURE 15 \\
\hline 6365 & 3E3A & & MVI & A 3AR & 3 BAD ASSUMPTI ON \\
\hline 6367 & 32ACb4 & C5098 & STA & TPOS & 3 SO MUCH FOR YPOS \\
\hline 636A & C35193 & & JMP & CsO7 & STAKE CARE OF XPOS \\
\hline 636D & FEIt & CSIS: & CPI & 10 H & 3BLACK? \\
\hline -36F & CA8363 & & JV & C512 & 3 SURE 15 \\
\hline 6372 & D8 & & RC & & ONOT EVEN A COLOR \\
\hline \$373 & FEI 8 & & CPI & 18 H & PABOVE VHITE? \\
\hline 0375 & D \({ }^{\text {d }}\) & & RNC & & BYES. FORGET IT \\
\hline 6376 & F618 & & ORI & 88 H & IUSE BRIGHT CODORS \\
\hline - 378 & 47 & & MOU & B. \(A\) & S SAVE UHERE SAFE \\
\hline 0379 & 3AATEA & & LDA & M ODE & 1128 BY 128 CAN ONLY \\
\hline c376 & 3C & & INR & A & 8 BE VHITE \\
\hline 6370 & FAs203 & & JM & C511 & 30 O - 64 BY 64 \\
\hline ©389 & 660F & & MOI & B. 9 FH & 3 FORCE IT TO BE VHITE \\
\hline a 382 & 78 & C511: & MOV & A. \(B\) & 3 MAKE BOTH HALFS \\
\hline 4383 & E60F & CS12: & AN 1 & © \({ }^{\text {F }}\) & 3 THE SAME \\
\hline 6385 & 47 & & MOV & B. A & 3SAVE ONE COPY \\
\hline 6386 & BF & & RRC & & \\
\hline ¢ 387 & 6F & & RRC & & \\
\hline 8388 & © \(F^{\text {F }}\) & & RRC & & \\
\hline 6389 & EF & & RRC & & \\
\hline -3BA & B \({ }^{\text {d }}\) & & ORA & 8 & BCOMPLETE COLOR BYTE \\
\hline . 388 & 32AEd4 & & STA & COLOR & \\
\hline \multirow[t]{8}{*}{638 E} & \multirow[t]{8}{*}{C9} & & RET & & \\
\hline & & 3 & & & \\
\hline & & 3 ROUTINE & E ANIMA & & \\
\hline & & 2 & \multicolumn{2}{|l|}{SHAP DISPLAY B} & FFRS \\
\hline & & 3 & BUPFER & CURREUTL & Y BEING FIbLED IS DISPLAYED \\
\hline & & 3 & BUFTER & INDICATE & d 8 T ANIM IS PILLED \\
\hline & & 3 & \multicolumn{2}{|l|}{ANIM=g STA} & RTS FILLING RBUF+2K \\
\hline & & 1 & \multicolumn{2}{|l|}{ANIM \(=-1 \quad\) STA} & RTS FILEENG RBUF-2K \\
\hline & & \({ }^{3}\) ANIMAT: & & & 3 SAVE REGISTERS USED \\
\hline \[
\begin{aligned}
& 6387 \\
& 6396
\end{aligned}
\] & CS & ANIHAT: & PUSH & B & \(t\) \\
\hline 0391 & E5 & & PUSH & H & 8D IS NOT TOUCHED \\
\hline 6392 & DB6E & ANE82: & IN & DAZG & 3 VERTICALI BLANKING ON? \\
\hline 0394 & E646 & & ANI & 46H & 31550 \\
\hline 0396 & CA9203 & & J2 & ANBE2 & 8 HAIT FOR NEXT ONE \\
\hline 6399 & 21ABG4 & & LXI & H2 AN IM & 3ADDRESS OF IN USE PLAG \\
\hline 0396 & 7E & & MOV & A, M & \% GUPFER IN USE \\
\hline B39D & \(2 F\) & & CMA & & 3 SET FOR NEXT TRY \\
\hline -39E & 77 & & MOV & M,A & 3 AND SAVE FOR NEXT TIME \\
\hline 0397 & 47 & & MOV & E. \(A\) & 3 also Save for Later \\
\hline & & & & & Listing 1 continued on page 174 \\
\hline
\end{tabular}

\[
\begin{aligned}
& \text { CONTROL! CHARACTERS } \\
& \text { A - ASCII CONTROL!CHARACTER } \\
& \text { CPI OOH BMAXR? }
\end{aligned}
\]

SGET DESIRED DAZZLER MODE
BAND TELITHE DAZZLER IMAXC ? MAXC
3YES
3R64?
3NO

MODE
A. B.
AAB:

3020

\[
\begin{aligned}
& \text { BDISPLAY THE RETRIEVED CCLUM } \\
& \text { ACTERS } \\
& \text { OL I CHARACTER } \\
& \text { SMAXR? } \\
& \text { BYES } \\
& \text { \$RI } 8 \text { ? } \\
& \text { BNO } \\
& \text { \$128 BY } 128 \text { UHITE }
\end{aligned}
\]

\section*{By Netronics}

ASCIIIBAUDOT, STAND ALONE

\section*{Computer \\ \\ COMPLETE \\ \({ }^{5} 149^{95}\)}

The Netronics ASCII/BAUDOT Computer Terminal Kit is a microprocessor-controlled, stand alone keyboard/terminal requring no computer memory or software. It allows the use of either a 64 or 32 character by 16 line professional display format with selectable baud rate, RS232-C or 20 ma output, full cursor control and 75 ohm composite video output.
The keyboard follows the standard typewriter configuration and generates the entire 128 character ASCll upper/lower case set with 96 printable characters. Features include onboard regulators, selectable parity, shift lock key, alpha lock jumper, a drive capability of one TTY load, and the ability to mate direclly with almost any computer, including the new Explorer/85 and ELF products by Netronics.
The Computer Terminal requires no \(1 / \mathrm{O}\) mapping and includes ik of memory, character generator, 2 key rollover processor controlled cursor control, paraliel ASClI/BAUDOT to serial conversion and serial to video processing-fully crystal controlled for superb accuracy. PC boards are the highest quality glass epoxy for the ultimate in reliability and long life.

\section*{VIDEO DISPLAY SPECIFICATIONS}

The heart of the Netronics Computer Terminal is the micro-processor-controlled Netronics Video Display Board (VID) which allows the terminal to utilize either a parallel ASCII or BAUDOT signal source. The VID converts the parallel data current loop output, which can be connected to the serial I/O on your computer or other interface, i.e., Modem.
When connected to a computer, the computer must echo the character received. This data is received by the VID which processes the information, converting to data to video suitable to be displayed on a TV seet (using an RF modulator) or on a video monitor. The VID generates the cursor, horizontal and vertical sync pulses and performs the housekeeping relative to which character and where it is to be displayed on the screen. Video Output: \(/ .5\) P/P into 75 hm (EIA RS-170) • Baud Rate: 110 and 300 ASCII © Outputs: RS232-C or 20 ma. current loop - ASCII Character Set: 128 printable characters

\section*{}

\section*{} RSTUV WXYZ-?: 3 S\# ()., \(9014!57: 2168{ }^{\circ}\) Vertical Tab, Carriage Return. Two special cursor sequences are provided for absolute and relative \(X\) - \(Y\) cursor addressing * Cursor Control: Erase, End of Line, Erase of Screen, Form Feed, Delete - Monitor Operation: 50 or 60 Hz (jumper electable.

\section*{Continental U.S.A. Credit Card Buyers Outside Connecticut}

\section*{CALL TOLL FREE 800-243-7428}

Start Computing For Just \$129.95 With An 8085-Based Professional Computer Kit-

\section*{Explorer/85}
\(100 \%\) compatible with all 8080A and 8085 software \& development tools!

No matter what your future computing plans may be, Level " \(A\) "-at \(\$ 129.95\)-is your starting point.
Starting at just \(\$ 129.95\) for a Level "A" operating system oou be your beainner's systemp OEM controller or 1 BM formatted \(8^{\prime \prime}\) disk small business sysem yo you're neve ormatted \(8^{\prime \prime}\) disk small busimess system... yet you're never forced to spend a penny for a component or feature you don' Now, for just \(\$ 129.95\), you can own the first level of a fully expandable computer with professional capabilities-a computer which features the advanced Intel 8085 cpu , thereby biving you immediate access to all software and developmen ools that exist for both the 8085 and its 8080A predecesso they are \(100 \%\) software compatible)-a computer which eatures onboard S-100 bus expansion-plus instant conver sion to mass storage disk memory with either 5-1/4" diskettes or standard IBM-formatted \(8^{\prime \prime}\) disks.
For just \(\$ 129.95\) (plus the cost of a power supply, keyboard/ erminal and RF modulator, if you don't have them already), Explorer/85 lets you begin computing on a significant level.. applying the principles discussed in leading computer maga ines.. developing "state of the art" computer solutions fo both the industrial and leisure environment.
Level "A" Specifications
Explorer/85's Level "A" system features the advanced Intel 8085 cpu , an 8355 ROM with 2 k deluxe monitor/operating system, and an 8155 ROM-1/O-all on a single motherboar with room for RAM/ROM/PROM/EPROM and S-100 ex pansion, plus generous prototyping space.
(Level "A" makes a perfect OEM controlier for industria applications and is available in a special Hex Version which
can be programmed using can be programmed \(\left.\begin{array}{c}\text { using } \\ \text { the Netronics } \\ \text { Hex }\end{array}\right)\) PC
PC Board: glass epoxy, plated through holes with solder mask - 1/O: provisions for 25-pin (DB25) connector for termina Level " \(A\) " at \(\$ / 29.95\) is a serial \(1 / 0\), which can also sup complete operating system, perfect for beginners, hobbiests, or industrial controller use. port a paper tape reader put. cassette tape recorder play, .. cassette tape recorder in output speaker output LED output indicator on SOD serial output) line printer interface (less drivers), total of four 8 -bit plus one 6 -bit 1/O ports *Crystal Frequency: 6 . 14 four 8-bit plus one 6-bit \(1 / 0\) ports \({ }^{\circ}\) Crystal Frequency: 6.14 interrupt . . additional provisions for RST 5.5,6.5 and TRAP interrupts onboard - Counter/Timer: programmable 14-bi inary System RAM: 256 bytes located at F800, ideal for binary System RAN: 256 byies located a F 10 , ideal for expanded systems... RAM expandable to 64 k via S-100 bus o 4 K on motherboard.
System Monitor
Sysm Montror (Terminal Version): 2k bytes of deluxe RAM/ROM Features incated at F003 leaving 0600 free for use dump with labeling. . examine/change contents of memory dump with labeling...examine/change contents of memory registers. . .single step with register display at each break point a debugging/rraining feature. . go to execution address. move blocks of memory from one location to another. . fill blocks of memory with a constant . . . display blocks of memory . .automatic baud rate selection . . .variable display line length control (1-255 characters/line)...channelized 1/O monito routine with 8 -bit paraliel output for high speed printer serial console in and console out channel so that monitor can communicate with 1/O ports.
System Monitor (Hex Version): Tape load with labeling. tape dump with labeling. . examine/change contents of mem
 Netronics R\&DLId., Dept. RE1O
333 Litchfield Road. New Milford, CT 06676
- Explorer/85 Level "A" Kit (ASCII Version), \(\$ 129.95\) plus \(\$ 3\) p\&h
- Explorer/85 Level "A" Kit (Hex Version), \(\$ 129.95\) plus \(\$ 3\) p\&h
\(\square\) 8k Microsoft BAS
tape, \(\$ 64.95\) postpaid.
\(\square \mathrm{k}\) Microsoft BAS
8k Microsof! BASIC in ROM Kit requires Levels "B,
\(\$ 99.95\) plus \(\$ 2 \mathrm{p} \& \mathrm{~h}\).
\(\$ 99.95\) plus \(\$ 2\) p\&
\(\square\) Level " \(B\) " (5.
\(\square\) Leve
\(\$ 2\) p\&h.
\(\square\) Level "C"
Kit, \(\$ 39.95\) plus \(\$ 2\) p\&h.
\(\square\) Level "D" (4k RAM) Kit, \(\$ 69.95\) plus \(\$ 2\) p\&h.
\(\square\) Level "E" (EPROM/ROM) Klt, \(\$ 5.95\) plus \(50 \leq p \$ h\).
\(\square\) Deluxe Steel Cabinet for Explorer/ \(85, \$ 49.95\) plus \(\$ 3 \mathrm{p} \& \mathrm{~h}\).
\(\square\) ASCII Keyboard/Computer Terminal Kit (features a full 128 character set, upper \& Iower case, full cursor control, 75 ohm video output convertible
to baudot our put, selectable baud rate, RS232-C or 20 ma . I/O, 32 or 64 character by 16 line formats, and can be set (if you have an RF modulator), \(\$ 149.95\) plus \(\$ 2.50\) p \(\& h\),
plus \(\$ 2\) p\&
\(\square\) Deluxe Steel Cabinel for ASCII
Keyboard/Termi Cabinel for ASCll Keybo
p\&h.
\(\square\) Power Supply Kit (\(\pm 8 \mathrm{~V}\) @ 5 amps) in deluxe steel cabinet, \(\mathbf{\$ 3 9 . 9 5}\) plus \(\$ 2\) p\&h.
\(\square\) Gold Plated S-100 Bus Connectors \(\mathbf{\$ 4 . 8 5}\) each, postpaid.
\(\square\) RF Modulator Kit (allows you to use your TV set as a monitor), \(\mathbf{\$ 8 . 9 5}\) postpaid.
\(\square\) 16k RAM Kit (S-100 Board expands to 64 k), \(\mathbf{\$ 1 9 9 . 9 5}\) plus \(\$ 2 \mathrm{p} \& \mathrm{~h}\).
- 32k RAM Kit, \(\$ 329.95\) plus \(\$ 2\) p\&h.

48K RAM Kit, \(\$ 459.95\) plus \(\$ 2\) p\&h 6 64k RAM Kit, \(\$ 589.95\) plus \(\$ 2\) p\&h. \(\square\) 16k RAM Expansion Klt (to expand any of the above
\(\square\) Intel 8085 cpu User's Manual 5750 postpaid.
D Special Computer Grade Casselte Tapes, \(\mathbf{\$ 1 . 9 0}\) each or \(\mathbf{3}\) for \(\mathbf{S 5}\), postpaid. \(\square\) 12' Video Monitor (10 MHz band width), \(\$ 139.95\) plus \(\$ 5\) p\&ch
\(\square\) North Star Double Density Floppy Disk Kit (One Drive) for Explorer 85 (includes 3 drive S-100 controller,

Ming

Hex Keypad/Display.

\section*{Level "B" Specifications}

Level" \(B\) " provides the \(\mathrm{S}-100\) signals plus buffers/drivers to suppori up to six S-100 bus boards and includes: address decoding for onboard 4 k RAM expansion select-able in 4 k blocks. . address decoding for onboard 8 k EPROM expan sion selectable in 8 k blocks..., address and data bus drivers for to allow the use of slower memories...two separate 5 vol regulators.

Level "C" Specifications Level " C " expands Explorer's molherboard with a card cage allowing you to plug up to six S-100 cards directly into the
motherboard. Both cage and motherboard. Both cage and Explorer's deluxe steel cabinet
Explorer/85 with Explorer's deluxe steel cabinet Level "C" includes a sheet metal superstructure, a 5 -card gold plated S-100 extension PC board which plugs into the
Level "D" Specifications
Leve! " \(D\) " provides \(4 k\) or RAM, power supply regulation, filtering decoupling components and sockets to expand you Explorer \(/ 85\) memory to 4 k (plus the original 256 bytes located in the 8155A). The static RAM can be located anywhere from 6000 to EFFF in 4 k blocks.

\section*{Level "E" Specifications}

Level "E" adds sockets for 8k of EPROM to use the popular Intel 2716 or the TI 2516 . It includes all sockets, power supply regulator, heat sink, filtering and decoupling components Sockets may also be used for soon to be available RAM IC' (allowing for up to 12 k of onboard RAM)

\section*{Order A Coordinated}

\section*{Exploreri85 Applications Pak!}

Experimenter's Pak (SAVE \$12.50)-Buy Level " \(A\) " and Hex Keypad/Display for \$199.90 and get FREE Intel 8085 user's manual plus FREE postage \(\&\) handling!
Student Pak (SAVE S24.45)-Buy Level "A." ASCII Key board/Computer Terminal, and Power Supply for \(\$ 319.85\) and get FREE RF Modulator ptus FREE Intel 8085 user's manua plus FREE postage \(\&\) handling!
Engineering Pak (SAVE \$41.00)-Buy Levels " \(A\)," "B," "C," "D," and "E" with Power Supply, ASCII Keyboard/ Computer Terminal, and six S-100 Bus Connectors for \(\$ 514.7\) and get 10 FREE computer grade cassette tapes plus FREE 8085 user's manuai plus FREE postage \& handling!
Business Pak (SAVE S89.95) - Buy Explorer/85 Levels " \(A\), "B," and "C" (with cabinet), Power Supply, ASCII Key board/Computer Terminal (with cabinet), 16 k RAM, \(12^{\prime}\) Video Monitor, North Star 5-1/4' Disk Drive (includes North Star BASIC) with power supply and cabinet, all for jus \(\$ 1599.40\) and get 10 FREE \(5-1 / 4^{12}\) minidiskettes (\(\$ 49.95\) value) plus FREE 8085 user's manual plus FREE postage \& handling

Cont|nental U.S.A. Credit Card Buyers Outside Connecticut
CALL TOLL FREE 800-243-7428
To Order From Connecticut Or For Technical
Assistance. Etc. Call (203) 354-9375
sonalized disk operating system-just 6699.95 plus \(\$ 5\) p\&h.
\(\square\) Power Supply Kit for North Star Disk Drive, \(\$ 39.95\) plus \(\$ 2\) p \& h
\(\square\) Deluxe Case for North Star Disk Drive, \(\$ 39.95\) plus \(\$ 2\) p\&h
Experimenter's Palk (see above), \(\$ 199.90\) postpaid.
\(\square\) Student Pak (see above), S319.85
postpaid.
Engineering Pak (see above).
\(\$ 514.75\) posipaid. postpaid.
Tota! Enclosed \$
 Master Charge

Acct. \#

Print
Address
City
State

Don't settle for less than the total performance built into your \(Z 80\) Computer. Wake up its entire potential with an OASIS Operating Systemthe high-powered, professional software package that takes full advantage of \(Z 80\) power.

Utilizing optimized Z80 code, OASIS makes the system run faster. More and better tools let you develop software faster, too.

It's easy to use because all the tools you need are included: ISAM files, hard and floppy disk support, editor, user accounting with logon, password privilege level, and file security. Options: BASIC Compiler, spooler, text editor and output processor,
development package, and more.
The BASIC Compiler is also an interpreter, complete with debugger. It makes programs run faster, takes less memory, and provides software security. A first for micros, it's an OASIS exclusive.

> FEATURES: Single. \& Mult -Uset/User Accountring/Mulin-Tasking/ Fte \& Record Secutily/Logon. Password \& Priwiege Protection/ Keyed (ISAM), Drect \& Sequental Flles/Hard \& Floppy Disk Suppon// Extensive Documertatuon
> OASIS PRODUCTS: Single-User Operating System/Mulli-User Operaming System/Macso Re-locating Assemblet/ Oetwigger/Linker/Edtor/ Output Text Formatter/ Spooler/Communicalions Package/Sort/ Diagnosmc \& Manterxance Ulimes/Interactive ExEC Language/ Ae-entran: BASIC Compiler
> OASIS IS AVAILABLE FOR: Allos/Bulhngs/Digital Merosystems/ Digital Group/Cromernco/Vector Graphic/Micromation/Compucorp North Star/Onyx/Bell Controis/TRS-80 Mod II/Vormmex and oliners

Multi-User OASIS, available for most computer configurations, gets even more performance out of your system. It has all the Single-User features, PLUS a re-entrant BASIC Compiler, file and record locking, variable time-slicing, user-to-user communications, and extended memory addressing. All fully upward compatible with Single-User
Documentation?...complete and extensive And, of course, there's plenty of application software.

OASIS operating systems, languages, development packages, system utilities - all fully integrated, all from one source.

Ask your dealer or manulacturer.
Or send the coupon direct, today
Order OASIS direct from:
Phase One Systems, Inc.
7700 Edgewater Drive, Suite 830
Oakland, CA 94621
Telephone (415) 562-8085 TWX 910-366-7139
My computer configuration (specify make, disk system, etc.)
\(\qquad\)
Name
Street Address (No Box \#
City
State
_ Zip
PLEASE SEND ME:
\begin{tabular}{|c|c|c|}
\hline OASIS (Includes Manual) & Manual Only & Amount \\
\hline \(\square\) Single-User System \$150 & \(\square\) \$17.50 & \\
\hline \(\square\) BASIC Compiler \(\$ 100\) & \(\square\) \$15 & \\
\hline \(\square\) Multi-User System \$250 & \(\square \$ 17.50\) & \\
\hline \(\square\) Re-entrant BASIC Compiler \$145 & \(\square \$ 15\) & \\
\hline SPECIAL WITH THIS COUPON: System AND BASIC Manual & \(\square \$ 27.50\) & \\
\hline Complete information & \(\square \$ 1\) & \\
\hline & Shipping & \$2 \\
\hline \(\square\) Check Enclosed \(\square\) VISA & \$1 for C.O.D. & \\
\hline Card Number: \(\square\) Mastercharge & California & \\
\hline Expiration Date: & sales tax & \\
\hline Signature: & TOTAL & \\
\hline
\end{tabular}

\title{
Tomorrow's mail system Today.
}

One package does it ALL.
Postmaster offers the most powerful and flexible mail-management system available.

Bätch Entry: Entering names and addresses to a mailing list is simple. Repeated. elements of a recordineed only be entered once. Powerful Record Extraction: Used in conjunction with the Optional Reference Field, this feature allows simple creation of user specified "target-files:
Dedicated Record Editor: List, modify or delete records. Allows intact or extracted backup of original file. Automatic "D" Field Insertion: (optional) Key in a name, and a unique 10 character record identifier will be entered automatically to the Reference area.
Envelopes: Postmaster prepares single or continuous envelopes.
Mailing Labels: Standard or user-specified formats up to five across are supported by Postmaster. User may specify any number of labels per name.
Form Letters: Prepare and edit form letters in a variety of formats; on either single or continuous forms.
Optional capability of
allowing text or salutation
"Inserts" for some or all letters in any print run.

Dedicated Record Sorting: Sorted files are re-writtento disk. The sort may-be in either ascending or descending order. Uses the FAST Shell-Metzner'sorting algorithm.
Attractive Reports: Neat, paginated reports on either 80 or 132 column paper. The 80.column optionallows your CRT to provide an attractive report display Clear, Complete Dacumenta: fion: The manual will explain in simple English how to get started right away. Sample data and form-letter files:are included on the disk to allow new users to experiment (learn) quickly.
Quality That's Affordable and Available: The Postmaster programs are available in a variety of \(5^{\prime \prime}\) and \(8^{\prime \prime}\) disk for: mats (40k of RAM,CPIM and CBASIC2 are required). Among the formats sup. ported are TRS-80, North Star, Heath H 8 and HB B, standard \(8^{\prime \prime} \mid \mathrm{IBM}\).
Vector MZ and other CPIM derivatives cepabio of running CBASIC.
\begin{tabular}{|c|c|}
\hline COMPLETE PACKAGE: & \\
\hline \$150 & \$15. \\
\hline
\end{tabular}
(Credited toward

Text continued from page 82
cates that double buffered animation is available, MAXC mode has 15 colors and 64 by 64 resolution, the display is in color, and MAXR mode has one color and 128 by 128 resolution.

\section*{8080/Dazzler Page}

The PAGE routine takes advantage of the hardware requirement that refresh buffers start only on even page boundaries and are 2 K bytes long. The low-byte of the address is used for a free zero, while the HL register is incremented until H corresponds to the high-byte of the first address beyond the buffer.

\section*{8080/Dazzler Cursor}

Since the same scaling routine is used for both CURSOR and LINE, CURSOR becomes an almost empty routine. Aside from preserving registers, all it does is call CUOOO with the coordinates presented, and save the scaled result as the new software cursor position XPOS, YPOS.

The MODE byte engages in some trickery to indicate the desired mode efficiently. The numeric value associated with the mode is rotated right one bit position. The resultant value can be incremented up to 126 times and still remain negative if in MAXC or R64 mode, and positive if in MAXR or R128 mode. Since MAXR on the Dazzler is 128 by 128 resolution, and MAXC is 64 by 64 , we have a simple test to determine which mode is in use.

The scale routine CU000 divides \(X\) and \(Y\) by 2, checks to see if R128 or MAXR is selected, and divides again if they are not.

\section*{8080/Dazzler DOT}

This routine tends to be somewhat complex due to the convoluted mapping from bits in the byte to points on the screen used by the Dazzler in 128 by 128 resolution mode, and the dividing of the screen into four quadrants. Fortunately, if the 128 by 128 coordinates are divided by 2 , the address and mask generated by applying the algorithm for 64 by 64 resolution yields the four bits corresponding to the four possible 128 by 128 points. The low-order bits of the X and Y coordinates lost in the division are then used to select the single bit corresponding to the desired point.

The four quadrant problem is similarly solved by using the high-order bit of each coordinate to determine the quadrant, and the remaining lower order bits to find the location inside the quadrant. Since these problems are unique to the Dazzler, they will not be discussed further. The interested reader is invited to trace the logic in the program listing.

One final comment on the DOT routine is appropriate. The DOT register restore sequence is also used by LINE and CHAR. If it is changed, the appropriate modifications will also be required in LINE and CHAR.

\section*{8080/Dazzler LINE}

The LINE routine is almost a block-for-block encoding of the LINE algorithm. The variable name correspondence table (table 8) is provided as a cross-reference guide, since some of the variable names used in the algorithm were modified.

Because the values of XP and YP are lost when the cursor adjustments for "move 0" and "move 1" are looked up, initialization of variables is moved to immediately after sector determination. TA and T0 are both 16 -bit numbers because they represent the product of two 8 -bit numbers. The only 16 -bit arithmetic available on the 8080 is addition. To subtract X from TO, the 16-bit two's complement of \(X, D X\), is calculated and added. Similarly, DY is the 16 -bit representation of Y .

The cursor adjustments required for a "move 0 " and a "move 1" are looked up in the table MXT. Entries are indexed by sector weight. Each entry is four bytes long (M0X, M0Y, M1X, and M1Y for the particular sector), so the sector weight is multiplied by 4 (two shifts left) and added to the starting address of the table. The correct cursor adjustments are then retrieved and stored where access is more convenient.

The only other significant change to the logic is the placement of the test for completion. For efficiency, x is compared to X immediately after the point is displayed. This has the added advantage of occurring at the only time the stack is free of temporary variables.

\section*{8080/Dazzler CHAR}

The CHAR routine, with the exception of control character processing, also follows its NassiSchneiderman chart rigorously. The major change has been to convert to a SELECT construct the string of IFs used for control character processing. This avoids a multitude of tests which are guaranteed to fail once the character has been recognized. The processing of control characters with similar actions has also been consolidated to reduce redundancy.
As is obvious from its Nassi-Schneiderman chart, CHAR is really two independent routines with a common entry point. The only common code is the register saving and parity stripping. By pushing the address of the restore register routine onto the top of the stack, the return (RET) instruction will jump to the restore register sequence, restore all registers, and then return to the calling program.

The character matrix table is indexed by ASCII value minus 32, ie: the first entry is a blank. Since each entry is

Table 8: Variable name definitions for LINE.

Note: The table numbering sequence is continued from part 1.

\title{
Up Your Output. \\
}

\section*{MULTI-TASKING!}

The TEMPOS Operating System is quickly becoming the standard in MultiUser, Multi-Tasking operating systems for 8080 and Z80 microcomputers. Multi-Tasking means that, even with only one user at one terminal, more than one job can be running on the system simultaneously! If you have ever had to go get a cup of coffee while you wait for your computer to print listings, you know the advantages of a system that will handle one job while you are working on another. TEMPOS is a true time sharing system, and the maximum number of jobs is limited only by your memory.

\section*{MULTI-USER!}

Want to share your computer with another user? With TEMPOS allit takes is another terminal . . . up to seven interactive terminals are allowed! And with Re-Entrant programs, each user does not need a complete copy in memory. We include three Re-Entrant programs (the OPUS/THREE HighLevel Language, the TEXTED Text Editor, and FILES, a disc file directory/manipulator) or write your own! \(\ln\) addition, we include an assembler, a linking loader, over a half-dozen other utility programs and over 60 system subroutines, callable by the programmer!

\section*{PROVEN!}

With TEMPOS, you get a package that hasbeen tested in our facilities for over two years, and in the field at over 50 different installations. We have used this system ourselves for everything from writing high-level languages to developing applications to text editing to games. TEMPOS is undoubtedly the most flexible software tool on the market . . . and you can have it for much less than you think!

\section*{COMPATIBLE!}

TEMPOS is available for many different systems; pre-written drivers may include yours. Or, using our interactive System Generation Routine, you can add your own. Call or write now for our free catalog and the name of a dealer near you. The TEMPOS Operating System is available for \(\$ 787.00\), the manual set (price may be credited toward the purchase of the TEMPOS package) for \(\$ 21.50\) (prices include shipping within the U.S.).

\section*{ADMINISTRATIVE 므SYSTEMS \\ 蹅INC.吅}

1642 S. Parker Road, Suite 300, Denver, Colorado 80231
(303) 755-9694
three bytes long, the index must be multiplied by 3 to get the offset into the table. (The format of the character table is fully defined in the comments preceding it in the listing.) The first byte of each entry contains all the flags describing the character. The width bits are masked off and the cursor value for the next character position calculated. If the width is 6 (including a blank pixel between characters) the special subroutine to generate the first column of a 5 -column wide character is executed. The descender indicator flag is then checked and the cursor is adjusted if necessary.

The normal character generation code scans the character matrix row-by-row. Whenever a 1 is encountered, the DOT routine is called to display the pixel at that location. When all five rows are completed, the cursor value is set for the next character position as calculated earlier, and control returned to the calling program.

The special subroutine used for five wide characters generates only the first column. By incrementing the cursor position, the normal character generation sequence is used to generate columns 2 through 5 instead of the normal 1 through 4.

Control character handling proceeds in three phases. Phase 1 checks for any of the four mode controls and sets MODE as required. The Dazzler hardware must also be informed so it can change mode. Phase 2 is entered if the control character is not a mode control. This is an individual check for each of the carriage control characters. Note that to get to the top line, form feed must determine what resolution is in use. Phase 3, if reached, is current color selection. The value of the control character is first
checked to verify that it actually is a color select character. If it is black, the COLOR byte is set to all zeros. If any other color, a check is made to determine if the Dazzler is in a color supporting mode (MAXC or R64). If not, COLOR is set to all ones (high-resolution white). If a color mode is in use, the bright bit is set and the loworder four bits are duplicated in the high-half of the byte to yield a COLOR byte with the desired color in both pixel fields. Conveniently, the Dazzler color bit definitions match the lower three bits of the color select character.

A word of caution is in order for anyone using the compiler hexadecimal output in the listing directly, rather than the source code. The character table contains more bytes per line than the compiler used allocates for listing purposes (hence the " D " error). One must load the character table from the source code rather than from the compiler's hexadecimal output.

\section*{8080/Dazzler ANIMAT}

The ANIMAT routine's implementation is adequately described in the comments on the listing. The flag byte ANIM indicates whether the first 2 K buffer or the second (auxiliary) 2 K buffer is currently being filled. Note that if the buffer swap were made as soon as vertical blanking was detected rather than as soon as vertical blanking was detected following an absence of vertical blanking, it would be possible to swap buffers, modify the display, and swap buffers again-all during one vertical blanking period. The net result, of course, would be that the one buffer would never be displayed, a clearly undesirable circumstance.

\section*{BATTERY-WRAP WIRE WRAPPING TOOL MODEL :3M/2630}
- POSITIVE INDEXING
- ANTI-OVERWRAPPING
- BITS AVAILABLE FOR AWG 26, 28 \& 30
- BATTERY OPERATED
- LICHT WEICHT

\begin{tabular}{|l|l|c|}
\hline BW-2630 & BATTERY-WRAP TOOL & \(\$ 19.85\) \\
\hline BT-30 & BIT FOR AWG 30 & \(\$ 3.95\) \\
\hline BT-2628 & BIT FOR AWG 26 \& 28 & \(\$ 7.95\) \\
\hline RB-20 & TWO NI-CAD BATTERIES & \(\$ 10.75\) \\
\hline
\end{tabular}
-minimum billing s25.00/AdD Shipping charge s2.00I new YoRk city IState residents add applicable tax.
OK MACHINE \& TOOL CORPORATION
3455 CONNER STREET, BRONX, NY. 10475, U.S.A. PHONE (212) 994-6600 • TELEX: 125091

\title{
MICROSOFI CONSUMER PRODUCTS CONTINUING THE MICROSOFI TRADITION
}

\section*{Microsoft set the standard in microcomputer system software. We know more about the structure and capabilities of today's microcomputers than anyone else. And now we're using that power in a whole new way!}

Announcing Microsoft Consumer Products. Distinctive software packages backed by the Microsoft name. Each is created by a top-notch programmer and comes to you fully documented, at a cost you can afford.
Microsoft Editor/Assembler-Plus.'" Now get every feature of Radio Shack's Editor/Assembler and T-Bug all in one package. PLUS-many "big computer" features to simplify your programming, editing and debugging. All in a low cost cassette package. Don't waste time creating both source and object tapes-Assembler-Plus assembles directly into memory. Supports macros and conditional assembly, too. Editor-Plus simplifies editing with extra commands like Substitute, Move, Copy and Extend. And Z-Bug',' the most powerfui debugger ever available for the TRS-80, has single step execution, direct execution in calculator mode and symbolic references. And, you can use up to 8 breakpoints at a time, with no need to remove a breakpoint before proceeding. For the 16 K , Level II, cassette TRS-80 Priced at \(\$ 29.95\).
Microsoft Adventure. Onty Microsoft offers Adventure complete, as originally written for the DEC PDP-10, now implemented on personal computers. The ultimate fantasy/logic game, Adventure allows you to explore the depths of the "Colossal Cave", collecting treasures and magic, solving puzzles, avoiding hazards and adversaries-including the dreaded killer dwarves. Don' \(\dagger\) be fooled by imitation or incomplete versions. Only Microsoft has it all. Adventure fills an entire disk with everything you need for your exploration. Written by Gordon Letwin, of SOFWIN, Associates. Adventure for the TRS-80 requires a single-disk, 32K system. For the Apple \(\|\), " a single-disk, 32K system with either the standard disk or language card system. For just \(\$ 29.95\).

Microsoft Typing Tutor. There's no easier way to master your keyboard! Faster and more efficient than any other teaching method. Typing Tutor helps you if you're starting from scratch or simply building speed. The secret lies in Typing Tutor's exclusive TRM '" or "Time Response Monitoring" software. TRM monitors your keyboard 20 times per second so the computer can evaluate your skill. Your speed. Your errors. Your weakest keys. Typing Tutor tells you where you stand then automatically adjusts itself to help you improve. Written by Dick Ainsworth and AI Baker of the Image Producers, Inc. For the Apple II with 16K and Apple BASIC or the TRS-80 with 16K and Level II BASIC. Priced at \$14.95.
Microsoft Level III BASIC. Upgrade your Level II TRS-80 and increase your programming efficiency without additional hardware. Microsoft Level III loads from cassette tape on top of the Level II ROM. It gives you every feature of Disk BASIC except disk file commands. But that's not all-Level lli's highspeed graphics turn your TRS-80* into a virtual electronic drawing board. And there's program renumbering, long error messages, quick shift-key entries, time-limit INPUT statements and many more features. System requirements: Level II BASIC and 16K. Occupies 5.2 K RAM. Priced at \(\$ 49.95\).
Where To Buy. Microsoft Consumer Products are sold by computer retailers nationwide. If your local computer store doesn't have them, call us. Phone (206) 454-1315. Or write Microsoft Consumer Products, 10800 Northeast Eighth. Suite 819, Bellevue,WA 98004.

\footnotetext{
-TRS-80 is a trademark of Radio Shack Corp. " Apple II is a trademark of Apple Computer, Inc.. - Editor/Assembler-Plus and Z-Bug are trademarks of Microsoft. TRM is a trademark of The Image Producers, Inc
}

NICROSOTT
5

Photo 1: Display generated by demonstration program number 2 (see listing 2).

\section*{Demonstration Program}

The demonstration program (see listing 2 on page 184) is provided for several purposes. Aside from demonstrating the power of the protocols, it serves as a tutorial in using the 8080 assembly language protocol and as a debugged, wörking user program for verifying successful implementation of the 8080 assembly language protocol. The photographs illustrating this article were all generated by this program and a Matrox ALT-256**2 display. The program contains four independent demonstrations and two utility subroutines. Equates are used to allow mnemonic references to the standard protocol's entry vectors, color controls, and display modes.

The first demonstration is a maximum-resolution exercise for the line generator. The identification message uses R64 resolution deliberately to get large characters. A series of maximum-length lines are drawn to generate the string art parabolas in each corner. The calculation of the endpoints of all the lines is simplified by the standard coordinate system. Their spacing is controlled by the value for MRSCLF returned by INITG. Because of the speed of generation, a variable delay utility subroutine, PAUSE, is used to give time to observe the display. These pauses may be extended indefinitely by setting the switch register to hexadecimal 01.

The second demonstration tests the generation of all 64 of the uppercase ASCII characters. Again, advantage is taken of the lowest resolution mode to display large characters. The 64 characters are drawn eight times, once in each color, in order to demonstrate the ability to vary the display dynamically. On the last iteration, the characters are drawn in black, leaving a clear screen. Rather than verify that the display is capable of selective erase, the PAGE routine is also called. The full range of available character sizes is then displayed using R64, MAXR, and R128 display modes for one line each. All mode changes are immediately followed by absolute cursor positioning commands to avoid erroneous results.

Photo 2: Display generated by demonstration program number 3 (see listing 2).

The third demonstration cycles through all available colors with the line generator. To avoid claiming Full Color Control on a monochrome display, the color bit in MAXCD is tested. MCCOLS is then checked to see how many colors or grey shades are available. All available colors are used, one at a time, as one end of each line is moved closer to \((255,255)\). The attempt at mode RXXX, after shifting to R64, is ignored by the package in this article. The enhanced Dazzler package available from Cromemco uses it to select the Dazzler's 16-level grey scale mode.

The final demonstration is a short animation sequence. The header is inserted in both buffers. The auxiliary buffer must be cleared first, since this function is not included in the standard. If the display is not double buffered, this will also clear any warning messages generated by the graphics package.

The algorithm used to animate the figure will work with either double buffered displays or selectively erasable displays. For the former, the figure is backed up one step and drawn in black to erase it from the nondisplaying buffer (PAGE would require too much time and erase the header). The figure is then advanced two steps to get to the position past the one currently being displayed and drawn in white. Finally, ANIMAT is called to display the updated buffer, and the whole procedure is repeated until the screen is traversed. If the display is not double buffered (tested using the ANIM field in MAXRD), the ANIMAT routine is called anyway to delay until the start of vertical blanking. While the display is busy with vertical blanking, the old figure is erased and the new one displayed. If all the changes can be made before the affected memory is displayed, there will not be any flicker, and the animation will be as smooth as when double buffering is used.

The STRING subroutine is a convenient utility for displaying text strings. It calls the CHAR routine with each successive character in a string of ASCII characters until an ASCII '\$' (hexadecimal 24) is detected.

\section*{RADIO SHACK COMPUTER OWNERS TRS-80 MODEL I AND MODEL II}

\section*{TRS. 80 , wowlitr}
- PRACTICAL APPLICATIONS
- BUSINESS
- GAMBLING • GAMES
- EDUCATION
- PERSONAL FINANCE
- BEGINNER'S CORNER
- NEW PRODUCTS
- SOFTWARE EXCHANGE
- MARKET PLACE
- QUESTIONS AND ANSWERS
- PROGRAM PRINTOUTS AND MORE

PROGRAMS AND ARTICLES PUBLISHED IN OUR FIRST 12 ISSUES INCLUDE THE FOLLOWING
- A COMPLETE INCOME TAX PROGRAM (LONG AND SHORT FORM)
- INVENTORY CONTROL
- STOCK MARKET ANALYSIS
- WORD PROCESSING PROGRAM (FOR DISK OR CASSETTE)
- LOWER CASE MODIFICATION FOR YOUR VIDEO MONITOR OR PRINTER
- PAYROLL (FEDERAL TAX WITHHOLDING PROGRAM)
- EXTEND 16 -DIGIT ACCURACY TO TRS 80 FUNCTIONS ISUCH AS SQUARE ROOTS AND TRIGONOMETRIC FUNCTIONS)
- NEW DISK DRIVES FOR YOUR TRS 80
- PRINTER OPTIONS AVAILABLE FOR YOUR TRS 80
- A HORSE SELECTION SYSTEM***ARITHMETIC TEACHER
- COMPLETE MAILING LIST PROGRAMS (BOTH FOR DISK OR CASSETTE SEQUENTIAL AND RANDOM ACCESS
- RANDOM SAMPLING***BAR GRAPH
- CHECKBOOK MAINTENANCE PROGRAM
- LEVEL II UPDATES***LEVEL II INDEX
- CREDIT CARD INFORMATION STORAGE FILE
- BEGINNER'S GUIDE TO MACHINE LANGUAGE AND ASSEMBLY LANGUAGE
- LINE RENUMBERING
- AND CASSETTE TIPS, PROGRAM HINTS, LATEST PRODUCTS COMING SOON IGENERAL LEDGER. ACCOUNTS PAYABLE AND RECEIVABLE, FORTRAN.80, FINANCIAL APPLICATIONS PACKAGE, PROGRAMS FOR HOMEOWNERS, MERGE TWO PROGRAMS, STATISTICAL AND MATHEMATICAL PROGRAMS (BOTH ELEMENTARY AND ADVANCED) . . AND

\section*{WORD PROCESSING PROGRAM (Cassette or Disk)}

For writing letters, text, mailing lists, etc., with each new subscriptions or renewal.

\section*{\(G\)}

LEVEL II RAM TEST -
Checks random access memory to ensure that all memory locations are working properly.

\footnotetext{
CREDIT CARD NUMBER
}

SIGNATURE
NAME \(\qquad\)
ADDRESS

\footnotetext{
*** ADD \$6/YEAR (CANADA, MEXICO) - ADD \$12/YEAR AIR MAIL - OUTSIDE OF U.S.A., CANADA \& MEXICO ***
}

\section*{Conclusion}

The availability of a powerful graphics protocol immensely simplifies the design and coding of graphics programs. The limitations imposed by forcing individual capabilities to meet a common protocol are more than made up by the availability of precisely defined functions and controls. Furthermore, the protocol is sufficiently flexible to allow the installation and use of unique display features without adversely affecting the ability to run programs designed to the standard. For example, the
package available from Matrox for its ALT-256**2 contains such enhancements as high-resolution positioning of low-resolution DOTs, choice of fixed or proportional character spacing, and up to 8 bits (256 combinations) color and/or grey scale for each pixel.

The author would like to thank John Rogers, Gary Johnsey, and especially Bart Schwartz for their help in making these articles possible.

\section*{Graphics Interface Standard for FORTRAN}

The following FORTRAN subroutine definitions extend the flexibility and hardware independence of the proposed microcomputer graphics standard to FORTRAN.

\section*{INITG (XMRSCL, YMRSCL, MRCOLS, XMCSCL, YMCSCL, MCCOLS, LANIM, LCOLOR)}

Initialize graphics hardware and software to maximum resolution mode with all options disabled. The screen is cleared and the current color is set to white. Eight variables are used to return the display parameters:
\(\chi\) MRSCL (REAL*4) \(\chi\) dimension of physical display points in standard coordinates, maximum resolution mode.
YMRSCL (REAL*4) - as above except \(Y\) dimension.
MRCOLS (INTEGER*2) - colors (grey shades) available in maximum resolution mode.
\(\chi\) MCSCL (REAL*4) \(-\chi\) dimension of physical display points maximum colors mode.
YMCSCL (REAL*4) - as above except \(Y\) dimension.
MCCOLS (INTEGER*2) - colors (grey shades) available in maximum color selection mode.
LANIM (LOGICAL*1) - TRUE if double buffered animation available.
LCOLOR (LOGICAL*1) - TRUE if displayisin color, FALSE implies monochrome.

\section*{PAGE}

Clear the sreen
CURSOR (IX, IY)
Move the cursor to the coordinate position specified.

IX (INTEGER*2) - \(\chi\) (horizontal) coordinate desired. Value is in standard display coordinates (0 through 255). Out of range values are permitted but
may have unpredictable results.
IY (INTEGER*2) - as above except \(Y\) (vertical) coordinate desired. Lower left-hand corner of the screen is the point 0,0 .

\section*{DOT}

Display a dot at the current cursor position using the current color.

\section*{LINE (IX, IY)}

Display a line from the current cursor position to the coordinate position specified. IX and IY are defined as in CURSOR.

\section*{CHAR (ICHAR)}

The ASCII character defined by the low-order 7 bits of ICHAR is displayed at the current cursor position. Control characters are interpreted as defined in the standard to change display mode, current color, etc.

ICHAR (INTEGER*2) - the ASCII character to be interpreted or displayed.

\section*{ANIM}

Program execution is delayed until the start of the next vertical blanking period. If double buffered animation is supported, buffers are not switched until immediately before returning.

WRITE (\(10, \mathrm{nnn}\)) var, var, ...
The logical unit number 10 is available for formatted output to the display. Binary output will result in an I/O (input/output) error. Input attempts will return End of File. Rewind, endfile, and backspace operations are no-ops. The display must be initialized by INITG before writing to LUN 10. The first character output on each line is interpreted as a standard FORTRAN printer control character (' 'for single space, ' 0 ' for double space, ' 1 ' for new page, and ' + ' to overprint the same line).

\section*{Sample Program}

C--- Example usage of FORTRAN Standard Graphics Calls LOGICAL* 1 LANIM, LCOLOR
C--- Initialize graphics
CALL INITG(XMRSCL, YMRSCL, MRCOLS, XMCSCL, 1 YMCSCL, MCCOLS, LANIM, LCOLOR)
C--. Title display WRITE (10, 100)
100 FORMAT(1H1, 'A SINE WAVE')
C--- Calculate and display a sine wave

C--- Move to starting point CALL CURSOR (0, 128)
C--- Determine distance between \(X\) values INCR \(=\) IFIX (YMRSCL +0.5) IF(INCR.LE.O)INCR = 1
C--- Draw the actual curve
DO 1000 IX \(=\) INCR, 255, INCR
\(\mathrm{X}=3.14159^{*} \mathrm{FLOAT}(\mathrm{IX}) / 64.0\)
\(Y=\operatorname{SIN}(X) * 100.0\)
\(I Y=I F I X(Y+128.0)\)
1000 CALL LINE (IX, IY)
END

PET / TRS-80 / APPLE: Personal Software brings you the finest!

MICROCHESS is the industry's best selling computer game. And no wonder-because MICROCHESS gives you more than just a chessplaying program: A convenient, foolproof set of commands and error checks ... complete instructions in a \(512^{\prime \prime}\) by \(81 / 2^{\prime \prime}\) booklet ... a cassette that's guaranteed to load, with disk versions coming soon ... and several levels of difficulty to challenge you not just once, but time after time. It's available through well over three hundred computer stores and many mail order sources ... always

\title{
MICRO CHESS
}

> The Industry's First Gold Cassette Over 50,000 Sold

originating from Personal Software. What's more, every Personal Software product is selected to give you these same benefits of easy availability, reliable cassettes, readable documentation, a carefully thought out user interface ... and most important, continuing challenge and enjoyment, not just once but time after time. If you haven't already, order your own gold cassette: MICROCHESS, by Peter Jennings, for 8K PETs, 16K APPLEs, and 4K Level I and II TRS-80s
\(\$ 19.95\)

\section*{TIME TREK}

\section*{A Tour De Force In Real Time Action Strategy Games}

TIME TREK by Brad Templeton for 8 K PETs and Joshua Lavinsky for 4K Level I and II TRS-80s adds a dramatic new dimension to the classic Star Trek type strategy game: REAL TIME ACTION! You'll need fast reflexes as well as sharp wits to win in this constantly changing game. Be prepared-the Klingons will fire at you as you move, and will move themselves at the same time, even from quadrant to quadrant-but with practice you can change course and speed, aim and fire in one smooth motion, as fast as you can press the keys. Steer under power around obstacles-evade enemy
shots as they come towards you-lower your shields just long enough to fire your phasers, betting that you can get them back up in time! With nine levels of difficulty, this challenging game is easy to learn, yet takes most users months of play to master. ADD SOUND EFFECTS with a simple two-wire hookup to any audio amplifier; the TRS-80 also produces sound effects directly through the keyboard case, to accompany spectacular graphics explosions! You won't want to miss this memorable version of a favorite computer game.

ELECTRIC PAINTBRUSH by Ken Anderson for 4K Level I and IITRS-80s: Create dazzling real time graphics displays at speeds far beyond BASIC, by writing 'programs' consisting of simple graphics commands for a machine language interpreter. Commands let you draw lines, turn corners, change white to black, repeat previous steps, or call other programs. The ELECTRIC PAINTBRUSH manual shows you how to create a variety of fascinating artistic patterns including the one pictured. Show your friends some special effects they've never seen on a TV screen!.......... \$14.95

BLOCKADE by Ken Anderson for 4 K Level I and II TRS-80s is a real time action game for two players, with high speed graphics in machine language. Each player uses four keys to control the direction of a moving wall. Try to force your opponent into a collision without running into a wall yourself! A strategy game at lower speeds, BLOCKADE turns into a tense game of reflexes and coordination at faster rates. Play on a flat or spherical course at any of ten different speeds. You can hear SOUND EFFECTS through a nearby AM radio-expect some razzing if you lose!................ 14.95

GRAPHICS PACKAGE by Dan Fylstra for 8K PETs includes programs for the most common 'practical' graphics applications: PLOTTER graphs both functions and data to a resolution of 80 by 50 points, with automatic scaling and labeling of the axes; BARPLOT produces horizontal and vertical, segmented and labeled bar graphs; LETTER displays messages in large block letters, using any alphanumeric or special character on the PET keyboard; and DOODLER can be used to create arbitrary screen patterns and save them on cassette or in a BASIC program........................ \(\$ 14.95\)

WHERE TO GET IT: Look for the Personal Software display rack at your local computer store. For the name and address of the dealer nearest you, call Personal Software at (408) 745-7841. If you don't have a dealer nearby, you can call or mail us your order with your check, money order or VISA/Master Charge card number. For a free catalog, ask your dealer or use the reader service card at the back of this magazine.

Listing 2: Four demonstration programs and two utility subroutines associated with the 8080 assembly language protocol for the proposed software standard. The first demonstration is a maximum-resolution exercise for the line generator. The second is a test of all 64 ASCII characters, which are drawn eight times, once in each color, in order to demonstrate the ability to dynamically vary the display. The third demonstration cycles through all available colors with the line generator. The final demonstration is a
short animation sequence. STRING is used to display text strings. GRAPHICS PACKAGE DEMONSTRATION PROGRAM

\footnotetext{
ORG 500H 3 Start atter oqaphics package POINTS

}

To the users of OMSI Pascal-1 for the PDP-11:
We are pleased to make available to you the new version (V1.2) of OMSI Pascal-l. V1. 2 contains many enhancements and improvements, and you will find it easier to operate and even more reliable. The following overview outlines the most significant changes incorporated in the new version. For details, please ask for the Vl. 2 Language Specification and User's Guide (s).
Extended precision real arithmetic: a compiler switch causes all real calculations to be carried out with 15 digit precision (standard PDP-ll double precision four-word format). Extended precision is supported on all PDP-11 and LSI-ll processors, and on all operating systems. The precision of the library functions is also extended.

Debugger: the interactive debugger is now entirely Pascal-oriented, and is conversant with all user identifiers, types, scope rules, and the source program. The debugger has the capability, for example, to intercept a fatal error and display the last executed statements, or to accept and store commands for display of variables at a breakpoint.

Profiler: if you have ever wondered where your program spends its time, the Profiler can produce a listing and show you the number of times every line is executed.
Fatal error recovery: the system error procedure can be replaced by a Pascalcoded routine.
Direct access files: the procedure Seek (file,record) is a built-in procedure, and causes the file buffer to be positioned to any desired record.

File options: many enhancements have been made in file processing, allowing (for example) large buffers and spanned records on RSTS and RTll, and RSX file attributes including variable-length records. The RSTS file support uses 24-bit block numbers for RSTS V7 large file capability. All systems now support a full default filename when opening files.

Fast MACRO: most of the compilation time is actually spent in MACRO and the linking loader. On RSTS systems, a new utility (MAC) performs both of these functions in one-third of the time.
String package: included with V1.2 is a set of procedures and functions for handling dynamic length character strings. The package is written for portability in Standard Pascal.
Order information: to OMSI Pascal-1 licensees in warranty or extended support, V1.2 is available for the cost of handling, media, and shipping; other parties please contact Anne Smith, Vice-president for Sales.

Donald Baccus
Vice-president, Software Engineering.

\section*{Introduction to Low Resolution \\ GRAPHICS}

Now you can produce amazing computer graphics - even if you can't draw a straight line. Literally! Learn how to draw lines and shapes, make graphs, draw pictures and even do animations. The simple secrets of how to do all this are contained in SCELBI's new book "Introduction to Low Resolution Graphics."'
Today's exciting personal and small business computing machines are generally provided with at least some kind of "low resolution" graphics capability. What is low resolution graphics? It is graphics presented on a point-bypoint basis where the number of points is limited to about 8000 or less. The APPLE II by APPLE Computers, Inc., the Radio Shack TRS-80 and the Commodore PET all have low resolution graphics capability. So do many other kinds of microcomputers.
What can you do with low resolution graphics? Lots of things . .

\section*{Shows How to Draw}
- Straight lines
- Triangles
- Circles
- Elipses
- Borders
- Reverse backgrounds
- Deck of playing cards
- A clown that winks
- Football grid
- Animated football game

In addition to these fundamentals of drawing and animation, the book tells how to synchronize computer-generated sounds to your illustrations.

If you know how! You can plot plain and simple or fancy and complex graphs to consolidate data, for business or pleasure purposes. But you can do so much more than that! You can use the capability to improve the presentation and impact of almost anything you want your computer to tell people. It can be used to animate games or data, clarify and amplify educational materials, or just plain entertain people. Get started putting your computer to new and exciting uses through the world of graphics. Anyone can learn and apply these easy-to-understand techniques. Order your copy today!

\section*{280 \\ Software \\ Gourmet Guide \& Cookbook}

You need this cookbook!
You'll be able to put together programs without having to start from scratch. You'll have the most useful routines at your command - already programmed and ready-to-use. You'll get a plain-talk explanation of how the powerful Z80 instruction set works. And that's a big value to everyone, Z80 owner or not!

Why is it called a cookbook?
Because it's a book of recipes. It contains routines, subroutines and short programs. These are the ingredients. All you do is take a pinch of this, a pinch of that. Combine the ingredients, and voila - your own masterpiece! Just the program to suit your taste.

Check These Features
- Handy reference to \(\mathbf{Z 8 0}\) instruction set
- Search and sort routines
- Many general purpose utility routines
- Flow charts and source listings
- //O and interrupt programming
- Machine codes given in both hexadecimal and octal notation
- How to control and manipulate Z80 stack
- Code and numeric conversion routines

Time tested recipes.

Although the \(Z 80\) cookbook is brand new. SCELBI's software cookbook idea has been around for years. The recipes are really time tested! Tens of thousands of our 6800 and 8080 cookbooks have been used throughout the U.S. and in countries around the world. Add the " \(Z 80\) Software Gourmet Guide \& Cookbook" to your recipe filebox. Order today!

\section*{\(\square\)}

\section*{SCDLBI}

Publications

\section*{280}

Instruction Handbook A complete guide to the Z 80 instruction set. Machine codes presented in both octal and hexa. decimal format. An index lists instructions alphabetically along with machine codes and timing information. Industry. standard mnemonics used throughout. \$4.95* No. 20

\section*{Personal} Information Management System
Plain talk on what a computer can do for you. How to use a computer without knowledge of programming. 15 examples include personal mailing list, accounts payable - even an intelligent ham radio log. For the TRS-80, PET and others. \$9.95* No. 10

 Understanding Microcomputers
300-page no-nonsense easy-reading text. Simple-to-use glossary. Extra knowledge for reading and understanding computer magazines and manufacturer's literature. Instruc-
tions for microcomputers. Machine language programming. Input/output devices. Gives an intro to BASIC.
\$9.95* No. 90

Calculating with BASIC
A variety of programs to help the student, scientist, engineer, technician or hobbyist apply the language to practical problems. Covers
mathematics, finance and statistics, mechanical engineering and electronics. For fun Hangman and Space Capture games are provided.
\$7.95* No. 30

\section*{MICRO COMPUTER}

POTPOURRI

\section*{Microcomputer Potpourri}

Reference for beginner, technician, engineer. Glossary with all the jargon. Helps beginners understand computer magazines, mfg. literature and serves as refer-
ence for the pro. Reviews microprocessor chips in detail. Complete text on understanding microcomputers.
\$2.95* No. 70

\section*{\(\square\)}

SCELBI Publications, P. O. Box 3133, Milford, CT 06460 203-874-1573
*IMPORTANT ORDERING INFOI Include \(\$ 1.00\) shipping/handling for each item. Prices shown are for North American customers. Master Charge, VISA, Postal and Bank Money Orders preferred. Personal checks delay shipping up to 4 weeks.
- No. 10
\(\square\) No. 20
- No. 30
- No. 65
\(\square\) No. 70
- No. 75 ㅁ No. 90

Name (please print)
Card No. \(\qquad\) Bank No. \(\qquad\) Exp. \(\qquad\)
Address \(\qquad\)
City/State \(\qquad\) Zip

Signature \(\qquad\) Amt. Enc. \(\qquad\)

See SCELBI books at your favorite
computer or electronics store.

~

Listing 2 continued:

-8
0
0
0
0 0
0
0
0
0
0
0
0

\section*{59892}
\(\angle B 1809\)
\(\nabla 190\)
sectad

> SHOW OFF CHARACTER SET
\[
\begin{aligned}
& \begin{array}{l}
\text { A } \mathrm{H} \\
\mathrm{H}, \mathrm{~A}
\end{array} \\
& \begin{array}{r}
7 \circ 8 \\
12 \mathrm{kOC}
\end{array}
\end{aligned}
\]
\[
\begin{aligned}
& \text { DEA22 } \\
& \text { 옹 }
\end{aligned}
\]
DEA2
\(\stackrel{6}{6}\)
H20 \% \%
\(\begin{aligned} & \text { פNI } 15 \\ & 9 \text { guls } 9 \\ & \text { yOS }\end{aligned}\)

\begin{tabular}{cc}
\multirow{2}{*}{} \\
N N \\
N \\
N \\
N
\end{tabular}

Word Processors are here. Just thumb through the pages of this magazine. There are at least five different companies selling them. So, which one's for you? How do you judge the differ ences? And what about cost. Are you willing to pay the 300 plus dollars that some of the companies are asking?

Well go ahead and compare! AUcategory!
Features? AUTOTYPE has more pow erfut features than ANY other Word Processor on the market. But, don' AUTOTYPE has an exclusive MACRO programming capability. No other Word programming capability. No other Word TOTYPE also has a scratch Holding Buffer. Again, no one else even comes close.
Price? AUTOTYPE beats 'em alll With a price tag of \$195, AUTOTYPE is well just take our word. Go ahead, look for yourseli. Then fill out the order for \(m\) below to start processing words instead of using a word processor!
CAN I MOVE PARAGRAPHS
AROUND?
YES! AUTOTYPE has a Holding Buffe that can be used to save any amount o ou want inen Unold it to the location to do multiple Unholds!

CANI MERGE CUSTOMERS
NAMES INTO LETTERS?
YES! AUTOTYPE contains a "merge" character that may be placed any where in text. Then, at the time text is printed, a separate file may be merged into the letter and then printed! AnPROCESSOR

CANIENTERTEXTINSOME OTHER FORMAT THAN 64 CHARACTERS WIDE?

YES! AUTOTYPE has a screen redimension command. The screen can be set from 16 characters wide to 120 alscrolling to view the textl Once more we're far beyond the competition!

CAN IT HANDLE TEXT LARGER THAN MY COMPUTERS MEMORY?
YES! Most other Word Processors demand that the entire text be inside the computer. AUTOTYPE allows you to means that you can have edit files tha are over 200 type written pages long!!

\section*{CAN IT UNDERLINE?}

CAN IT BOLDFACE?
CAN IT HYPHENATE?
YES! YES! YES! YES! AUTOTYPE has ALL the standard Word Processor features including underlining text boldface printing and paragraph in dentation. AUTOTYPE also has son used at the end of lines and disappear if moved!

WHAT ABOUT INSERTING IN THE MIDDLE OF A WORD?
Certainly! AUTOTYPE allows inserting anything anywhere! You can move into the middle of any word. Now THAT'S POWER!

CAN IT SEARCH AND REPLACE?
YES! But, there's more! AUTOTYPE at lows simple searches or search and re place. AUTOTYPE also allows wild probable matching! \(A\) very simple fea ture that AUTOTVE makes very pow erfu!
CAN IT DO AUTOMATIC PAGE NUMBERING AND TITLING?

Or Course! Any length title up to the current ine length. Page numbers can mough the num And blank line below the title is adjustabie!

DOES IT HAVE "DYNAMC" PRINT FORMATTING?

OH YES! And with a flare! The pages that you see prinled here were all printed from he same fire. Only the prin MACRO was altered! Whats more they were all printed on a standard seformatting can be accomplished with NO alteration of text!! Let's see the competition make that claim!

CAN IT DO SUBSCRIPTS AND SUPERSCRIPTS?
YES! Once again, AUTOTYPE has the features to be called a true proces sor of words and not just another word

CAN IT VERTICAL TAB?
YES! And do negative vertical tabs to the top of page also! This is invaluable for two column printing

CAN YOU ADJUST THE INDENT, LINE LENGTH AND JUSTIFICATION?
COMPLETELY! Either in the text itself by manual formatting commands of with a print MACRO. Only AUTOTYP

WILL IT EXECUTE A SERIES COMMANDS AUTOMATICALLY?

YES! That's one of AUTOTYPE's stan dard features. No other Word Proces sor has the ease of use or the power

ARE THE TABS ADJUSTABLE

All tab stops are displayed grapnically with a simple command. Tab remova and seting are simple cursor move ments and a single key command! more They're all laid out in front of you

HOW MUCH DOES AUTOTYPE cost?
\$195. This question is the easiest to answer. It's simple. We want you to use your compuler to is flest extent. And reasonable price. This is the one area where our competition is way ahead of us!! They simply charge more than we do!
HOW DOIORDER?
We thought you'd never ask! Just fil out the order form below and mail to and place your order. it'll be shipped the same day

\section*{WORD PROCESSING POWER IS HERE! With AUTOTYPE \({ }^{\odot}\)}

Mail To:
INFINITY MICRO
P.O. BOX 4627

SANTA CLARA, CA 95050
(408) 988-1867

VIDEOMemory mapped Video at CCOO hex. as 64 characters by 16 lines. Processor Tech or equivalent.
(ADM-3A)
- 'Cursor addressable terminal. (HAZELTINE 1500)
DISK
\(\square\) CP/M on IBM standard \(8^{\prime \prime}\)
CP/M on Micropolis MOD I
CP/M on Micropolis MOD II
CP/M on North Star
CP/M on Double Density 8"
Please specify Manufacturer.
NAME
ADDRESS
CITY \(\qquad\) STATE \(\qquad\) ZIP
PHONE
Please ship \(\qquad\) AUTOTYPE disks and manuals immediately! Please find enclosed \$ \(\qquad\) @ \$195/each.
*Available Nov-Dec of 1979
Copyright (c) 1979 Infinity Micro

\section*{GAMES}

Warfare I 4-game anthology, Level II, 16K \(\$ 7.95\) Backgammon by Scott Adams.Level II, 16 K \(\$ 7.95\)
X-Wing II by Chris Freund. Level II, 16K \(\$ 9.95\) Talpan by Art Canfll. Level II, 16K \(\$ 9.95\)
Sargon Chess by Dan and Kathe Spracklen. Level II, 16K \$19.95
Chess Companion by Michael Kelleher. Level II, 16K \(\$ 7.95\)
Three D Tic Tac Toe by Scott Adams. Level II, 16K \(\$ 7.95\)
Concentration by Lance Mlcklus. Level II, 16 K \(\$ 7.95\)
Amazin' Mazes by Robert Wallace. Level II, 16K \(\$ 7.95\)
Time Barnb by David Bohlke. Level II, 16K \$4.95

Llie Two by Leo Christopherson. With sound -Level II, 16K \$14.95
Androld Nim by Leo Christopherson. With sound - Level II, 16K \$14.95
Cubes by Leo Christopherson Level II, 16K \(\$ 9.95\)
Mastermind II by Lance MIcklus \(\$ 7.95\)
Mastermind II - Source List -\$20.00
Robot/Breaksway Game duo by Lance Micklus. Level II, 4K \$7.95
Tycoon by David Bohlke. Level II, 16K \(\mathbf{\$ 7 . 9 5}\) Slatom by Denslo Hamlin. level II, \(16 \mathrm{~K} \$ 7.95\) 9 Games for Preschool Chlldren by George Blank. Level II, 16K \$9.95
Ten Pln by Frank B. Rowlett, Jr. Level II, 16K \(\$ 7.95\)
Atiantic Balloon Crossing by Dean Powell. Level II, 16K \(\$ 9.95\)
Space Battles by Level IV, Level II, 16K Tape or 32K Disk, Tape -\$14.95, Disk - \$19.95

Star Trek III. 3 by Lance Micklus Level II, 16 K \(\$ 14.95\)
Dog Star Adventure by Lance Mlckius. Level II, 16K \(\$ 9.95\)
Safarl by David Bohike. Level II, 16K \(\$ 7.95\)
Treasure Hunt by Lance Micklus. Level II, 16K \(\$ 7.95\)
'Round the Horn by George Blank. Level H, 16K \(\$ 9.95\)
Pork Barrel by George Blank. Level II, 16K \(\$ 7.95\) Kamikaze by Russall Starkey. Level II, 16K \(\$ 7.95\) All Star Baseball by David Bohike. Level II, 16 K \(\$ 7.95\)
Barricade by Small Systems Software. Machine Language -\$14.95
Journey To The Center Of The Earth by Greg Hassett. Level II, 16K Tape \(\$ 7.95\)
Pentominoes by James Garon. Level II, 16K \(\$ 7.95\)
Snake Eggs by Leo Christopherson. With sound Level II, 16K \$14.95

NEW!!!
Understandable! Indexed Ilbrary with 200 Assembly Language Routines.

\title{
Z80 Software Gourmet Guide And Cookbook
}
from Scelbl. \(\$ 14.95+\$ 1\) postage.

SARGON was the BEST
SARGON II is MUCH
BETTER!

The STANDARD in Smart Terminal Programs for the TRS-80

\section*{IMPORTANT}

No sales tax \({ }^{*}\)
All C.O.D.'s or special • dellvery orders are a minlmum of \(\mathbf{\$ 5}\) for special handling

When ordering Percom * please add \(\$ 5\) each, packaging and handling fee.

PRICES DO NOT • INCLUDE SHIPPING

\section*{UTILITIES}

NEWDOS by Apparat \(\$ 49.95\)
NEWDOS + by Apparat \(\$ 99.95\)
Machine Language Monitor by Small Systems Software. Level II, 16K \$26.95
Threa Monltors for Dlak by Small Systems Software. Disk for 16 through 48K (all In one) \$29.95 KVP Extender by Lance MIcklus. Tape - \(\$ 29.95\); Dlsk - \(\$ 34.95\)
KVP 232 by Lance Micklus - KVP adapted for the TRS.232. Tape - \(\$ 29.95\)
ST80 Smart Terminal Level II, 16K \(\$ 49.95\)
ST80D Smarter Terminal for disk systems. \(\$ 79.95\)
Micro Text Editor by Don Coons. Level II, 4 K or 16K \(\$ 9.95\)

Text-80 by Frank B. Rowlett, Jr. For 32K disk systems \(\$ 59.95\)
8080-Z80 Conversion Level II, 16K \(\$ 15.00\)
Renumber by Lance Mickius. Level II, avallable In 16 through 48K (specify when ordering) \(\$ 7.95\) Renumber source llating \(\$ 20.00\)
Electric Pencll by Mlchael Shrayer. Powerful machine language word processing system. Level II, 16K tape - \(\$ 100\); Dlsk version - \(\$ 150\) Level III BASIC by Mlcrosoft. \(\$ 49.95\)
Level I In Level II by Apparat. Level II, \(\mathbf{7 6 \mathrm { K }} \mathbf{\$ 1 5 . 0 0}\) Fortran by Mlcrosoft. 32K-2 Disks. New low price \(\$ 195.00\)

\section*{BUSINESS}

Inventory II. 2 by M. Kelleher and R. W. Robitalle, Sr. 16 K disk systems \(\$ 59.95\)
Inventory System II. 3 by M. Kelleher. Improved verslon, \(\$ 79.95\)
Inventory ' S ' by Roger W. Robitallie, Sr. Level II, 16K Tape - \(\$ 24.95\); 32K Dlsk - \(\$ 39.95\)
Payroll by Stephen Hebbler. For disk systems. 32K \(\$ 59.95\)
Accounts Recelvable II by S. Hebbler. 32K disk systems \(\$ 79.95\)
Appointment Log by Mlchael Kelleher. Level II, 16K \(\$ 9.95\) Dlsk version, \(\$ 19.95\)
General Ledger I by M. Kelleher, requires 32K Disk, \(\$ 79.95\)
Mall List II by R. W. Robltalle, Sr. 32K disk systems \(\$ 99.95\)
Small Business Bookkeoplng by R. \(\mathbf{W}\). Robltaille, Sr. Level II, 16K. With journal - \(\$ 22,00\); Without journal - \(\$ 15.00\)

\section*{PERSONAL}

Typing Tutor by Roger W. Robltallie, Sr. Level II, 16K \$19.95
Secrets of the Tarot by John T. Phillipp. Level II, 16K \(\$ 9.95\)
Blorthythms by Frank B. Rowlett, Jr. Level II, 4K \(\$ 4.95\)
Personal FInance by Lance MIcklus. Level II, \(16 \mathrm{~K} \$ 9.95\)
Advanced Personal FInance by Lance Micklus for 32K dlsk systems \(\mathbf{\$ 2 4 . 9 5}\)
Home Financlal Management by Mlchael Kelleher. Level II, 16K \$9.95

\section*{HARDWARE ACCESSORIES}

Cassettes boxes of ten each. C-10 - \(\mathbf{\$ 6 . 5 0}\) plus \(\$ 1.00\) shlpping
C -20-\$7.50 plus \(\$ 1.00\) shipping
Diskettes Dysan, (premlum qually) box of 5 - \(\$ 24.95\) plus \(\$ 1.00\) shlpplng; natlonally known brand, box of \(10 \cdot \$ 34.95\) plus \(\$ 1\)
Diskette Storage Box \(\$ 5.00\)

\section*{WANTED}

Used TRS-80 equipment! We buy and sell used equlpment. Call or write for detalls.

SPECIAL
\$669. TRS-80 16K, LEVEL II NO KEYPAD.

\author{
SoftSide(monthly)
}
\$18. 1 yr.,Bulk Rate \(\$ 330.1\) yr., Overseas Alrmail \$25. 1 yr., First Class or Overseas Surface \(\$ 38.6\) mos. w/cassette \(\$ 68.6\) mos. w/disk

PROG/80(bl-monthly)
\(\$ 15.1\) yr., Bulk Rate \$22. 1 yr., First Class or Overseas Surface \$27. 1 yr. Overseas Alrmall

SoftSide's AppleSesd(monthly)
\$15. 1 yr., Bulk Rate \$22. 1 yr., First Class

\section*{SAVE \(\$ 167\).}

TRS. 80 expansion Interface with our 16K RAM, single PERCOM disk drives with cable, and NEWDOS operating system. \(\mathbf{\$ 8 3 0}\).

Floppy Armour \({ }^{\text {TM }}\) Protactive envelope for shlp. pling floppy disks, 5 -pack - \(\$ 4.95\) plus \(\$ 1.00\) shlppling and handiling

\section*{NEWDOS}

Ellminate \(90 \%\) of the hassle of a disk system by replacing your TRS-DOS wIth NEWDOS! faster, more rellable, many more features \(\$ 49.95\).
or

Add Superzap, Directory chacks, other utilltles. NEWDOS + \(\$ 99.95\)

\section*{PACKAGE PRICE \$150}

SEPARATELY:
MACRO ASSEMBLER \(\$ 80\).
FORTRAN \(\$ 8 \mathrm{C}\).

- A trademark of Radlo Shack and Tandy Corp.

\title{
Build your own microcomputer as you learn computer technology at home.
}

New from NRI! The Most Complete and Up-to-date Home Study Course Ever Offered

As the microprocessor revolutionizes the computer world and microcomputers appear almost everywhere, NRI brings you a new, convenient, and effective way to keep up with this expanding technology. It's NRI's Computer Technology Course, created and designed exclusively for learning at home in your spare time.

\section*{Featuring NRI's Exclusive Dual Language Microcomputer}

NRI goes beyond book learning to give you practical, "hands-on" experience in designing circuitry, interfacing components, programming, and troubleshooting. As you learn, you actually assemble NRI's designed-forlearning microcomputer, incorporating the latest advances in the state of the art. It looks and operates like the finest of its kind, actually does more than many commercial units. But NRI engineers have designed components and planned assembly so it demonstrates important principles, gives you working experience in detect ing and correcting problems. And it's yours to keep, put to work in your own home or business.

You also build and keep your own test instruments, including a transistorized voltohm meter and CMOS digital frequency counter. And NRI's Discovery Lab \({ }^{\circledR}\) broadens your horizons with specialized experiments and theory demonstrations.

\section*{The Proven Way to Learn at Home}

You don't have to worry with travel, classes, or time lost from work when you learn the NRI way. As they have for more than 60

years of teaching technical subjects, NRI brings the material to you. Youstudy in your spare time, at your convenience, using "bite-size" lessons that program material into logical segments for easier assimilation. You perform experiments and build equipment using kits we supply And your personal NRI instructor is always available for consultation should you have questions or problems. Over a million students have already shown the effectiveness of NRI training.

\section*{Choice of Courses}

Several courses are available, depending upon your needs and background. NRI's Master Course in Computer 'Technology starts with the fundamentals, exploresbasic electronics and digital theory, the total computer world, and the microcomputer The Advanced Course, for students already versed in electronics and general computers, concentrates on the microprocessor and microcomputer. In both courses, you build all instruments and your own computer.

\section*{Send for Free Catalog... No Salesman Will Call}

Get the details on these exciting new courses in NRI's free, 100-page catalog. Shows all kits and equipment, lesson outlines, and full information, including facts on other electronics courses. Mail the coupon today and we'll rush your catalog. No salesman will ever call. Keep up with the latest technology as you learn on your own computer. If coupon has been removed, write to NRI Schools, Computer Department, 3939 Wisconsin Ave., Washington, D.C. 20016

DISPLAY THE STRING OF ASCII GHARACTERS POINTED TO BY H L L TERMINATING WITH "\$".

POINTING TO THE ©S".
ISAUE A AND FLAGS
IGET CHAR
ITERAINATOR
3 OK... SO DISPLAY IT
3NEXT CHAR
INEXT CHAR
\({ }^{3 \prime}\) H
STRAge
PSV
\(\mathrm{K} \subset \mathrm{y}\)
ASd
HI
YHD
HSId
silx3
01
 CPI
JZ

\[
\begin{aligned}
& \text { POP PSU BRESTOREA } \\
& \text { RET }
\end{aligned}
\]

3SnUd INII

DHI, "ANIMATIONS:.
AGE AREA
4NO
IX7
HSnd
HSnd
JNZ
DCR
JNZ
DCR
DCR
JNZ
IN
PAU日®1: AN
PAUSE:
PAUSEG:

\(67025354414844 S T R 62:\)

\(67 E 3\) 114315AFIASTR日A1
G7EE \(1154124 F I 3 S T R G A G\)
B7F9 \(17434 F 4 E 54 S T R E S 1\)
i892 174 C415247STRE6:
37F9
GBO2 \(17444415247 S T R O 6:\)
B8GA \(414 E 442353 S T R E 7:\)
 982g 17414EA94DSTRG9: DSTRO9:
BARIABLE

\begin{tabular}{|c|c|c|}
\hline MOV & H. D & \\
\hline MVI & Li 20 & \\
\hline CALL & LINE & \%L, 20 \# LEFT LEG \\
\hline HUI & L. 37 & 3LEFT SIDE OF PODY \\
\hline MOV & HeA & \\
\hline Call & CURSOR & \(8 \mathrm{X}+1,37\) \\
\hline MVI & L) 4 E & \\
\hline Call & LINE & ; \(\mathrm{X}+1.48 \rightarrow\) LEFT BOD \\
\hline MVI & L. 38 & \\
\hline SUB & C & \\
\hline HOV & H. A & \\
\hline CALL & LINE & 8 \(\mathrm{X}+1-\mathrm{AS} ,38 \rightarrow 2 \mathrm{LEFT}\) ARM \\
\hline NOV & A, B & ISAME FOR RIGHT SIDE \\
\hline MOV & H, A & \\
\hline MVI & L. 37 & \\
\hline CALL & CURS OR & 3x-1, 37 \\
\hline MVI & L. 48 & \\
\hline Call: & LINE & \(3 \mathrm{X}-1,48 \rightarrow\) RIGHT BOD \\
\hline MVI & L; 38 & \\
\hline ADD & C & \\
\hline MOV & H, A & \\
\hline CALL & LINE & 3X-1+AS, \(38 \rightarrow 2 \mathrm{RT}\) ARM \\
\hline INR & B & 3FINALLY DO HEAD \\
\hline MVI & L, 48 & INOTE: B IS BACK TO ; ORIGINAL VALUE = \(X\) \\
\hline MOV & H, B & \\
\hline Call: & CURS OR & \\
\hline 9VI & L. 52 & \\
\hline CALL- & LINE & ; \(\mathrm{X}, 52\) >> NECK \\
\hline MOU & A, B & \\
\hline SUI & 2 & \\
\hline MOU & H.A & \\
\hline CALL & LINE & 3-2, 52 \\
\hline MVI & L) 56 & \\
\hline ADI & 2 & \\
\hline MOV & H, A & \\
\hline Call & LINE & 3x+2, 56 \\
\hline MVI & L. 52 & \\
\hline Call & LINE & \(3 x+2,52\) \\
\hline MOV & He B & \\
\hline Call & LIVE & ; X , \(52 \rightarrow\) END OF HEAD \\
\hline MVI & L. 54 & \\
\hline ADI & 2 & \\
\hline MOV & H, A & \\
\hline CALL & CURS OR & : \(\mathrm{X}+4,54\) \\
\hline call & DOT & 3THE NOSE! \\
\hline RET & & \\
\hline
\end{tabular}

3 COMA ON SUBROUTINES

209

O
67
CDI 691
2834
E
0
\(\stackrel{3}{3} 0\)
0
CD108
\(\overrightarrow{8} \overrightarrow{8}\)

\section*{EASYWRITER, the 1st true Word Processor for the Apple!*}

Are you looking for the best Word Processor for your Apple? Well we are so sure you'll choose EasyWriter that we've prepared this ad to help you make your decision EASY. Check out these powerful features:
- Incremental spacing to support your Qume, Diablo, or Spinwriter
- Character oriented (No line numbers to deal with)
- Menu selectable routines for all known printers and interfaces
- Word wrap around on screen for continual text entry
- Our own new high speed DOS (Twice as fast as Apple's)
- Of course full editing, disk, and printer commands
- Subscripting, Superscripting, and MORE MORE MORE . . .

The straight facts make EasyWriter the only logical choice. By the same people who brought you WHATSIT. Available at your local computer store or our new California office!

793 Vincente Berkeley, CA 94707 (415) 525-4046

146 N. Broad Street Griffith, IN 46319 (219) 924-3522

\section*{It Isn't Software Until it Works!} A perfect Christmas gift!

\section*{*EasyWriter}

EasyWriter is a TM of Cap'n Software
*Dr. Memory
Dr. Memory is a TM of Muse
*Big Edit
Big Edit is a TM of Gravey, Martin \& Sampson, Inc. *Apple Pie

Apple Pie is a TM of Programma International, Inc.
*Super-Text
Super-Text is a TM of Muse
Apple
Apple is a TM of Apple Computers, Inc.
Whatsit
Whatsit is a TM of Computer Headware
\begin{tabular}{|l|l|l|l|l|l|l|l|l|}
\hline & & & & & & & & \\
\hline Incremental Spacing & X & & & & & & \\
\hline Character Oriented Screen & X & & & & X & & \\
\hline Printer Interface Routines & X & & & & & & \\
\hline Word Wrap Around & X & & & & X & & \\
\hline Editing Commands & X & X & X & X & X & & \\
\hline High Speed Disk & X & & & & & & \\
\hline 50 Pages of Text per Disk & X & & & & & & \\
\hline Subscripting \& Superscripting & X & & & & X & & \\
\hline & & & & & & & & \\
\hline Your Choice & & & & & & & \\
\hline
\end{tabular}

\section*{ORDER FORM}

\section*{Info mation Unlimited Softwarem}

CUT ALONG DOTTED LINE

\section*{Name:}

Company:
Address:
City: \(\quad\) State: \(\quad\) Zip:

I would like more information on:
\begin{tabular}{|l|l|c|c|}
\hline \multicolumn{1}{|c|}{ ITEM } & QUANTITY & PRICE & TOTAL \\
\hline Easy Writer (EZ 2) & & \(\$ 99.95\) & \\
\hline Whatsit Model A-1 (Apple) & & 125.00 & \\
\hline Whatsit Model CP-2 (CP/M) & & 150.00 & \\
\hline Whatsit Model NS-3 (N Star) & & 100.00 & \\
\hline Whatsit Manual & & 25.00 & \\
\hline EasyWriter Manual & & 30.00 & \\
\hline \multicolumn{1}{|r|}{ Subtotal } & & & \(\$\) \\
\hline CA Residents add 6\% sales tax & & & \(\$\) \\
\hline Shipping \& Handling & & & \(\$\) \\
\hline GRAND TOTAL & & & \(\$\) \\
\hline
\end{tabular}

Master Charge or Visa Number:

\title{
A User's Look at Tiny-c
}

\author{
Christopher O Kern \\ 201 I St SW Apt V-839 \\ Washington DC 20024
}

As the microcomputer industry has responded to a rapidly growing market - a market composed of small business users and others who are less interested in computers than they are in using computers for particular applications - a considerable amount of good system-level software has become available. Unfortunately, any given computer hobbyist is able to use only a small portion of this software.
It is inevitable that the microprocessor that is chosen to be the central processing unit of a small computer will restrict the range of avail-
able software to the subset written for that microprocessor. But for the vast majority of computer hobbyists, there are two other impediments to using the system programs that are now on the market (assemblers, text editors and processors, language interpreters and compilers, and the like) that are far more important. First, available programs often require large amounts of memory and floppy disk storage; second, almost all of the software on the market requires that the user have a particular manufacturer's computer or, at the very least, a particular disk operating

system.
There is a simple way around these two restrictions. The software vendor can sell his product as source code for particular microprocessors, with directions for adapting the program to the end user's computer system. Given the economic pressures of the software market, this has not proved to be a popular approach. However, an intriguing experiment in selling a sophisticated system program on this basis is being carried out by tiny-c associates (the lower-case style is theirs). This program offers an interpreter (for an exceedingly modest price) for the structured programming language tiny-c that can be easily adapted to any 8080 -family or LSI-11/PDP-11 computer.

Tiny-c is based on the C programming language, which was developed at Bell Laboratories, where it was used to write the UNIX operating system under which the \(C\) compiler can be run. As might be expected of a programming language that can be used to write operating systems, C mirrors the actual operation of a computer somewhat more closely than does a language like BASIC. Tiny-c follows C's example in this respect, as well as most others. For those familiar with C (I was not at the time I started using tiny-c on my home computer), I should point out that tiny-c is not a true subset of C. There are slight syntactical differences, and tiny-c has a comparatively restricted set of statements, fundamental data structures, and operators.

Tiny-c follows C's example in another way: a significant portion of the tiny-c language system is written in tiny-c itself. The actual interpreting of tiny-c code is done by a program that is written in 8080 or PDP-11 assembly language. But tiny-c pro-

MPI presents the perfect answer to your inflation-riddled printer budget. THE MODEL 88T DOT MATRIX PRINTER. The first in a series of new full-capability low-cost printers designed specifically for the general use computer market. The Model 88 T is a fully featured printer with a dual tractor/pressure-roll paper feed system and a serial or parallel interface. The tractor paper feed system provides the precision required to handle multi copy fanfold forms, ranging in width from 1 inch to 9.5 inches. For those applications where paper costs are important, the pressure-roll feed can be used with 8.5 inch roll paper. A long-life ribbon cartridge gives crisp, clean print without messy ribbon changing. The microprocessor controlled interface has 80,96 or 132 column formating capability while printing upper and lower case characters bidirectionally at 100 characters per second

With all of these features, plus quality construction, continuous duty print head andattractive styling, the Model 88 T would easily sell at the competition's "under \(\$ 1000^{\prime \prime}\left(999 .{ }^{\circ 9}\right)\) tag. But we are offering it for only \(\$ 749\); this should make you happy and several hundred dollars richer.

Write for complete specifications and pricing information.

MICRO PERIPHERALS, INC. 2099 WEST 2200 SOUTH / SALT LAKE CITY, UTAH 84119 / (801) 973-6053
grams are written, edited, and (in most cases) run under the supervision of a program preparation system that is written entirely in tiny-c. The importance of this should not be underestimated. It means that it is easy to change the way the user interacts with the tiny-c system by writing a new program preparation system in tiny-c. This new program preparation system can be tested and debugged
under the old version. While any changes in the way tiny-c programs are interpreted would have to be made as alterations to the assembly language code, the type of customizing that most users will probably be interested in can be done without reassembly. For the truly ambitious, the source code for the interpreter is available for alteration, substitution, or just general tinkering.

\section*{The Language}

Before looking at the system in more detail, a description of the language is in order. Tiny-c is quite unlike BASIC. There are no line numbers. Variables can have names of any length (although only the first seven and last one letters of a variable or function name are actually used by the interpreter). Control flow is not limited to a sequence of individual

\section*{Tiny-c Program Example}

Listing 1 is a tiny-c function to fill a buffer with ASCII text, such as might be required in a text processing program. The program fragment illustrates a number of features of tiny-c.

Buffer, cursor, and blockend are all global variables, which must be declared outside any function. Buffer is a pointer to an address in computer memory representing the start of the buffer. Cursor is a pointer to the address of the next byte of text to be printed. Blockend is a pointer to the address following the last byte of text that has been read from an external file; new text will be placed beginning at blockend.

The first two lines of the function declare local variables. Record count is an integer variable. Pointer is a character pointer, which will later be set to an address within the buffer. The byte it will point to is pointer(0).

In the third line of the function, a standard library function called movebl is called. Movebl will shift any text that is left over from the previous file record to the start of the buffer. Its arguments are a pointer to the first character to be moved, a pointer to the last character to be moved, and the distance to move the block (in this case, the negative distance represented by buffer-cursor).

Once the leftover text has been moved, the cursor and blockend pointers must be reset. The blockend pointer is moved back the same distance that the entire block was moved. In the same statement, the local pointer is set to the same address. Accomplishing the same setback, but somewhat more simply, the
address of cursor is assigned the address of the start of the buffer.

The parentheses in the sixth line of the function set the order of evaluation inside the condition of the if statement. First, another standard library function, fread, is called to read a new record from the file. Fread's arguments are a pointer to the address showing where to place the new text (blockend), and a unit number designating the mass storage device. Fread returns the number of bytes
the new text. Then a while loop is used to excise any carriage returns in the text (tiny-c files as implemented in my system do not contain separate line feeds). Note how the byte pointer(0) can be evaluated as either an ASCII integer code (\(13=\) carriage return) or a character (' ', or blank). Note also how the local pointer is incremented through the new text. When it reaches the address of blockend, the while condition fails and the loop is terminated. As it so
```

fi]1}mffer [:
int recordcount
char wointer(0)
moved, (cursory blockerot (buffer -- curcor))
Fointer := blockencl := blockenut (butfer -. cursof)
gursor = buffer
jf ({recorroourit = fread (blootemd, 1)) > 0) f
blockemos =: mockems + recoroconnt
while (sointer s mlockemo) [:
if (Fointer(0) = 1 3) wointer(0) =, ,
woimter =woimter + 1
I
I
returm recordcount
7

```

Listing 1
actually read, if any, or a negative number indicating that the end of the file has been reached (the end-of-file record, by convention, contains no data). The local variable recordcount is set to the number of bytes read.

The statement subject to the if condition, enclosed in brackets, will be executed only if recordcount is positive (ie: if the record read contains new text). If it is, the condition is fulfilled and the code that is enclosed in the brackets is executed. First the blockend pointer is moved up to the end of
happens, this is also the end of the if statement, hence the two successive closing brackets.

Now all that is left is to return control to the calling function. The return statement is entirely optional; one final bracket will do the job. But the culling function may need to know how many bytes have been placed in the buffer, so recordcount is returned. Recordcount becomes the numerical value of the function fillbuffer to the calling function. Fillbuffer could therefore be used to represent an integer in some tiny-c expression.

\title{
What＇s NEW from
}

SローデAPE

\section*{RACER}

Slip behind the wheel，ignite the angine and get ready for a high speed ace．RACER uses Hires and paddles o simulate Grand Prix excitement． Requires 24 K ．

\section*{CRAZY 8＇s}

Crazy 8＇s is a card game using Bill Depew＇s HIRES playing cards．One blayer can play the APPLE．The jeginner can select the option of see－ ng the APPLE＇s hand while playing． Srazy 8＇s is an easy to learn card jame．Great for all ages．Requires 24 K ．

\section*{MICROGAMMON 1.0}

Pit your mental skill and luck against that of the Apple with this computer implemented version of the popular board game Backgammon．All the moves are displayed on the video screen along with the board layout and pieces．
This program requires at least 16 K of memory to run from cassette and 32 K of memory to be stored and played from an Apple II Disk System．No ad－ ditional handware is needed．
Learn，practice，and enhance your Backgammon ability a true competi－ tor．（To our knowledge，the Apple doesn＇t cheat！！！）

\section*{SOLITAIRE POKER}

The ultimate poker machine！SOLI－ TARE POKER simulates the poker machines that line the Las Vegas strip．Practice your poker ability with Hires playing cards．SOLITARE POKER is a sure winner！Requires 24K．

\section*{Two More By Steve Baker GOMOKU}

The ancient game of five men in a row．You play against a machine language routine with three levels of excellence．A Hires board using SCREEN MACHINE gives this game the beauty and style of chess． Requires 16K．

\section*{FIGHTER PILOT}

It＇s war，and your mother ship is under attack．The adrenelin flows as you accelerate through the launch tube and penetrate the void of space．With all systems operating，your sensors show the direction of the enemy racing to meet you．After a few bursts he explodes，and you fly through his debris to meet the next one．
FIGHTER PILOT is a fast－moving game of excitement and skill．This graphics program，written in integer basic，requires 16 K of memory．

\section*{ROULETTE}

Roulette is a realistic duplication of the popular casino favorite using HIRES graphics and a spinning wheel．Bets can be placed with the keyboard or you can use SOFTAPE＇s BRIGHT Pen．One or two players can bet against the house．Requires 24 K ．

\section*{CRAPS}

Play Las Vegas Craps on a high resolution playing table created by your APPLE．Place bets，play the field，passline and hardway rolls ．．． all are possible with this detailed simulation．Dice rolls are animated on the screen．Improve your game or devise your own＇system＂．Craps re－ quires INTEGER BASIC and 24 K or memory．BONUS！！Included on the back side of the tape is Bright Pen \({ }^{\text {TM }}\) Craps for those lucky guys with the SOFTAPE Bright Pen．You will be amazed how easily moves are made and how fast the game progresses！！

\section*{PRO GOLF}

Now，even on rainy days，you can improve your game with PRO GOLF．With the Apple II as your caddy，you choose your own clubs and irons on each shot on this full 18－hole course．Every fairway has its own challenging sandtraps and water hazards，but distrac－ tions disappear when the screen displays only the green as you begin to putt．Your Apple－caddy keeps track of your score．Have fun，and remember ．．．keep you eye on the ball！

statements, as is the case in BASIC, but includes the invocation of functions (the equivalent in this context to BASIC subroutines), either through explicit calls to a given function, or by using the function as an element in a more complex tiny-c expression.

All tiny-c programs are composed of functions. Tiny-c functions, in turn, are composed of other functions, tiny-c statements, and operators. The list of tiny-c statements is small but surprisingly flexible. It includes if, if-else, while, return (which provides an optional way for returning some computed value of a function to the calling function), and break (which terminates the innermost current while loop prematurely, ie: without waiting for the normal termination condition to be met).

There is no explicit "do" statement. Tiny-c functions are called directly by simply placing their names in the program text. They are invoked indirectly by their use as elements in a larger tiny-c expression. Within a logical expression, tiny-c functions take on whatever value the function returns,
although a function is not required to return any value at all (the default is zero). A series of function calls, or any other series of tiny-c statements, can be turned into a compound statement and executed as a unit by enclosing it in brackets.

Tiny-c operators include unary minus (-), multiplication (*), integer division (/), remainder following division (\%), addition (+), subtraction (-), less than (\(<\)), greater than (\(>\)), less than or equal (\(<=\)), equal (\(==\)), not equal (\(!=\)), greater than or equal (\(>=\)), and assignment (\(=\)). Choosing the single equal (\(=\)) sign for assignment and the double equal (\(==\)) for testing equality may seem rather odd at first, as does the choice of \(!=\), instead of the more common \(<>\), as the inequality operator. In practice, both choices are easy to adapt to and soon become intuitive.

The number of primitive tiny-c data structures, like the number of statements and operators, has been kept to a minimum. There are two fundamental types of data in tiny-c: 16-bit signed integers (which permits numbers from -32768 to 32767), and

8-bit characters (which can actually represent any 8 -bit quantity). These two basic structures can be combined into arrays, but tiny-c does not provide any way to deal with arrays as a single entity; this must be done with functions. You cannot, for example, write (if (answer \(==\) "Yes") then startgameover] in tiny-c because the character array "Yes" cannot be compared with anything using the equality operator. Instead you must write a function to perform a letter by letter comparison.

In addition to integers, characters, integer arrays, and character arrays, more complex data structures representing any combination of the fundamental structures can be created. On the other hand, tiny-c does not provide services to create or process these more complex data structures in the manner of the Pascal language. These must be developed and accessed by specific functions through the use of pointers, which provide an essentially convenient but rather lowlevel way of searching through memory.
Pointers are declared in tiny-c

\section*{What you'C' is what you get!}

\section*{C Compiler for CP/M}

New, and available now! An easily affordable compiler incorporating most of the features of the full C language.
BD SOFTWARE
System requirements: CP/M and at least 24 K of RAM
Variable Types: char, int, unsigned
Composite Types: arrays, structures, unions
Pointers: to variables, structures, unions and functions
Features: is a structured language, all functions (Programs) recursive; more powerful expression operators than any other von Neuman type language; allows free-formatted
 feasible.
Speed: On 2 MHz 8080, the statement for (\(\mathrm{i}=1 ; \mathrm{i}<30000\); \(i++) x=5\); takes about 4 seconds to execute.
Package contains: compiler, linker, library manager; standard function library; sample source files include games, a terminal emulator with disk \(1 / O \mathrm{~m}\) plus the source for many standard library functions; BDS C User's Guide; Book-The C Programming Language by Dennis Ritchie and Brian Kernighan of Bell Labs.

\section*{Price: \$110}

Recipient of the Computer Lib Seal of Approval
-CPIM is a trademark of Digilal Research Corp.
- UUNIX is a tracemark or Beill Laboratories

\section*{Pascal/M}

DIGITAL MARKETING announces CP/M* compatible Pascal. Pascal/M brings the language power of Pascal together with the extensive file handling capabilities of \(\mathrm{CP} / \mathrm{M}\).
- Pascal/M allows the user to have full access to CP/M data files written in other languages (such as BASIC) and stored under CP/M.
- All CP/M utilities are available for managing Pascal Programs.
- All I/O is fully compatible with CP/M file structure.
- Built-in procedures provide for terminal-independent cursor controls.
- Standard Pascal/M is available for the \(8080 / 85\) or Z80 CPUs.
- A special \(Z 80\) version takes advantage of the 280 's extended instruction set.

This package includes diskette with P Code Compiler, Interpreter, and Runtime Library; Pascal User Manual and Report by Jensen and Wirth; and Pascal/M User's Reference Manual. Pascal is available on \(51_{a}^{\prime \prime}\) or \(8^{\prime \prime}\) diskettes. The cost is \(\$ 350\). For manuals only \(\mathbf{-} \$ 35\). . Visa/MC. *CP/M is a trademark of Digital Research.

2670 CHERRY LANE
WALNUT CREEK, CA 94596
2670 CHERRY LANE
WALNUT CREEK, CA 94596
2670 CHERRY LANE
WALNUT CREEK, CA 94596
through the declaration of an array. An array is declared by declaring its type (integer or character) and its last element. All arrays begin with element 0 , so the tiny-c declaration [int arrayofintegers(10)] creates an 11-element array of integers (2-byte values), and the declaration [char arrayofcharacters(10)] creates an 11-element array of single-byte values.
In either case, the pointer is simply the array name without a subscript. Therefore, the above integer declaration has simultaneously declared a pointer, arrayofintegers, which can be aimed at the start of any 2-byte value in the array by moving it, through a tiny-c expression, in 2-byte increments. The pointer, which is aimed at the zeroth element of the array at the time of declaration, can therefore be moved to the third element (the start of the third 2-byte integer) by setting [arrayofintegers \(=\) arrayofintegers +3] without any requirement of capturing the data in the intervening two elements of the array. Similarly, the pointer arrayofcharacters can be moved in

1-byte increments. There is no way to declare a pointer without declaring at least one element of an array, so when the array itself is not needed (eg: when the pointer is going to be used to keep track of data in a preexisting array such as a buffer), the tiny-c convention is to declare an array whose last element is 0 .

This ability to declare pointers and move them around at will makes it possible to use tiny-c pointers to address any location in the computer's available memory. The addressing is, of course, relative to where the tiny-c interpreter decides to locate the first element of the array, but with a few lines of assembly language code it is possible to add the absolute addressing that many BASIC interpreters provide through PEEK and POKE commands.

Tiny-c is quite permissive about interchanging integer and character data, thus permitting reference to characters by their numerical ASCII codes. It also provides a powerful facility for generating interesting and often complex program bugs.

It should be fairly obvious that
tiny-c is not a very sophisticated language, and there are certainly features that I miss. Boolean operators would be handy, as would multipleprecision integer and floating-point arithmetic. I don't particularly miss the rather wide variety of mathematical functions that are provided as part of my BASIC interpreter, and I can duplicate the very useful stringhandling functions that are available in BASIC by either writing them in tiny-c or by adding machine language subroutines to the tiny-c system as described below.

The most important feature of tiny-c is one that is essentially unavailable in BASIC. This feature is the ability to create functions and then use or manipulate them without further thought as to what is inside. Tiny-c functions exist as independent worlds of their own. They have their own local variables, although it is also possible to define global variables and have all functions access them. They can accept arguments and manipulate them within the function, without changing the value that was passed by the calling function. In

fact, a tiny-c function is not able to change the value of a variable that is passed to it (except internally) unless an express provision is made.

This reliance on functions as fundamental building blocks of programs has three important consequences:
- Programs are easy to read. They are not only modular, but because control flow is altered only by the invocation of other tiny-c functions or the intervention of a few simple tiny-c statements, it is easy to follow what the program is doing. Combining this with the availability of long, descriptive variable and function names makes it possible to read tiny-c programs in a way that is almost as close to reading English text as it is to reading a program written in BASIC or FORTRAN.
- Programs are easy to alter. Since functions are atomic units as far as other functions are concerned, it is possible to change or substitute a function without worrying about unanticipated effects of the change on other parts of the program. Obviously, it is not possible to change a data structure used by other functions without ill effects, or blithely alter global variables (which are therefore best kept to a minimum). It is possible to rewrite a function to make it more efficient or to add a strictly local feature without resulting in the blowup of some other function.
- Tiny-c functions can be kept in a library, taken out in the future, and used in new programs. With a little care, it is possible to write a function in a way that maximizes its generality and its future utility. In many instances, it is convenient to think of previously written tiny-c functions, not simply as potential components of new programs, but as extensions to the language. The program preparation system and the machine language interface provided in the tiny-c system encourage this, so perhaps it is time to describe the system in detail.

\section*{The System}

The program preparation system and the machine language interface are two of the six main parts of the tiny-c system. The others are the interpreter itself, a library of commonly used tiny-c functions, a library of special purpose functions that have
been coded in machine language to increase execution speed, a set of input and output routines to service a console terminal and a mass storage device, which must be coded by the user for his own installation.

Everything except the I/O (input/output) routines is provided in source-code form (8080 or PDP-11 assembly language, or tiny-c) in the tiny-c owners manual, which is available from tiny-c associates, POB 269, Holmdel NJ 07733, and currently sells for \(\$ 40\). The programs are also available on various machine-readable media in a number of formats. The one used by my computer, a Heath H8 with cassette mass storage, is not one of these, so I rather laboriously typed in the entire 8080 source code. Fortunately, the listings in the tiny-c owner's manual are quite legibly printed.

The interpreter is quite compact. Including the library of special functions that are coded in machine language and loaded along with it, the interpreter occupies a scant 4244 bytes in my system. There is no limitation on recursion (functions calling themselves, either directly or indirectly, where the function calls another function which calls the original calling function). But memory allocation is static. So, for example, a program that uses an unusually large number of active variables at one time might conceivably not run, even though plenty of extra memory was available in the section allocated for the program text. This would require that you stop the interpreter and reallocate memory. In practice, I have yet to have this happen. The internal operation of the interpreter is described in considerable detail in a chapter of the tiny-c owner's manual, which should facilitate making alterations.

I was slightly disappointed with the speed of execution of tiny-c. It is difficult to make comparisons with BASIC, mainly because the languages are so dissimilar, but also because my BASIC interpreter includes a large number of functions that speed up program execution considerably. Many of these functions, such as string handling functions, could be added to tiny-c as machine language subroutines, so any comparison that relies on the use of these special purpose BASIC functions is somewhat unfair. Still, when running through a

EUROMICRO 80 is the sixth annual symposium organized by EUROMICRO, the European Association for microprocessing and microprogramming. EUROMICRO has held its previous conferences in Nice, Venice, Amsterdam, Munich and Goteborg. Workers in the fields of microprocessing and microprogramming have found these international events invaluable for getting together and exchanging ideas on the latest developments.

\section*{DEADLINES}

\section*{Full Paper}

Authors should submit six complete copies of their papers to the Programme Chairman, no later than January 31, 1980. The papers, (no longer than 16,000 words) should include a 200-word abstract and authors' names and mailing addresses.
Authors will be notified of acceptance by May 1, 1980; final camera-ready papers will be due on June 1, 1980.
Preprints of the Proceedings will be available at the time of the Symposium; the final Proceedings will be published later.

\section*{Short Notes}

Authors should submit four copies of a 1000-word summary to the Deputy Programme Chairman before May 15, 1980; they will be notified of acceptance by June 30.

Final Short-Notes will be published in a Special Issue of the EUROMICRO Journal; camera-ready papers will be due at the Symposium.

\section*{FOR FULL DETAILS}

In the U.S.: Contact Dr. Rodnay Zaks, SYBEX, 2 O 2 O Milvia Street, Berkeley, California 947 O 4.
In Europe: Contact Prof. Lionel Thompson, HSDE, Hatfield AL 1O9LP England.

\section*{Industrial Seminars}

Companies should submit two copies of a two-page summary, including title and the name of the person responsible for presenting the contribution, to the General Chairman before July \(1,1980\).
They will be notified of acceptance by July 30. Industrial papers will be collected and handed out to participants at registration; they may be considered for later publication in EUROMICRO Journal.

loop of simple variable assignments, tiny-c seemed to operate only a third as fast as my BASIC interpreter.

\section*{Functions in Machine Language}

The machine language functions supplied with tiny-c perform a variety of tasks. One moves blocks of data around in memory, another counts the number of occurrences of a given character within a memory field, still others interface between tiny-c and the input/output routines supplied by the user. The user can add to this socalled "standard library" of machine language functions. Tiny-c provides several utility routines which are available to user-coded functions. These simplify the interface between tiny-c and machine language.

One thoughtful feature is a set of special calls to external subroutines which take place (if enabled) at the beginning of any program, at the start of every tiny-c statement within a program, and when the program finishes running. The manual suggests that these may be used to create
a debugger, which could allow you to single-step through a tiny-c program, set breakpoints, or enable a profiler which could count how often each statement is executed.

\section*{Functions in tiny-c}

Aside from the standard library of machine language functions, there is a standard library of functions coded in tiny-c. These are normally loaded with the program preparation system. Like the machine language functions, this standard library of tiny-c functions is a mixed bag. Some just dress up machine language functions (which are called by number) with a descriptive name. Others convert from ASCII to binary and vice versa, read and write strings to the console terminal, and load and dump files. Continuing the parallel with the machine language functions, the user can add his own functions to the tinyc library. This provides a convenient way to store functions that are used often at a given installation (eg: a function to drive a special device,

\section*{ECONOMICAL STD BUS*PLUGBORDS FROM 1 \(\overline{C l o t}\) MAKE SYSTEM EXPANSION AND INTERFACE BOARDS FAST 'N EASY}

4610 for soldering or 4610-2 for wire wrap-4610-1- Hi density, wire wrapping.Mounts ping. Mounts 35 16- wrap or solder.Mounts 20 16-pin DIPs or combinations.

*Card edge connector pins are connected to power and ground buses per STD BUS convention. Tinned buses and pads for easy soldering one side only.

59 16-pin DIPs compact, 47 spaced.

Bare boards for total freedom in component mounting.

\footnotetext{
All models have .042 holes on 0.1 inch grid. \(41 / 2 \times 61 / 2 \times .062\) piugbords, \(28 / 56\) nickelplated gold flashed contacts on
}
such as a digital plotter).

\section*{Program Preparation System}

The program peparation system is the part of the tiny-c system that the user is most conscious of, because it mediates most interactions with the interpreter. As an editor, the program preparation system is quite adequate, but unexceptional. It provides commands for inserting text, moving a given number of lines up or down, locating a given line by number (tiny-c does not use line numbers, but the editor keeps count for its own purposes), locating a given string (the user may optionally specify whether the string being searched for is at the beginning or the end of a line), editing strings within a line, deleting lines, and reading and writing files (program text, plain text, or data). The one drawback to its being written in tiny-c is that the editor operates a bit slowly, but not so slowly as to be frustrating.
The program preparation system also permits you to execute any tiny-c function that is in the standard library or entered as program text. This means it is possible to run any program under the editor. For those who have floppy disks, that is not a particularly important advantage. For those, like myself, who depend on cassettes for mass storage, the freedom from having to shuttle programs in and out of memory is a big plus. The fact that the editor can be used to run a program also means that tiny-c, like BASIC, has a single operating environment. Programs can be written, tested, debugged, and run without the user having to consciously switch from one mode to another.

The program preparation system is entirely optional. It is provided in two forms. One is neatly formatted and commented, and occupies about 9000 bytes. The other is "crunched" - stripped of all of its unnecessary indentations and spaces. Because tiny-c is essentially free-form, this has no effect on program function. However, it renders the "crunched" code relatively unreadable. The saving is about 5000 bytes which, for a program that resides in memory for the amount of time that program preparation system does, is a fair trade for legibility.

Programs which do not use the
program preparation system (ie: those that operate directly under the interpreter) must begin execution with a function named "main." Other than that, any program that will operate under the program preparation system will operate directly under the interpreter, although the library functions normally loaded along with the program preparation system will probably have to be loaded with other programs.
By dispensing with the amenities provided by the program preparation system, a given system can run a tinyc program that is roughly 5000 bytes longer than it could otherwise accept. With 24 K bytes of memory available on my system, I have approximately 8 K bytes of program space with everything loaded: the interpreter, a standard console driver, my I/O interface routines, and the program preparation system. One very useful improvement would be to provide text compression that would permit a series of spaces (which should be used liberally in a language like tiny-c for indenting) to be packed into a single byte. This, however, would require some changes to the interpreter.

\section*{Support Services}

Before moving on to a brief description of the procedures for installing tiny-c, I should say a few words about the quality of the documentation and support for the tiny-c system. This is a rather low-priced item, but that fact is not reflected in the tiny-c owner's manual. The manual is slickly produced. As noted before, the quality of the printing is excellent. Comments in the assembly language code are a bit sparse, but the section on the internal operation of the interpreter explains each routine's purpose in acceptable detail. Since I was keystroking the entire source code anyway, I used the opportunity to merge in some of the documentation from the owner's manual text.

The manual provides a detailed description of the language, an operating guide to the program preparation system, several program examples along with comments on their style, the section on the internal operation of the interpreter, explicit installation instructions, and the various source codes. And it is written in coherent English.

Support is principally provided
through an occasional newsletter which provides fixes for program bugs, suggested improvements, and answers to commonly asked questions. When I found a minor bug in the way that the interpreter passed arguments between functions, my letter to tiny-c associates prompted a quick acknowledgement from author Tom Gibson, although he had no immediate solution.

\section*{Installation}

As noted above, the user is required to code several installation
routines. These provide an interface between the computer's operating system and tiny-c. The routines write a single character to a console terminal, read a single character from the terminal, check to see if a character has been input, open files for reading from or writing to a mass storage device (such as a cassette recorder or floppy disk), read and write single records, and close files when the reading or writing is done.

Many of these functions are likely to be already available in the computer's operating system. In some

How to tie your computer into the world.

All you need is a phone and a Cat \({ }^{\text {Tu }}\) acoustic modem. A Cat modem takes the data you type into your terminal and sends it out over standard telephone lines to any other compatible computer or terminal within reach of your phone. And it listens too.

So now you can work at home and talk by phone to your office computer. Gain access to data banks. Or swap programs with computer people
anywhere. The possibilities are endless-if you have Cat.
It's the fast, accurate, reliable modem that ties you into the worldfor less than \(\$ 199\).

Call for details

In California (213) 996-5060
cases, the tiny-c interface will consist of nothing more than juggling the data left in particular registers to match up the requirements of the tiny-c interpreter and the operating system. In other cases, certain functions of the operating system may have to be substantially adapted to meet the specifications set out in the tiny-c owner's manual. Some users may have to write all of the input and output routines from scratch.

The user has a lot of latitude in designing the interface. He can simply meet the minimum specifications in
the manual, or he can add features that will take advantage of the particular characteristics of his computer. In my case, I decided that I wanted to have a visual indication of all magnetic tape operations on the H8's front panel (a very useful feature of Heath's system). The interface provides that function on its own, without any intervention from the tiny-c interpreter.
While the installation instructions are quite explicit, coding the input and output routines is not a trivial task. Nevertheless, it should be well

within the competence of anyone with more than nominal experience in writing programs in assembly language, as long as the programmer is familiar with the internal functioning of the computer's operating system. A few "load and go" versions of tiny-c are available for specific computers, but many users will have to. provide their own interface routines. While it may not seem like a particularly interesting chore, this is what gives tiny-c its generality, thus making it available for use on a large number of computer systems.

Once the interface routines are ready, the various components of the tiny-c system are loaded and linked. A program is provided in the manual for relocating the interpreter if the address supplied (hexadecimal 2000) is unacceptable. If you have typed in all of the source code, as I did, you can assemble the interpreter anywhere you want. Those users who buy machine-readable media can load the program preparation system as easily as the other parts of the system. In my case, the editor I used to enter the program preparation source code used a format that would have been indigestible to the tiny-c interpreter, so I had to write still another routine to reformat the file. Subsequent versions of the program preparation system are written under itself, so the problem only arose once.
I had a little trouble getting tiny-c up and running the first time, but all of the problems were my own. Most, as is usually the case, were the result of inattentive reading of the manual. They were all, fortunately, easy to correct. The entire project, from first reading of the manual through writing the interface routines through keystroking the source code through debugging, took most of my spare time for about three weeks.

There is something to be said for tackling a software project of this magnitude, even if most of the real work has been done by someone else. Although I would have undoubtably bought tiny-c in machine-readable form if it had been available for my computer, the work I did during the installation gave me a much better understanding of the way the software works. That, in turn, has reduced the sense of intimidation that I have felt in dealing with programs that are this large and this complex.

\section*{Get Readyto Make Your Ourn Magie}
announcement \(I\). The first eight Personal \({ }^{2}\) rograms \({ }^{\circledR}\) from Aladdin Automation are vaiting for you now at your neighborhood :omputer retailer or direct from Aladdin.

Jow you can get your full share of Aladdin agic in every one of these Personal 'rograms \({ }^{\ominus}\) :

Math-Ter-Mind \({ }^{\text {® }}\) A delightful. educational learning experience for your pre-school child. Watch e smile on your child's face as a correct nswer makes the mathematician smile on the creen before you. A nursery song also serves s a reward for learning elementary addition nd subtraction. With Aladdin's Math-TerAind \({ }^{\oplus}\) your child's pathway to learning will be In-filled . . . for both of you. Math-Ter-Mind \({ }^{\text {® }}\). he first release from the Aladdin Education \({ }^{\ominus}\) ieries. (nursery song currently available only in Apple il* program)
unar Lander In a controlled descent. you're just seconds away from your first landing on the cold. Jrbidding surface of the moon. As you ravigate your delicate spacecraft downward to ne safety of Moonbase, you must be ever vatchful of the dangers rising to meet you with ach passing moment: a fuel level fast pproaching zero: deadly meteor showers that ome from any direction, at any time: sheeraced rock cliffs and rough terrain: choosing he correct landing pattern and rate of descent. tladdin's Lunar Lander. Your chance to reach ut and touch the stars . . . without leaving the afety and comfort of your own chair. The first elease from the Aladdin Simulation \({ }^{\ominus}\) Series.

Craps All eyes in the casino are on you. The dice are in your hands. Lady Luck sits at your shoulder, whispering. . . "Just one more time Try your luck just one more time. "You throw and watch the dice tumbling on the screen. With Aladdin's Craps you play against the computer, so it's awfully tough to win. But when you do. it's an experience you're likely never to forget. Craps. An exciting, heartpounding Personal Program \({ }^{\oplus}\). The first release from the Aladdin Las Vegas \({ }^{\circledR}\) Series.

Mastermind A challenging game of intrigue. centuries old. that will give you full chance to test your powers of logic, deduction and reason. And test them you will. as you try and solve the computer's puzzle, using clues as they're provided one-by-one. You control the degree of difficulty in this classic Personal Programe that offers one simple. yet all-consuming challenge: beat the Mastermind in a direct. one-on-one battle of wits. Aladdin's Mastermind. The first release from the Aladdin Old Favorites \({ }^{\circledR}\) Series.

Tic-Tac-Toe Five different levels of difficulty allow a person of any age or skill to take part in this relaxing. enjoyable game that can act as a learning tool, as well. Level I, for example, is suitable for children and is excellent also for teaching simple mathematics. The computer plays just about perfectly at Level V. Just about. that is. so go ahead and take your best shot. See if you can beat the computer in this traditional favorite of young and old alike. Tic-Tac-Toe. Another first release from the Aladdin Old Favorites \({ }^{\circledR}\) Series.

Jungle Island \({ }^{\text {e }}\) Shipwrecked in a raging storm at sea, miraculously you survive only to find yourself stranded on a seemingly deserted jungle island. Without food, water or supplies of any kind. you begin to try and find your way to safety. The computer will be your eyes and ears as you explore your jungle island and all the mysteries and dangers that lie in wait for you. Jungle Island \({ }^{\circledR}\). A captivating first release from the Aladdin Adventure \({ }^{\circledR}\) Series.

Stix \({ }^{\$ 1}\) Aladdin's Stix \({ }^{\circledR}\) can be played with 2 to 5 piles of sticks and between 1 and 19 sticks in each pile. The object: to be the one to pick up the last stick. Sounds simple? Yes, but you're playing against the computer. Take heart. though. because you can control the degree of difficulty in this update of the ancient game of Nim. Stixe. Another first release from the Aladdin Old Favorites \({ }^{\text {®3 }}\) Series.

Super Pro Footballe Here's your chance to be more than just an armchair quarterback. With Aladdin’s Super Pro Footballe you can replay any Super Bowl game, from the first, between Green Bay and Oakland, to last year's classic victory by Pittsburgh over Dallas. For once you can turn back the clock and go for that one big play that made the difference between victory and defeat in pro football's biggest game of all. Super Pro Football \({ }^{\otimes}\). The first exciting release from the Aladdin Super Pro \({ }^{\otimes}\) Series.
Visit your neighborhood computer retailer or contact Aladdin direct to get your full share of the magic in Announcement \(I\), the first eight Personal Programse from Aladdin Automation.

\section*{Alubs and Newsletiers}

International Computer Chess Association (ICCA)

The ICCA prints two newsletters a year about ICCA planned activities, future events of interest to its members, reviews of books or articles, interesting anecdotes, and short technical papers. The ICCA is considering establishing an international archive for organizing and storing materials on computer chess, and would be interested in hearing from potential donors of funds and materials. Membership is \(\$ 10\) for one year. For mort information, write to Professor B Mittman, Editor, ICCA Newsletter, Vogelback Computing Ctr, Northwestern University, Evanston IL 60201.

Washington Apple Pi
Washington Apple Pi, a group of Apple II owners and users, meets at George Washington University, Room 206, Tompkins Hall, 23rd and H St NW, Washington DC at 9:30 AM the fourth Saturday of each month. The meetings include discussions of available software, classes on assembly language, demonstrations and explanations of home-built and commercially available hardware, and they have had a discussion of the Apple II in Europe from a visiting Belgian owner. The group also publishes a monthly newsletter. For more information, write Washington Apple Pi, POB 34511, Washington DC 20034.

Central Ohio Apple
Computer Hobbyists (COACH)
Meetings are on the third Saturday of each month from 1 to 5 PM. For more information, contact Tom Mimlitch, 1547 Cunard Rd, Columbus OH 43227, or phone (614) 237-3380.

\section*{New Canadian Apple Users Group}

The Apples British Columbia Computer Society, \#101-2044 W Third Ave, Vancouver British Columbia CANADA V6J 1L5, meets on the first Wednesday of every month. Dues are \(\$ 15\) per year.

\section*{REDUCE Newsletter}

The Symbolic Computation Group of the University of Utah publishes a quarterly newsletter devoted to REDUCE, a LISP-based computer algebra system
designed for a variety of large computers. The newsletter is available from the University of Utah computer science department for \(\$ 100\). For more information, contact the Department of Computer Science, University of Utah, Salt Lake City UT 84112.
\begin{tabular}{c}
Heath Users \\
Group (HUG) \\
\hline
\end{tabular}

\section*{HUG Northshore is a} computer club for Heathkit computer users (H8, H11, ET3400). The club provides a forum for exchanging ideas, programs and knowledge, with the intent of developing the full potential of the computer system. The club meets the second Wednesday of each month at 7 PM at the following address: Hill Tech Building, 88 Holten St, Danvers MA 01923. For a free copy of their monthly newsletter, write HUG Northshore, POB 112, Danvers MA 01923.

\title{
NEVADA COBOL"' + PTDOS* \(=\) FAST! FAST! FAST!
}

\section*{nevada coboli compiler}

FAST COMPILE TIME Up to 650 lines per minute on a 32 K RAM SO1-20/HEL LOS*.

Fast rum time the compiler generates efficient in-line machine language.
fast development time cobol was designed specifically to solve business problems. NEVADA COBOL \({ }^{-}\)is easy to learn \(\&\) simple to use.

FEATURES Random access file support
Sequential files both fixed and variable length
Debugging capability
Copy statement
Data types: Character string, 16-bit binary
and packed dec imal (COMP-3)
18-digit accuracy
Hexidecimal non-numeric literals
Powerful editing with English language error messages
Interactive ACCEPT/DISPLAY
Subset of ANSI-74

WANT A CLOSER LOOK? SEMD \(\$ 25\) FOR THE NEVADA COBOL MANUAL AND \(\$ 275\) FOR THE PTDOS/HELIOS DISKETTE.

\section*{COBOL APPLICATION PACKAGES}
budget planning The Business plan Generator consists of 2 COBOL programs. One is interactive menu driven for data collection and the other prints professional style reports. Both are table driven for ease in changing chart-of-accounts. Fantastic time saver and planning aid for start-up or existing businesses.

PRECOBOL The COBOL preprocessor allows the COBOL programmer to make up his own time saving mnemonics which are translated to standard COBOL reserved or user words. old or new programs are margin aligned and structure indented for easy reading, changing or debugging.

PFR Personal financial Reporting consists of 3 COBOL programs to record and print personal income and expenditures. The heart of the system is the easy data collection forms and interactive input program. Report shaws current month, year-to-date and average figures.

LABELS Prints labels l-up or 4-up cheshire or gummed format, and the 1-up has an option to stop for envelope feeding.

SEND \(\$ 25\) FOR EACH APPLICATION PACKAGE WHICH INCLUDES THE DOCUMENTATION AND EITHER THE SOURCE CODE LISTINGS OR PTDOS/HELIOS DISKETTE. PLEASE INDICATE YOUR PREFERENCE.

Ellis Compufing
1480 17h Avenue
1480 17h Avenue
San Francisco, CA 94122
(415) 664-1534
(*) SOl, HELIOS 8 PTDOS are Trademarks of Processor Technology Corporation. Callfornia residents please add sales tax.

\title{
Introducing
}
 equipment，software and accessories for mini，micro and big system computers AND you can run YOUR FIRST CLASSIFIED AD WITHOUT CHARGE under this Charter Subscription offer．

\section*{EACH ISSUE OF COMPUTER SHOPPER GIVES YOU：}
－Ads from individuals，brokers and manufacturers，nationwide
－Categorized ads so you can find them instantly
－Large 11 by 14 easy－to－read format
－Low classified ad rates－10¢ a word
－Short turn－around advertising time－your ad is in print in 10 days
－Free ad typesetting
－Nationwide circulation guaranteed
COMPUTER SHOPPER is YOUR place to buy or sell any computer equipment because it has been designed after extensive research into the needs and wants of America＇s computer buyers and sellers．
To reach more than 20，000 computer－owning firms each month， COMPUTER SHOPPER has been launched on a \(\$ 78,000\) budget by Patch Publications，a proven specialist in reader service
advertising，including its flagship
photographic publication，Shutterbug Ads．
Using in－house computer facilities and professional type－ setting，Patch＇s experienced production team makes COMPUTER SHOPPER easily affordable for firms and individuals by using modern techniques and large－space advertising to offset normal costs．
EVEN A LIMITED－TIME COMPUTER USER can get any buy，sell or want－to－find message into this nationwide market for a most reasonable cost．．．only \(10 ¢\) a word．
And to prove how successful this ad can be for you，this Charter Subscription Offer includes your own complimentary classified ad． Use it to sell your used equipment or to tind components you need．

Just select the correct category listed at left，include it，plus your ad wording on a separate sheet ．．．then return it with your subscription acceptance．

DON＇T MISS a single timely issue of COMPUTER SHOPPER． Send the coupon with your ad today，knowing you can cancel anytime and receive a \(100 \%\) refund for all unmailed issues．

\section*{LIST OF CATEGORIES IN COMPUTER SHOPPER}

Mini Computers
Burroughs Systems
Data General Systems For Sale
Data General Systems Wanted
Data General，Software，Parts， Peripheral
Datapoint Systems
Datapoint Software，Parts，Peripheral
DEC Systems For Sale
DEC Systems Wanted
DEC Software，Parts，Peripheral
IBM Systems For Sale
IBM Systems Wanted
NCR Systems
NCR，Software，Parts，Peripheral
Misc．Minicomputers（Hardware \＆ Software）

\section*{Micro Computers}

Apple Computers for Sale
Apple Computers Wanted
Apple，Software，Peripheral
Northstar Computers

Northstar，Software，Peripheral
Ohio Scientific
Ohio Scientifc，Sottware Peripheral
PET Computers
PET．Software，Peripheral
TRS－80 Computers For Sale
TRS－80 Computers Wanted
TRS－80，Software，Peripheral
Misc．Microcomputers
Misc．Microcomputer Software， Peripheral
Peripheral \＆Misc．Equipment
Card Readers
Disc Drives
Line Printers
Punched Card Equipment
Tape Drives
Crt＇s
Misc．Equipment
Misc．Large Systems
Misc．Software
Misc．Accessories \＆Supplies

\section*{GP/M \({ }^{\circ}\) SOFTWARE TOOLS HEW ED-80 TEXT EDITOR}

ED-80 offers a refreshing new approach for the creation and editing of program and data files conversationally - and it saves you money. Its powerful editing capabilities will satisty the most demanding profes. sional - yet it can still be easily used by the inexperienced beginner.

\section*{Look at These Outstanding Features:}
- FULL SCREEN window displays with forward and backward scrolling for editing your data a page-at-a-time, rather than line-by-line.
- Provides you with all the features found on the large mainframe and minicomputer editors, such as IBM, UNIVAC, CDC, and DEC.
- Commands include forward or backward LOCATE, CHANGE and FIND; and INSERT, DELETE, REPLACE, APPEND, SAVE, PRINT, WINDOW, MACRO, TABSET, SCALE, DUMP', and others.
- Compatible with existing CP/M edit and text formatted files, with CBASIC, and with Microsoft's MBASIC, FORTRAN, COBOL, and ASSEMBLER.
- CHANGE commands allow you to make conditional changes and to use variable length strings.
- Designed for CP/M and derivative operating systems, including LIFEBOAT, CDOS, IMDOS, DOS-A, ADOS, etc.
- GET and PUT commands for concatenating, moving, duplicating, and merging your edit files on the same or different diskettes.
- Provides you with fast memory-to-memory COPY commands, and an intermediate buffer for copying lines over-and-over.
- Repays your initial investment many times over with unique time-saving editing capabilities.
- Saves your last LOCATE, CHANGE, FIND, and APPEND command for easy re-execution.
- Simple line-oriented commands for character string editing.
- Automatically displays the results of every edit command for your verification.
- Single keystrokes for your most commonly used commands.
- Safeguards to prevent catastrophic user errors that result in the loss of your edit file.
- INLINE command for your character-oriented editing.
- Designed for today's high speed CRT's, video monitors, and teletypewriter terminals.
- Thoroughly field tested and documented with a comprehensive User's Manual and self-instructional tutorial.
And remember - in today's interactive programming environment - your most important software tool is your text editor. ED-80 is already working in industry, government, universities, and in personal computing to significantly cut program development time and to reduce high labor costs. Why not let ED-80 begin solving your text editing problems today? ORDER NOW and we'll pay the postage!

SOFTWARE DEVELOPMENT \& TRAINING, INC. Post Ofice Box 4511 - Huntsville, Alabama 35802
- CP/M is a trademark of Digital Research

Personal Computing Industry Report (PCIR)
PCIR is a monthly report on personal computing in business, professional, educational, hobby and home applications. The newsletter covers such topics as the market for boardlevel microcomputers including market shares and trends, reviews of popular microcomputer systems, the status of computer retail stores, and other items of general interest. PCIR is available from Vantage Research Inc, 2680 Bayshore Rd, Mountain View CA 94043, for \(\$ 195\) for one year.

\section*{Appleseed Newsletter}

Appleseed Newsletter, c/o The Computer Shop, 6812 San Pedro, San Antonio TX 78216, covers the current and future events of this Apple users group's meetings, which center around swapping programs, discussions and the use of new products.

Sorcerer User's Newsletter (SUN)
Sorcerer User's Newsletter is published monthly by Steven J Long, 792 Laurie Ave, Santa Clara CA 95050. Included are short programs sent by users, notes on problems or fixes, comments on accessories, and anything else which is of general interest to Sorcerer users. A program
library is available for use by subscribers. The subscription rate is \(\$ 10\) per calendar year.

\section*{A New Apple \\ Users Group}

There is a new users group in New York City: The Big Apple User Group, 55 Water St, c/o Bruce Brewster, Drysdale Securities, New York NY 10004. For more information, contact Tony Cerreta, (914) 636-3417 or write to the above address.

\section*{BYTEs Bugs}

\section*{Redundancy Rules These Pages...}

Readers may have noted some redundancy in text on pages 8 and 10 of the November 1979 BYTE. As Murphy would have it, this was discovered in the final printed versions of BYTE, as opposed to the more typical discovery of such effects in the "blue line" proof copies we get of each issue. So, rest assured-if the paragraph beginning on page 10 looks familiar when you read it, it is indeed an inadvertent repeat of an incomplete paragraph at the bottom of page 8....CH

\section*{Put the BYTE on the IRS with Aardvark}

In an era when computers are an integral part of business and entertainment, and computer software is more and more sophisticated, Aardvark is yet another breed in advanced computer software. Aardvark's Micro Tax series is a true user-oriented Federal Income Tax package. Specifically developed by qualified tax professionals for use on personal home computers, this low-cost, time-saving Aardvark Micro Tax package accurately and efficiently computes your federal income tax liability. Aardvark will display and fill in facsimile Form 1040 and related schedules and, if connected to a Centronics printer, will print out these facsimile forms auto-
matically. Each program is designed to use the appropriate tax table or rate schedule. The more advanced Micro Tax II and III also calculate Income Averaging, Maximum Tax on Earned Income, Minimum Tax and Alternative Minimum Tax. The Aardvark package is compatible with Apple II and TRS-80 users and includes an indexed instruction manual and input forms for easy input of tax data. To see how Aardvark can be tax-deductible, check the instructions in the binder of the manual. You can also use the binder to store pertinent 1979 tax records. Cure your headaches this tax season, order today... and put the BYTE on the IRS with Aardvark!

MICRO TAX I \$25
Form 1040
Schedule A
Schedule B
Schedule TC
(will not calculate Income
Averaging, Max Tax or Alternative Minimum Tax)

When Ordering Specify:
TRS-80 16K Level II Basic
Apple II 32 K with Applesoft Basic Apple II 16K Micro with Applesoft ROM Card

\section*{MICRO TAX II}

Form 1040
Schedule A
Schedule B
Schedule G (Inc. Avg.)
Schedule TC
Form 4625 (Minimum Tax)
Form 4726 (Max Tax)
Form 6251 (Alt. Min. Tax)

MICRO TAX III \(\$ 50\)
Program 2 plus
Schedule C
Schedule D
Schedule E
Schedule SE
Form 2119 - Sale of
Personal Residence

Package for PET and TI
Systems.

\section*{REASONABLY - PRICED} QUALITY SOFTWARE

\author{
Word processing for \(\mathbf{C P} / \mathbf{M}^{\text {® }}\) \\ FMT Text Formatter \\ Use FMT and your text editor to convert your CP/M system to a powerful word processor. FMT features include automatic page headings and footings, page numbering, centering, underscoring, external file merging, and in-line console input. FMT works with any wideo, CRT, or hardcopy terminal and printer combination. Added capabilities for daisy-wheel printers: superscripting, subscripting, and half-line spacing.
}

Run Cromemco Software Under CP/M
ADAPT Software Interface
Now you can get Cromemcosoftware to run on your CP/M system. ADAPT interfaces those powerful Cromemco packages (except for Multi-User BASIC) to any CP/M Version 1.4 system without patching. Adapt works without changes for any memory size.

Coming Soon - RATFOR

Watch for TSW's RATFOR (RATional FORtran) precompiler that runs at more than 1000 statements per minute.

Dealer inquiries invited. California residents add \(6 \%\) sales tax.

THE SOFTWARE WORKS
5207 Marigot Pl.
San Diego, CA. 92124
© CP/M is a trademark of Digital Research.

\section*{Mulibe's}
announces
North Star Horizon Timesharing with

\section*{Hard Disk Interface}

In excess of 120 megabytes bulk storage capacity now possible. Several different hard disk units are available, interfaced to North Star DOS and BASIC.
Two to seven-user timesharing North Star Horizon integrated computer systems with: Dual density or quad capacity eight inch drives and/or hard disk units with your choice of a variety of printers.
A complete selection of innovative business application software is available for North Star* systems.

Foreign orders are our specialty.
Dealerships are available. Call or write for descriptive literature, hard disk availability and/or dealer information package.

\section*{Micro Mike's, Incorporated}

905 South Buchanan * Amarillo, Texas 79101 * USA Telephone: 806-372-3633
making technology uncomplicated - for People
```

SUPER BASIC PROGRAM
***ADAPTABLE FOR USE ON MOST SYSTEMS*** DEMONS \& SAINTS
SEND $\$ 2$ FOR MULTIPAGE LISTING AND PROGRAM DESCRIPTION TO RasCal PROGRAMS ATTN. S. BURNS
3040 LINCOLN AV. BOX 2
E. ST. LOUIS. IL 62204

```

\author{
**
}

\section*{ATTENTION 2650 USERS \\ ***PROGRAMS ON CASSETTE TAPE***}

Machine Language Programs
\begin{tabular}{|c|}
\hline \multirow[t]{5}{*}{\begin{tabular}{l}
relocates data in anoth \\
section of memory \\
Identify Memory Locatio \\
for source code statern \\
Dafa Trap \\
change all data betwee two specified memory tions to ASCII values between 20 and 60 Trap game Super Screen Saver
\end{tabular}} \\
\hline \\
\hline \\
\hline \\
\hline \\
\hline
\end{tabular}
(CD) 12K BASIC Pragrams
\begin{tabular}{|c|}
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Alphabetize.. \\
Bond for Deed
\end{tabular}} \\
\hline \\
\hline
\end{tabular}
Loan Paym \(\$ 6\)Bond for Deed\(\$ 6\)
\(\$ 6\)magnitude and directionof two vectors in the plane
Numerical Integration \(\$ 6\)
Trapezodial Rule Cramer's Rule (\(2 \times 2\))\(\$ 6\)
\(\$ 10\)
saves several pages of screen information in a special buffer
(CD) 8K BASIC Programs
*Demons \& Saints
*Dernons \& Saints \(\$ 15\)
Matrix Multiplication
Basketball Statistics Keeper
saves and updates data -
no disk required - 2 parts
*Program Text Uses From 28-36 Blocks of Memory 256 bytes/block

All Programs Above \(\$ 100\)

\section*{The FOREmost Flididmanter}

\section*{A big friendly, forms generator package without a big system price.}

\section*{A compliment to Hewlett Packard 9835 and 9845 Desktop Computers.}
with FORM-matter you can...
- Create Forms
- Change Forms without Changing the Programs Using the Forms
- Simplify Input \& Output on CRT Screens \& Hardcopy Printers
- Use a Menu Driven Style
- Slip it into Your HP-Desktop System with 5 Simple Instructions.
- Save Money!

■ Save Time!
Single Copy - \(\$ 350\)
Quantity \& O.E.M. Discounts Available
For Further Information Call or Write:

\section*{CCS}
(ORPORATE (OMPUTER SYSTEMS. INC:
675 Line Road, Aberdeen, New Jersey 07747 Telephone 201-583-4422

\title{
SUPER SOFTWARE!
}

\title{
MICROWARE 6800 SOFTWARE IS INNOVATION AND PERFORMANCE
}

\section*{LISP Interpreter}

The programming language LISP offers exciting new possibilities for microcomputer applications. A highly interactive interpreter that uses list-type data structures which are simultaneously data and executable instructions. LISP features an unusual structured, recursive functionoriented syntax. Widely used for processing, artificial intelligence, education. simulation symbolic, and computer-aided design. 6800 LISP requires a minimum of 12 K RAM.
Price \(\$ 75.00\)

\section*{A/BASIC Compiler}

The ever-growing A/BASIC family is threatening old-fashioned assembly language programming in a big way. This BASIC compiler generates pure, fast, efficient 6800 machine language from easy to write BASIC source programs. Uses ultra-fast integer math, extended string functions, boolean operators and real-time operations. Output is ROMable and RUNS WITHOUT ANY RUN-TIME PACKAGE. Disk versions have disk I/O statements and require 12K memory and host DOS. Cassette version runs in 8 K and requires RT/68 operating system. Price: Disk Extended Version \(2.1 \$ 150.00\)
Cassette Version \(1.0 \$ 65.00\)

\section*{A/BASIC Source Generator}

An "add-on" option for A/BASIC Compiler disk versions that adds an extra third pass which generates a full assembly-language output listing AND assembly language source file. Uses original BASIC names and inserts BASIC source lines as comments. SSB and SWTPC Miniflex version available.
Price: \(\$ 75.00\)

\section*{A/BASIC Interpreter}

Here it is-a super-fast A/BASIC interpreter that is source-compatible with our A/BASIC compiler! Now you can interactively edit, execute and debug A/BASIC programs with the ease of an interpreter-then compile to super efficient machine language. Also a superb standalone applications and control-oriented interpreter. Requires 8 K RAM. The cassette version is perfect for Motorola D2 Kits.
Price: \(\$ 75.00\)

\section*{RT/68 Real Time Operating System}

MIKBUG-compatible ROM that combines an improved monitor/ debugger with a powerful multitasking real-time operating system. Supports up to 16 concurrent tasks at 8 priority levels plus real time clock and interrupt control. Thousands in use since 1976 handling all types of applications. Available on 6830 (MIKBUG-type)or 2708 (EPROM-type) ROM. Manual is a classic on 6800 real-time applications and contains a full source program listing.
Price: RT68MX (6830) \(\$ 55.00\)
RT68MXP (2708) \$55.00

\section*{6800 CHESS}

A challenging chess program for the 6800 . Two selectable difficulty levels. Displays formatted chess board on standard terminals. Requires 8 K memory. Machine language with A/BASIC source listing. Price: \(\$ 50.00\)

\footnotetext{
Our soffware is avalable for most popular 6800 systems on cassette or diskelte unless otherwise noted. Disk versions available on S.S.B., SWTPC, or Motorola MDOS. Please specily which you require. Phone orders are welcomed. We accept MASTERCHARGE and VISA. We try to ship orders within 24 hours of receipt. Please call or write if you require additional information or our free catalog. Microware soltware is avatlable for OEM and custom applications.
}

\section*{Books from BITS inc PASCAL}

MICROCOMPUTER PROBLEM SOLVING USING PASCAL by Kenneth L. Bowles
This book is designed both for introductory courses in computer problem solving at the freshman and sophomore college level, and for individual self-study. Graphics is stressed in this version of the book. A complete single-user software system based on PASCAL has been developed at the University of California at San Diego, where the author is a professor in the Department of Applied Physics and Information Science. This system embodies extensions to the standard PASCAL which include the necessary func tions and procedures for handling graphics and strings. 563pp.
\#077
\(\$ 9.80\)

\section*{PASCAL USER MANUAL AND REPORT}
(Second Edition) by K. Jensen and N. Wirth
The manual is directed towards those who have some familiarity with computer programming and who wish to get acquainted with the PASCAL language. It is mainly tutorial and includes many helpful exarnples to demonstrate the various features of the language. The Report is a concise reference for both programmers and implementors. It defines Standard PASCAL, which constitutes a common base between various implementations of the language. 167pp.
\#088
\(\$ 7.90\)
A PRACTICAL INTRODUCTION TO PASCAL by I.R. Wilson and A.M. Addyman
PASCAL will soon supercede BASIC, and for good reason. It is a simple and efficient language, encouraging structured programming. Wilson and Addyman have written an introduction to PASCAL suitable for first time or experienced programmers. Describing PASCAL using syntax diagrams, the book encourages the stepwise refinement technique of structured programming. Over 60 programs are included as examples, and seven of its 14 chapters are devoted to data structures. 148pp. \#218 \(\$ 7.90\)

\section*{PROGRAMMING IN PASCAL}
by Peter Gorgono
This book is an excellent introduction to one of the fastest growing programming languages today. The text is arranged as a tutorial containing both examples and exercises to increase reader proficiency in PASCAL. Besides sections on procedures and files there is a chapter on dynamic data structures such as trees and linked lists. These concepts are put to use in an example bus service simulation. 359 pp .
\#099 \$11.50

\section*{CONCURRENT PASCAL COMPILER by Alfred Hartman}

This is a paper describing a seven-pass compiler for the Concurrent PASCAL programming language. It includes details about the pass structure, lexical analysis, syntax analysis, code assembly and implementation of the compiler. Concurrent PASCAL is an abstract programming language for computer operating systems. The language extends sequential PASCAL with the monitor concept for structured concurrent programming. Compilation of Concurrent PASCAL on a minicomputer is done by dividing the compiler into seven sequential passes. The passes, written in sequential PASCAL, generate virtual code that can be interpreted on any 16 bit computer. \(119 p p\).
\#137 \(\$ 8.40\)

\section*{AN INTRODUCTION TO PROGRAMMING AND PROBLEM SOLVING WITH PASCAL}
by G. M. Schneider, S. Weingart and D. Perlman
This book introduces all aspects of the programming and problem solving process, including problem specification and organization, algorithms, coding, debugging, testing documentation and maintenance. Good programming style and how to produce a high quality finished product is brought out in numerous style examples throughout the text. PASCAL is used as a vehicle to teach various aspects of programming techniques. 359pp. \#070 \$14.95
(Postage \(\$.75 /\) item or \(\$ 1.00\) outside U.S. to a maximum postal charge of \(\$ 3.00\))
DIAL YOUR BANK CARD ORDERS TOLL FREE 800-258-5477
inc Books to erose the impossible
25 Route 101 West, PO Box 428, Peterborough, NH 03458

\section*{© INPINITE BA5IE ©}

\section*{RELOCATABLE MODULES FOR THE TRS LEVEL II AND DOS SYSTEMS LOAD ANY OR ALL MODULES. FOR \(\$ 49.95\) THE CORE PACKAGE INCLUDES:}

\section*{\(\infty\) MATRIX PACKAGE \(\infty\)}

Over 30 BASIC commands including:
\(\infty\) Matrix Read, Inverse, Transpose, and Identity. Simultaneous Equations!!!
\(\infty\) Add, Subtract, or Multiply Scalars, Vectors, or Multidimension arrays!!!
\(\infty\) Dynamically Reshape, Expand, Delete Arrays, Change arrays in mid-program.
\(\infty\) Copy array elements, set arrays to scalar, zero arrays, move arrays.
\(\infty\) Tape array read and write including string arrays.
FOR \(\$ 29.95\) more get the \(\infty\) BUSINESS PACKAGE \(\infty\)
\(\infty\) Eliminate round-off error!! Multiple precision packed decimal arithmetic. 127-digit max. accuracy
\(\infty\) Binary search or sorted arrays. Insert new elements in sorted arrays!!!
\(\infty\) Automatic page headings, footings, and pagination. Includes forced end-of-page.
\(\infty\) Automatic hash for record retrieval!! And more for your professional packages.

\section*{\(\infty\) STRING PACKAGE \(\infty\)}

Over 40 BASIC commands including:
\(\infty\) Left and right justify, truncate, rotate. Text justification. String centering.
\(\infty\) Delete or insert substring, Pack strings, Convert to upper or lower case.
\(\infty\) Translate characters, Reverse strings, Verify function, Number of occurrences.
\(\infty\) Masked string searches for simple or array variables. Encrypt or decrypt strings.
\(\infty\) Compress/uncompress character string arrays to 6 bits or less per character.
\(\infty\) AND the famous RACET machine language SORTS. Multikey multivariable and string. Sort 1000 elements in 9 sec!!

\section*{FUTURE \(\infty\) ADD.ON PACKAGES \(\infty\) will include} \(\infty\) STATISTICS \(\infty\) INPUT/OUTPUT \(\infty\) GRAPHICS \(\infty\)
Attn: TRS Add-On OEM's: We can support your special hardware add-ons with direct BASIC commands. System Houses: We license System House usage of \(\infty\) INFINITE BASIC \(\infty\) modules.

COMMAND PROCESSOR 'COMPROC' for \(\$ 19.95\) (DOS only)

Extend DOS-AUTO command to perform multiple steps either at power-up or as a user command Execute a script consisting of a sequence of commands or datafrom a BASIC command file.
REMODEL + PROLOAD for \(\$ 34.95\) (Specify 16,32 , or \(48 K\) version)
REnumber any section of a program, MOve program segments, DElete program lines.
Combine programs with renumber and merge. Load or save any portion of program from tape.
DISK SORT PROGRAM ‘DOSORT’ for \$34.95 (Specify 32 or 48K, minimum 2 disk system)
SORT/MERGE multi-diskette sequential files. Multiple variables and keys.
Includes machine language in-memory sorts, comparators and string handling.

\section*{Expand the usefulness of your microcomputer}

Numbers in Theory and Practice, the third volume in Byte's Programming Techniques series, is a collection of the best articles from past issues of BYTE \({ }^{\circledR}\) magazine along. with the latest information on topics such as Floating Point Numbers, Random Numbers, Numerical Methods and Mathematics of Computer Graphics. This book contains numerous programs written in BASIC or assembly language and provides 192 pages of theory and practical applications along with nearly 100 illustrations, flow charts and computer art. Numbers in Theory and Practice is the next logical step for the computer user who seeks chatlenge and knowledge. \(\$ 8.95\) ISBN: 0-07-037827-4

\section*{BYTE BOOKS Division}

70 Main Street, Peterborough, New Hampshire 03458
Please send \(\qquad\) copies of Numbers in Theory and Practice.

Other books in the Programming Techniques series are: Program Design ISBN 0-07-037825-8. Simulation ISBN O-07-037826-6/: Bits and Pieces ISBN 0-07-037828-2

TOOKS OF INTEREST 10 COMPUTER PEOPLE*

8080 SIMULATOR on cassette -KIM 1 version \$19.95
-APPLE II version \$ 19.95
turn your 6502 into an 8080
and use the wealth of 8080 software
TO ORDER:
By Phone: (415) 848-8233. Visc, MC, Amer. ican Express
By Mail: Indicote quontity desires. Include poyment.
Shipping: Add \(\$ 1.50\) per book (UPS), or 75 c (4 th class -allow 4 weeks delivery).
TAX: In California, odd tax

(0) 1979 Erik T. Mueller
\(A P L\) is on interactive general-purpose programming language with powerful primitive functions. SOFTRONICS APL runs under the CP/M' operating system. It is 'ready-fo-go' in ASCll, using CP/M standard //O The interpreter runs in a variety of character set configurations. In addition to the standard ASCll mnemanis representations, it suppoits typewriter and bit-pairing ASCII.APL character sets. It can run with usersupplied I/O drivers.
features
- Most of the functions and operators of full APL, including ndimensional inner and outer product, reduction, compression, general transpose, reversal, take, drop. Execute and format.
- The interpreter resides in 30 K bytes of memory, leaving remaining memory for the workspace and disk operating system
- Shared-variable mechanism for CP/M disk input and output, system functions and variables, system commands.
- Abrams' descriptor calculus and shared data storage are the advanced optimization techniques employed by the interpreter. This saves memory space and execution lime. Values are stored internally in a variety of formats for efficient memory utilization.
- Optional driver program for video display with programmable character generator.
\(\$ 350\) on CP/M"disk \(\begin{gathered}\text { comprete with } \\ \text { Uskrs Manleat }\end{gathered}\)
NJ rezidenws pleast odd \(5 \%\) sales tax.

\section*{SOFTRONICS}

\footnotetext{
* CP/M is a registered trademark of Digital Research
}

\section*{Heuristics}

\section*{SpeechLink \({ }^{\text {TM }}\)}

\section*{Talk To Your Computer . . .}
- Voice data entry to the Apple \({ }^{\circledR}\) computer
- Voice control of your Apple \({ }^{\circledR}\) system
- User variable vocabulary (64 words and up)
- Applesoft \& Integer Basic compatible with or without disk operating system

\section*{Useful For . . .}
- Collecting inventory data
- Running the Apple \({ }^{\circledR}\) as a terminal
- Controlling production test equipment (say "test 2")
- Menu selection of programs (say "stocks")
- Entering stock market data
- Educational programs for the kids (say "square")
See your computer dealer. Model 2000 suggested retail price \$259, model 20A \$189.

\section*{Meuristics}

1285 HAMMERWOOD AVENUE SUNNYVALE, CALIFORNIA 94086 408/734-8532

Apple is a registered trademark of Apple Computer Corporation

\title{
ANOHISR FIPSTEROM MOUNTAN HARDWARE: SUPEPTAMKER.
}

\section*{GIVE VOICE TO YOUR APPLE.}

SuperTalker allows you to add the dimension of human speech output in your computer programs. Add voice to games. Program verbal prompting for the operator of your business system. Use verbal warnings under program control as an enunciator in commercial security or control rooms. Create educational programs that verbally coach the student.
THE SUPERTALKER SYSTEM. SuperTalker is a new Mountain Hardware peripheral system which allows the Apple II computer to output exceptionally high quality human speech through a loudspeaker under program control. Output may also be directed through any P.A. or stereo system. Initially, spoken words are digitized into RAM memory through the system microphone. Speech data in RAM may then be manipulated like any other stored data.

\section*{A COMPLETE PACKAGE.}

The SuperTalker peripheral system consists of:
The SuperTalker peripheral card which plugs into

\section*{FOR YOUR \\ APPLE II}
a peripheral slot on the Apple II; a microphone; a loudspeaker; easy-to-use operating software and documentation; plus, two ready-to-run SuperTalker programs. OPERATING SYSTEMS. In order to achieve maximum utility using SuperTalker, the SuperTalker Disk Operating System permits output of human speech under program control with direct I/O routines. It also provides a preparation program which permits the creation of voice files on diskette. BASIC program routines are provided which require only one-line statements to output a word or phrase. Routines also support cassette storage.
TEACH YOUR COMPUTER TO TALK.
For \(\$ 279\) assembled and tested, SuperTalker gives your Apple II a voice in the matter.

\section*{AVAILABLE NOW.}

Mountain Hardware's SuperTalker, Apple Clock and 100,000 Day Clock \({ }^{\text {™ }}\) (for S-100 bus computers) are available through computer dealers worldwide.

\section*{Mountain Hardware, Inc.}

LEADERSHIP IN COMPUTER PERIPHERALS
300 Harvey West Blvd., Santa Cruz, CA 95060
(408) 429-8600

Sounds super.
\(\square\) Send me everything I need to know about SuperTalker. \(\square\) Also information on your Real-Time clocks for Apple Il and S-100.

Name
Address

Apple II is a trademark of Apple Computer, Inc.

\section*{FAMOS \({ }^{\text {M }}\)}

MULTI-TASKING DOS:
- 8080/z80
- Device independent file system
- Multi-sessioning/spooling
- Full user accounting
- All files dynamic
- Multi-user file security
- Intersystem communications

\section*{S100 BUS SUPPORT}

\section*{MVT-BASIC'm}

MULTI-USER COMPILER
- Powerful file, string I/O
- Chaining . . . parameter passing
- ISAM/sort facilities
- Random, sequential files
- Machine language calls
- Error trapping

\section*{HARD DISKS SUPPORTED}

\section*{MVT-WORDFLOW \({ }^{\text {w }}\)}

MULTI-USER WORD PROCESSING SYSTEM
- Concurrent data processing
- Automatic field insertion
- Global search/replace
- Library file insertion
- "Cutting \& pasting"/block moves
- Full WP printer support
- Multiple printers/concurrent
- Wordwrap/variable line spacing
- All options under user control

\section*{IMMEDIATE DELIVERY}
available to manufacturers/ OEM FOR PRIVATE LABEL MARKETING

mvt
MICROCOMPUTER SYSTEMS INC.

9241 Reseda Blvd., Suite 203 Northridge, CA 91324 Phone: (213) 349-9076

TRS-80 (I \& II), PET.APPLE. KIM, ATARI Quality software duplication is more than copying cassettes. Microsette duplication uses a proprietary high speed duplicator designed specifically for computer program duplication. The finished products are of consistent quality, guaranteed to load. Minimum order is 100 with discounts for higher quantities. Call (408) 735-8832 for details.

\section*{8" DISK CONTROLLER}

\section*{APPLE DOS COMPATIBLE}
- DOUBLES APPLE Il" STORAGE
- SHUGART 800/801 COMPATIBLE
- STANDARD IBM \({ }^{m} 3740\) FORMAT
- CP/M \({ }^{\text {m }}\), UCSD PASCAL \({ }^{\text {m }}\) CAPABILITY Avaliable at your local APPLE Dealer: \(\$ 400\).

SORRENTO VALLEY ASSOCIATES 11722 SORAENTO VALLEY AD. SAN DIEGO. CA g221

Circle 347 on inquiry card.

\section*{MAXIMUM VALUE \\ FOR YOUR DOLLAR}

NORTH STAR COMPUTER PRODUCTS

DOUBLE DENSITY
KIT ASM
HRZ-1-32K-D \(\$ 1590 . \$ 1850\).
HRZ-2-32K-D
1910. 2200.

MDS-A-D
EXTRA DRIVE
QUAD DENSITY
HRZ-1-32K-Q
550. 640.

HRZ-2-32K-Q
MDS-A-Q
EXTRA DRIVE
330.

KIT ASM

All HORIZONS now come standard with 3 ports and all edge connectors and minimum 32 K memory.
R \(\triangle\) DRS. BI SCS
RALDAS.
KIT ASM
\(\$ 300\). RPB-A FPB-A
VERBATIM DISCS, BOX OF \(10 \ldots 529\). PP We will try to beal any deal. Call:
A.E.I.

3851 HACKETT AVE.
LONG BEACH, CALIF. 90808 (213) 421-4815

\section*{USE OUR BUSINESS SOFTWARE for} GREATER PROFIT through MORE EFFICIENT OPERATION
\(\because\) GENERAL LEDGER
\(\therefore\) ACCOUNTS PAYABLE
\(\therefore\) ACCOUNTS RECEIVABLE
\(\therefore\) ORDER ENTRY
\(\therefore\) INVENTORY CONTROL
This totally integrated, single entry system is easy to learn and easy tc use because it is "Menu" oriented.

The software requires a minimum syster consisting of 48 K menory, CRT, Printer, dual floppy disc. It is ready to run on the following systems :
\(\therefore\) DEC PDP-11
\(\therefore\) AM - 100
\(\because\) PASCAL MICROENGINE
\(\therefore\) CIT PENSEE
We are working on the following systems and feel we can install our software on them within 30 days ARO: Data General, General Automation, LSI \(4 / 10,4 / 30\), Some 280 Systems

Price for the total system is \$2995.00. Order a user manual (\$25.00 plus \(\$ 2.00\) shipping \& handling) or the Demo Floppy \& Manual (\(\$ 65.00\) plus \(\$ 2.50\) shipping \& handling) to reserve this price for you beyond our expected price increase Nov 1, 1979.

TO ORDER USE OUR TOLL FREE NLRBER
1-800-437-4774
VISA AND MASTER CHARGE WELCOME OR SEND CHECK OR MONEY ORDER TO
P. S. INC, 619 NP AVE, BCX 2017 L FARCO, ND 58107
(PH) 701/235-8145

DEALER INQUIRIES INVITED

\section*{- BASIC, From the Ground Up by David E. Simon}

This book is a good introduction to computing and the BASIC language for anyone, regardless of their background. David Simon assumes you have no previous programming experience and no familiarity with computing concepts. From the ground up, he builds on the fundamental concepts and teaches each part of the BASIC language in turn. Examples illuminate each step and six fully solved problems are included. This is the "beginner's book" in BASIC we at BITS have been looking for. 222 pages \(\$ 8.95\)

THE BASIC WORKBOOK - CREATIVE TECHNIQUES FOR BEGINNING PROGRAMMERS by Kenneth Schoman, Jr.
This book contains lecture notes, exercises and problems for people learning BASIC. In a hands-on workbook style, Kenneth Schoman covers statements, loops, functions, variables, input/output and strings. Simulation and plotting are introduced. The examples and problems are runnable in virtually any version of BASIC. If you're learning BASIC, complement your studies with this book!
\(117 \mathrm{pp} . \$ 5.95\)
basic with style: programming proverbs by Paul Nagin and Henry Ledgard.
"Programmers can and should write programs that work the first time." This statement may sound idealistic to those accustomed to long hours of debugging. Yet, it's the theme of this book - a unique collection of "proverbs' or rules and guidelines for writing more accurate error-free programs. Newly rewritten, this book now emphasizes structured program ming and all examples are in BASIC.

134 pp. \(\$ 5.95\)

BASIC BASIC, 2nd EDITION by James S. Coan.
if you're not already familiar with BASIC, James Coan's Basic BASIC is one of the best ways to learn about this popular computer language. BASIC (which stands for Beginner's All-Purpose Symbolic Instruction Code) is easy to learn and easy to apply to many problems. Basic BASIC gives you step-by-step instructions for using a terminal, writing programs, using loops and lists, solving mathematical problems, understanding matrices and more. The book contains a wealth of illustrations and example programs, and is suitable for beginners on many different levels. It makes a fine reference for the experienced pro grammer, too.

256 pp. \$8.95.

ADVANCED BASIC by James S. Coan.
Advanced BASIC is the companion volume to James Coan's Basic BASIC. In this book you'll learn about some of the more advanced techniques for programming in BASIC, including string manipulation, the use of files, plotting on a terminal, simulation and games, advanced mathematical applications and more. Many useful algorithms are covered, including some clever sorting techniques designed to reduce program execution time. As with Basic BASIC there are many illustrative exam ple programs included. BASIC doesn't have to be basic with Advanced BASIC!

184 pp. \(\$ 8.95\)

BASIC AND THE PERSONAL COMPUTER by Dwyer/Critchfield.
A fascinating book covering many areas of interest to the personal computer user. After giving an in-depth course in BASIC, which can be covered in 8 hours, the book discusses microcomputer hardware, graphics, word processing, sorting, simulation and data structures. This is an easy to read text that is useful for the beginner and informative for the advanced user.
\(438 \mathrm{pp} \$ 12.95\)

THE LITTLE BOOK OF BASIC STYLE by John Nevison.
Structure, style, correctness, maintainability. Attributes of good programming are getting much attention, and well they should. When one considers what we invest in programs, their manageability and efficiency become very important. Here these concepts are explained, along with 19 rules and many examples in BASIC to help improve your programming style.
151.pp. \$5.95

SOME COMMON BASIC PROGRAMS by Lon Poole and Mary Borchers, published by Osborne and Associates.
At last, a single source for all those hard to find mathematics programs! Some Common BASIC Programs combines a diversity of practical algorithms in one book: matrix multiplication regression analysis, principal on a loan, integration by Simpson's rule, roots of equations, operations on two vectors, chi-square test, check writer, geometric mean and variation coordinate conversion and a function plotting algorithm. These are just some of the many programs included. For only \(\$ 8.50\) you can buy the kind of programs previously available only as part of software math package systems for large scale computers. All the programs are written in a restricted BASIC suitable for most microcomputer BASIC packages, and have been tested and debugged by the authors.

192 pp. \(\$ 9.50\)

BASIC WITH BUSINESS APPLICATIONS by Richard W. Lott
This book focuses on the BASIC language and its application to specific business problems. The book is divided into two sections. Part one introduces the BASIC language and the concept of logical flowcharting. Part two presents problems and possible solutions. Topics include: interest rate calculation, break-even analysis, loan rates, and depreciation. Exercises a the end of each chapter give a greater understanding of BASIC by actual programming. This book is a great aid to the beginner wanting to learn BASIC without having a technical or scientific background.

284 pp. \(\$ 11.95\)

MORE BASIC COMPUTER GAMES edited by David H. Ahl.
Here are 84 new games from David Ahland Creative Computing! Punch in Minotaur and battle with the beast; try Chuck-aluck but bring your money; key in Eliza and unload your troubled mind to the doctor. They're all great fun. After all, what are computers for?

185 pp. \(\$ 7.50\)
\(\square\) GAME PLAYING WITH BASIC, by Donald D. Spencer.
You'll enjoy the challenge of competing with your own computer. Games described include: \(3 \cdot \mathrm{DTic}\) Tac Toe, Nim, Roulette, Slot Machines, Magic Squares, Keno, Morra, Baccarat, Knight's Magic Tour, and many others. The style is non-technical, and each section gives complete rules for the game, how it works, illustrative flowcharts, and example outputs for each program The last chapter contains 26 games for reader solution, including Hexapawn and Poker Dice.

166 pp. \(\$ 7.95\)
U.S.: \$.75/book to a max, of \$3 Foreign: \$1/book to a max. of \(\$ 4\) (surface) UPS (U.S.only): \(\$ 1.75\) 1st book, \(\$.75\) each additional book. to a max. of \(\$ 4\)

Mon-Fri 9-5

\section*{SORCERER*SOFTWARE!}

All programs on cassette. Only 8k of memory required. FASTGAMMON \({ }^{\text {4K }}\) by Bob Christiansen, Backgammon players love this machine language program that provides a fast, skillful opponent. Eight-page instruction manual includes rules of backgammon.
\(\$ 19.95\)
PLOT by Vic Tolomei. Now Apple owners will be envious of how easy you can get good graphics on your SORCERER. PLOT includes both a super high resolution mode and a quick low resolution mode. Both are accessible from your BASIC programs using simple come mands. Hi-res \& lo-res examples included on tape.
SHAPE MAKER \({ }^{\text {w }}\) by Don Ursem. Construct special characters and fancy shapes with ease using this on-screen character editor. Detailed 12-page instruction booklet includes example applications.
DEBUG by Bob Pierce. Debug machine language programs by stepping through one instruction at a time. Relocatable. Several display options. Multiple break points. Modify memory and registers.

Modify
\(\$ 14.95\)
2-80 DISASSEMBLER by Vic Tolomei. Decode machine language programs, including SORCERER's monitor and ROM-PAC's, with this Z-80 Disassembler written in BASIC. Prints out machine code, Zilog mnemonics, and ASCII.
MAGIC MAZE \({ }^{\text {u }}\) by Vic Tolomei. A challenging maze game. Ten levels of play. Holding your lantern, you wander through a maze trying to stay on the right path and avoid pitfalls. Automatic scoring tells you how good a pathfinder you are.
\(\$ 11.95\)
SOFTW ARE INTERNALS MANUAL FOR THE SORCERER byVicT olomei.A must for anyone writing software for the SORCERER. Seven chapters: Intro to Machine Language, Devices \& Ports. The Monitor, Cassette Interface, BASC structure, Video \& Graphics, The Keyboard. Indexed. Includes diagrams and software routines. 64 pages.
\(\$ 14.95\)

QUALTY SOFTWARE
6660 Reseda Blvd., Suite 103, Reseda, CA. 91335 Telephone 24 hours, seven days a week: (213) 344-6599

WHERE TO GET IT: Ask your nearest Sorcerer dealer to see Quality Software's Sorcerer programs. Or, if you preter, you may order directly from us. MasterCharge and Visa cardhoiders may telephone their orders and we will deduct\$1 from orders over\$19 to compensate for phone charges. Or mail your order to the address above. California residents add \(6 \%\) sales tax. Orders outside North America add \(\$ 5\) for registered airmail, pay in U.S. currency. " The name "SORCERER" has been trademarked by Exidy, Inc.

This program permits composing and printing letters, flyers, advertisements, manuscripts, etc., using the COMMODORE PET and a printer.

Printing directives include line length, line spacing, left margin, centering and skip. Edit commands allow you to insert lines, delete lines, move lines and paragraphs, change strings, save files onto and load files from cassette (can be modified for disk), move up, move down, print and type.

Added features for the \(16 / 32 \mathrm{~K}\) version include string search for editing, keyboard entry during printing for letter salutations, justification, multiple printing and more.

A thirty page instruction manual is included.
The CmC Word Processor Program for the 8K PET is \(\$ 29.50\). The \(16 / 32 \mathrm{~K}\) version is \(\$ 39.50\).

Order direct or contact your local computer store.
VISA AND M/G ACCEPTED - SEND ACCOUNT NUMBER, EXPIRATION DATE AND SIGN ORDER.
ADD S 1 PER ORDER FOR SHIPPING \& HANDLING - FOREIGN ORDERS ADO TO\% FOR AIR POSTAGE

\section*{CONNECTICUT microCOMPUTER, Inc.}

150 POCONO ROAD
BROOKFIELD, CONNECTICUT 06804
TEL: (203) 775-4595 TWX: 710-456-0052

\section*{PET Word Processor}

64K BYTE EXPANDABLE RAM
DYNAMIC RAM WITH ON BOARD TRANSPAREN REFRESH GUARANTEED TO OPERATE IN NORTHSTAR, CROMEMCO. VECTOR GRAPHICS SOL. ANO OTHER 8080 OR 2-80 BASED S 100 SYSTEMS * 4MHZ Z-80 WITHNO WAITSTATES * SELECTABLE AND DESELECTABLE IN 4K INGREMENTS ON AK AODRESS BOUNDARIES - LOW POWER-8 WATTS MAXIMUM
- 200NSEC4116 RAMS
- FULL OOCUMENTATION
- ASSEMBLED AND TESTED bOAROS ARE GUARANTEED FOR ONE YEAR AND PURCHASE PRICEISFULLYREFUNDABLE IF BOARD IS RETURNED UNDAMAGED WITHIN 14 DAYS

* WI SOLID FRONT PANEL \(\$ 239.00\)
- W/ CUTOUTS FOR 2 NINJ-FLOPPIES \(\$ 239.00\)
* 30 AMP POWER SUPPLY \(\$ 119.00\)

VISTA U-200 MINI-FLOPPY SYSTEM
* S 100 DOUBLE DENSITY CONTROLLER
- 204 KBYTE CAPACITY FLOPPY DISK DRIVE WITH CASE \& POWER SUPPL Y
* MODIFIED CPM OPERATING SYSTEM WITH EXTENDED BASIC
* EXTRA ORIVE, CASE \& POWER SUPPLY \(\$ 395.00\)

\section*{IGK X 1 DYNAMIC RAM}

THE MK4116-3 IS A 16.384 BIT HIGH SPEED NMOS. DYNAMIC RAM. THEY ARE EOUIVALENT TO THE MOSTEK. TEXAS INSTRUMENTS, OR MOTOROLA 41t6-3
* 200 NSEC ACCESS TIME. 375 NSEC CYCLE TIME.
- 16 PIN TTL COMPATIBL
* BURNED IN AND FULLY TESTED.
- PARTS REPLACEMENT GUARANTEED FOR ONE YEAR.

S8.50 EACH IN QUANTITIES OF 8
BETA COMPUTER DEVICES P.O. BOX.3465
oRANEE, CALIFORNIA 9266
(714) 683-7289

CALIF RESIDENTS PLEASE ADO 6\% SALES TAX MASTERCHARGE \& VISA ACCEPTED. PLEAS: ALLOW 14 DAYS FOR CHECKS TO CLEAR BANK. PHONE ORDERS WELCOME

KIM/SYM/AIM-65-32K EXPANDABLE RAM DYNAMIC RAM WITHONBOARDTRANSPARANT REFRESH THAT IS COMPATIBLE WITH KIM SYM/AIM-65 AND OTHER 6502 BASED MICROCOMPUTERS.
* PLUG COMPATIBLE WITH KIMISYMIAIM-65 MAY BECONNECTEDTOPETUSINGADAPTOR CABLE. SS \(44-E\) BUS EDGE CONNECTOR.
- USES +5V ONLY (SUPPLLED FROM HOST COMPUTER BUS). 4 WATTS MAXIMUM
* BOARO ADDRESSABLE IN 4K BYIE BLOCKS WHICH CAN BE INDEPENDENTLY PLACED ON AK BYTE BOUNDARIES ANYWHERE IN A 64 K BYIE ADDRESS SPACE
* BUS BUFFERED WITH 1 LS TTL LOAD.
- 200NSEC 4116 RAMS.
* FUlL DOCUMENTATION
- ASSEMBLED AND TESTED BOARDS ARE GUARANTEED FOR ONE YEAR AND PURCHASE PRICE IS FULLY REFUNDABLEIF BOARD IS REIURNED UNDAMAGED WITHIN 14 DAYS.

\section*{PROCRAMMINC THE 28000}

By Richard Mateosian, 320 pp., Ref. C281, \$14.95
A complete and detailed introduction to the 28000 and its specific programming techniques from basic concepts to multimicro synchronization.

Available at the end of December.
PROcRA MMING THE 8086 Available soon

\section*{TO ORDER}
y Phone: (415) 848-8233. Visc, MC, Americon Express.
By Mall: Indicate quansily desired. Include poyment:
Shipping:Add \(\$ 1.50\) per book (UPS), or 75 c (4ih class - allow 4 weeks delivery). rax: In California, add lax.

\title{
Some Notes on Modular Assembly Programming
}
\begin{tabular}{c}
James Lewis \\
Micro Logic Corp \\
100 Second St\#\#13 \\
Hackensack NJ 07602 \\
\hline
\end{tabular}

Despite the dominance of BASIC over machine code (eg: assembly language) in the programming of personal microcomputers, a significant number of programs are written in machine code, and for many good reasons: machine programs usually run much faster machine programs usually run much faster
than BASIC programs; machine coded programs do not require the overhead in memory space taken up by a BASIC interpreter; they often take less space than equivalent BASIC programs; and a BASIC interpreter may not be available on a given system.

The purpose here is not to further compare BASIC with machine code but rather

\author{
James Lewis \\ Micro Logic Corp \\ 100 Second St \#213 \\ Hackensack NJ 07602
}

James Lewis is president of Micro Logic Corp, a microcomputer application firm involved in microprocessor applications ranging from LASER beam controllers to office systems.
to discuss a good way to use machine code, given that it has been selected as the language of choice. The method to be described focuses on an important aspect of machine coding: the use of subroutines.

\section*{Example}

The technique is best explained and illustrated with an example. Although 8080 code will be used (and regardless of whether or not the reader is familiar with 8080 machine code), the overall philosophy applies to other machines. The problem is to write a program that generates pseudorandom notes of music through a DAC (digital to analog converter). Incidentally, the example was implemented on a TRS-80 using a TRS-80DAC board.

\section*{The Algorithm}

The algorithm chosen to produce pseudorandom music is as follows:
1. Generate a pseudorandom number;
2. Initialize a cycle count to 32 ;
3. Initialize note value of 16 mV ;
4. Count down from the pseudorandom number to 0 to produce a delay;
5. Output the voltage;
6. Multiply the voltage by -1 ;
7. Decrement the cycle count and go to 4 if not 0 ;
8. Return to the monitor if the shift key is down;
9. Otherwise go to 1 .

This will produce random notes, each consisting of 32 square wave transitions and a voltage swing of +16 mV to -16 mV until the shift key is pressed to abort the program.

\title{
If you need to learn assembly language read what the critics say about this book
}
> 'This book is the best and most lucid introduction to Z80 programming that we have seen."

Digital Design
'Practical Micromputer Programming is a very powerful series. It is well written and full of essential techniques for the assembly language programmer."

Byte
'This is an EXCELLENT book... This book is a must for all Z80 users. . .dirt cheap for such great software and documentation."

\section*{CACHE}

In 18 chapters and 4 appendices PRACTICAL MICROCOMPUTER
PROGRAMMING: THE Z80 supplies EVERYTHING you need to learn to program the Z 80 at assembly level. Essential assembly language techniques are explained in clear English and documented with more than 100 working example programs. The full SOURCE text of a conversational assembler and debugging monitor are given in appendices. This software will run on any Z80 based machine. Object code on either paper tape or TRS-80 Level II cassette is sent FREE when the coupon from the book is returned.
Don't pass up this unique opportunity to add this valuable programming skill to your reportoire.
\(6^{\prime \prime} \times 9^{\prime \prime}\), 481 pages, hardcover, \(\$ 32.95\)
TRS-80 is a trademark of Tandy Corb.

Send check or money order to:
Northern Technology Books
Box 62
Evanston, IL 60204
\begin{tabular}{|c|}
\hline Name \\
\hline Address \\
\hline City__State___Zip \\
\hline U.S. funds only. Illinois residents add \(5 \%\) sales tax. \\
\hline No COD's please. \\
\hline
\end{tabular}

\section*{FINALLY! SECURITY FOR CP/M FILES! With LOCKER \({ }^{\odot}\) and CSPOOL! \({ }^{\circ}\)}

\section*{LOCKER \({ }^{\text {© }}\)}

Rewrites disk files in scrambled format with a 64 character "lock code". Added parity for Self-Correcting!
CSPOOL®
Transfers CP/M files to/from cassette tape!
Mail to: INFINITY MICRO
P.O. BOX 4627

SANTA CLARA, CA 95050
(408) 988-1867

\section*{LOCKER @ \$38}
- CSPOOL for Sorcerer @ \$38
\(\square\) CSPOOL for Sol/CUTS @ \$38
Please specify disk as CP/M on \(8^{\prime \prime}\) IBM standard or \(51 / 4^{\prime \prime}\) Micropolis.
NAME \(\qquad\)
ADDRESS \(\qquad\)
CITY \(\qquad\) STATE \(\qquad\) \(71 P\)

Copyright (c) 1979 Infinity Micro.

A powerful business language designed to run on Smoke Signal Broadcasting's 6800 based microcomputer line which offers the following capabilities:
- Handles all aspects of program development, from initial input of source programs, through compilation and testing, to the operation of a complete business system.
- Multi-user BOS (Business Operating System) allows for multiple users to interact with the computer at the same time.
- An interactive text editor, compiler, and linker and librarian.
- A wide range of application products including accounting sys tems, file management and report generating.

Smoke Signal Broadcasting's 'Chiefs' once again providing you with the high quality, reliable software for use on the increasingly pop ular Chieftain Series of 6800 based microcomputer.

Software licenses available to qualified dealers and software houses. Contact Jim Allday for further information

We're the "CHIEF" in 6800 products software SMOKE STOXAK.

BROADCASTHAG
31336 Via Colinas, Westlake Village, CA 91361, (213) 889-9340

\section*{Nonmodular Code}

Listing 1 is the 8080 implementation of the above algorithm without using the modular machine code practice. For simplicity, the trivial algorithm of adding an arbitrary number like 187 to a running total is used to produce pseudorandom numbers.

The code first initializes some parameters. It then generates a simple pseudorandom number. After setting up a cycle count, it sets up a pseudorandom delay count and then executes the pseudorandom delay. It then outputs and inverts the note value, decrements the count, and loops if necessary. Next it checks for a user abort with the shift key and either loops or goes to the monitor.

This style of coding has many disadvantages over the modular style given in listing 2. It is relatively hard to follow, hard to explain, and hard to change. Compare it with the modular approach for yourself.

Listing 2: Modular code for pseudorandom tone generator. This form is better than the nonmodular form because each of the subroutines can be accessed separately and debugged more easily.
\begin{tabular}{|c|c|c|c|}
\hline START & CALL CALL CALL JMP & RANDOM NOTE ABORT START & A = RANDOM NUMBER GENERATE NOTE USING (A) AS FREQUENCY ABORT TO MONITOR IF SHIFT KEY DOWN LOOP FOR NEXT NOTE \\
\hline \multirow[t]{4}{*}{RANDOM} & LDA & RANUM & A = OLD RANDOM NUMBER \\
\hline & ADI & 187 & A = NEW RANDOM NUMBER \\
\hline & STA & RANUM & SAVE NEW RANDOM NUMBER \\
\hline & RET & & RETURN TO CALLING PROGRAM \\
\hline RANUM & DATA & 1 & INITIAL RANDOM NUMBER \\
\hline \multirow[t]{2}{*}{NOTE} & PUSH & B & SAVE B REGISTER VALUE \\
\hline & MVI & B,32 & B \(=32\) FOR CYCLE COUNT \\
\hline \multirow[t]{6}{*}{LOOPN} & CALL & DELAY & DELAY ACCORDING TO (A) REGISTER \\
\hline & CALL & TOGGLE & FLIP DAC FOR SQUARE WAVE \\
\hline & DCR & & DECREMENT CYCLE COUNT \\
\hline & JNZ & LOOPN & LOOP IF NOT 0 \\
\hline & POP & & RESTORE B REGISTER VALUE \\
\hline & RET & & RETURN \({ }^{\text {a }}\) \\
\hline \multirow[t]{5}{*}{DELAY
LOOPD} & PUSH & PSW & SAVE THE (A) REGISTER \\
\hline & DCR & A & DECREMENT (A) \\
\hline & JNZ & LOOPD & LOOP IF NOT 0 \\
\hline & POP & PSW & RESTORE THE (A) REGISTER \\
\hline & RET & & \\
\hline \multirow[t]{8}{*}{toggle} & PUSH & PSW & SAVE THE (A) REGISTER \\
\hline & LDA & voltage & A = CURRENT VOLTAGE \\
\hline & CMA & & MULTIPLY BY - 1 BY TAKING \\
\hline & INR & & THE 2'S COMPLEMENT \\
\hline & STA & Voltage & SAVE NEW VOLTAGE \\
\hline & OUT & DPORT & OUTPUT VOLTAGE TO DAC \\
\hline & POP & PSW & \\
\hline & RET & & GO BACK \\
\hline voltage & DATA & 16 & INITIAL VOLTAGE VALUE \\
\hline \multirow[t]{4}{*}{ABORT} & LDA & SHKEY & A = VALUE OF SHIFT KEY \\
\hline & ORA & & TESt VALUE \\
\hline & JNZ & MONITOR & GO TO MONITOR IF PRESSED \\
\hline & RET & & ELSE RETURN \\
\hline
\end{tabular}

\section*{The Modular Code}

We now show a different approach to the coding of the same program. Even though the code that generates the pseudorandom number is only three lines, we will make a subroutine out of it called RANDOM. We will also transform the 2 line DLY loop into a subroutine called DELAY and create a subroutine called TOGGLE to invert the note value. A subroutine can also be set up to generate a note given a delay value called NOTE, which will call DELAY. Lastly we create a routine to check for a shift key abort called ABORT.

The result of modularizing the program in this way yields several advantages. Each of the subroutines is easily understood because of its simplicity, and will be useful, without changes, in more complex music synthesis programs and in unrelated programs. The code is easier to debug and modify. To be fair, it should be pointed out that the modular code in this case is longer and a bit slower. However these disadvantages are of little concern in this case; in fact, in more complex programs, the modular approach usually produces shorter code than the nonmodular approach. Lastly, an important advantage of the modular style is a simplified main routine.

The main routine, START, is significantly easier to understand and modify than the original nonmodular version. Of course we still have to write the subroutines, but each one is so small that it will be simple to code.

The RANDOM routine is simple and, since it is in modular form rather than part of some nonmodular code, it can be used by other programs or extensions of the music program given here. (Actually it is a poor pseudorandom number generator, but the point of modularization still applies.)

The NOTE routine generates a note with frequency determined by the value of \(A\). (Actually, A gives the period, but everything is random, anyway.) The NOTE routine uses both the TOGGLE and DELAY subroutines.

Although the NOTE routine is not completely general (eg: cycle count is fixed), it can be used in programs other than the random note generator. The DELAY routine which NOTE calls is also straightforward. It is applicable to numerous situations wherever a short variable delay is needed. The next routine toggles the note value and outputs a voltage to produce the square wave. Lastly, ABORT finishes the program. This completes the modular implementation of the pseudorandom note generator program.

\title{
BITS PROGR
}

BITS

\section*{FOR YOU YOUR WIFE YOUR CHILD YOUR HOME YOUR SCHOOL YOUR BUSINESS}

A Computer System Both Practical and Affordable!
Many uses for your computer, ■ Word Processing accounting Bookkeeping - Games il Personal Records m Menu Planning EducationalDevelopment - Tax Preparation \(\square\) Homework, etc.

BYTE SHOP EAST offers a wide selection of hardware to meet your specific needs; SORCERER, PET, APPLE, NORTH STAR, IMSAI, DIGITAL, and many, many others. BYTE SHOP EASThas a complete library of books and magazines to meet your needs.
Come in to our computer stores for a FREE demonstration!

Smoke Signal Broadcasting announces...

\section*{aUto CLERK}

A file maintenance and report generation system designed to run on Smoke Signal Broadcasting's Chieftain Series of microcomputers with COBOL and BOS (Business Operating Systems).
- Requires no computer experience and no special training in order to automatically handle filing problems and reporting requirements.
- Requested information is displayed immediately, at computer speed, not filing cabinet speed.
- The user defines desired reports and the information they are to contain. Then the reports can be produced at any time.
- Stored information of general interest can be made readily accessible. Confidential information can be kept secret.
- All your information is in one place, the microcomputer. The small size means the system can reside at any convenient place in the office.
Let Smoke Signal Broadcasting, the 'experts', supply you with further information on AUTO CLERK, or COBOL, or BASIC, or FORTRAN.
Software licenses available to qualified dealers and software houses. Contact Jim Allday for further information.

We're the "CHIEF" in 6800 products software SMOKE STGNAL

BROADCASTIMf
31336 Via Colinas, Westlake Village, CA 91361, (213) 889-9340

\section*{KEYED FILE ACCESS}

\section*{Create Interactive Systems In Hours With--}
- MULTIPLE KEY INDEXING
- OPTIMIZED RANDOM ACCESS
- SUPER FAST SEQUENTIAL ACCESS
- duplicate key values allowed
- ANY NUMBER OF DATA FILES SUPPORTED
- COMPLETE REAL TIME INSERTION AND DELETION CAPABILITIES

\title{
FAIR COM \\ 2606 Johnson Drive \\ Columbia, Mo. 65201 \\ 314-445-3304
}

\author{
Making Micro's Work Like Maxi's
}

MICRO \(B+{ }^{T M}\) brings the state-of-the-art in file ac-cessing-the B TREE INDEX-to application programmers writing in CBASIC-II under CP/M * or derivative. The B TREE INDEX gives unparalled performance: fast insertion, retrieval, and deletion without the need to ever reorganize the index! Let Fair Com turn your micro on to B TREES.
Special introductory offer: Return this ad with your order and save \(\$ 50\). Offer good through December 15, 1979.

Available on \(\mathbf{8}^{\prime \prime}\) soft sectored disks
MICRO B+ \({ }^{\top M}\) in CBASIC-II source code, with manual and demonstration program...\$195**. Manual and demonstration disk in CBASIC-II intermediate code...\$25. Look for MICROSOFT and other versions soon.

Toorder, send check or money order. VISA and MASTERCHARGE welcomed, send card number, expira-
tion date and your signature.
"Trademark of Digital Research - 'Single CPU License

\section*{Method Comparison}

Note that the modular approach has generated several useful routines that can be used in either more complex music programs or even totally unrelated programs. This applies to every routine except the main routine, which is specific to the current application. Furthermore the main routine is easy to follow and hence modify. If one wanted to create, say, a melody generator, it would be a much easier task to do so with the subroutines than the nonmodular program. In some applications the increased size of the modular code would not be outweighed by the other advantages, but
in larger systems the modular approach usually generates less code. The modular version is also a little slower, but this is often of little concern.

\section*{Conclusion}

The technique of breaking a machine language program down into very small logical subroutines yields numerous advantages and few disadvantages. It takes some practice to learn how to do this effectively and to see the benefits firsthand, but it is well worth the initial added effort.■

\section*{GIVE YOUR APPLE VISION FDR CHRISTMAS!}

The DS-65 Digisectorm opens up a whole new world for your Apple II. Your computer can now be a part of the action, taking pictures to amuse your friends, watching your house while you're away, taking computer portraits . . . the applications abound! The DS-65 is a random access video digitizer. It converts a TV camera's output into digital information that your computer can process. The DS-65 features:
- High resolution: \(256 \times 256\) picture element scan
- Precision: 64 levels of grey scale
- Versatility: Accepts either interlaced (NTSC) or industrial video input
- Economy: A professional tool priced for the hobbyist

The DS-65 is an intelligent peripheral card with on-board software in 2708 EPROM. Check these software features:
- Full screen scans directly to Apple Hi-Res screen
- Easy random access digitizing by Basic programs
- Line-scan digitizing for reading charts or tracking objects
- Utility functions for clearing and copying the Hi-Res screen

Let your Apple see the world!
DS-65 Price: \(\$ 349.95\)
Advanced Video FSII Camera Price \(\$ 299.00\)
SPECIAL COMBINATION PRICE: \(\$ 599.00\)
THENTCRO

see your aeale.
Or for immediate delivery SEND CHECK OR MONEY ORDER TO:

HIRES GRAPHIC PRINTEA Print in Hires all the standard alphanumeric keyboard characters in addition to 6 user de ined characers. Will append to yours with 2 easy call statements (] 16k)" S 19.95
HIRES PLAYGROUND Load a picture or any Hires screen from tape or disk and then do text editing with any of the standard (J16k)* \(\$ 24.50\) THE FORECASTER II The Forecaster II does a linear regression trend analysis on
vour data and automatically labels the Hires graph screen for easy reading
(J \(16 k\))........................... 517 DUAL RACE Dual Race is a very exciting ast paced and challenging auto race game for two players (\(>16 \mathrm{k}\)) ... \(\$ 14.95\) MAILING LIST This versatile program has many features such as alphanumeric sort of any field. vertical spacing adjustment. printer inter rupt for label adjustment. search any field and print labels. and much more. (J 32 k)* \(\$ 24.95\) MULTIPLE REGRESSION ANALYSIS This program may be used in bus ess. education. or in anv field where tistorical data s used to predict future events. Includ the correlation malrix. the inveri matrix, the sum. mean. standard dev tuon and much more. (J 16k)* .. \(\$ 19\) TURF ANALYSIS Take the guesswork i of handicapping with this new and ea way to handicap horse racing on APPLE II. This program provides incre bly accurate predictions through the \(L\)

*Requires an Applesolt rom card

MATRIX INVERT This program will quickly find the inverse and determinant to a symmetrical matrix or solve a system of symmetrical linear equations. (116 k\()^{*}\)

THE \(P\) ER With the APPIE II this pro gram • allow you to easlly plot pro gram allow you to easily plot equations in righ Resolution Graphics in pus MANDALA SUPAEME You can 12.96 MANDALA SUPREME You can now create artistic objects with the APPLE || similar to the popular Double Bessel Function within minutes. (716 k\()^{*}\). \(\$ 14.95\) SOLD RACE Solo Race is a very exciting and challenging Low Resolution auto ace game where you drive a race car over curvy roads and around obstacles (\(>16 \mathrm{k}\)) is a small library Race Maze. Mine Field. Canyon Bomber Music Machine and Sound. (\(>16 \mathrm{k}\)) \(\$ 9.95\)
\({ }^{3}\) RO FOOTBALL Never betore has here been a program that can redict such unbelievably accu ate pointspreads with the APLE I. You may predict any Jame withen seconds from data aved on casselte or disk. The lata file will instantly give you a complete rundown of the season's activity. Each projram includes a complete prior season data file. (J 22 k\()^{*}\) Also lvailable in TRS BO \$ig. 95

COLLEGE FDOTBALL Similar to the PRO F00TBALL program. This program conains over 78 major college football teams and a complete prior season data
file. \((\beth 35 k)^{*} \ldots \ldots \$ 19.95\)

\section*{2612 Artesia Blvd., Suite B-1 Javelin Redondo Beach, CA 90278 Monitors (213) 374-4471}

\section*{the ULTIMATE in CHEAP VIDEO}

\section*{BOOK \& KIT ONLY \$42.95}

Video"concept allows almost unlimited options, including:
* Scrolling. Full performance cursor.
* Line/Character formats of 16/32, 24/80, 32/64.... or almost anything.
* Graphics -up to 256 X 256 B\&W; \(96 \times 128\) COLOR (requires low-cost option modules)
* Works with 6502, 6800 and other micros.

SPECIAL OFFER: Buy the Kit (upper case alphanumeric option included) \& get the Book at \(1 / 2\) price.
fina electromics. dept 11 -b. 1020 w. wilshire blvo. oklahoma city. ok 73116
I'm Sold, PLEASE RUSH.....
() SFIND FREE CATALOG
() TVT-65/8 Kit \& CheapVideo Cookbook- \(\$ 42.95\) (enclosed)
() TVT \(\cdot 65 / 8\) Kit only (book required for assembly) \(\$ 39.95\)

\section*{name:}
address:
city: \(\qquad\) state: \(\qquad\) zip:
- \({ }^{2}\).

Smeke Signa! Broadcasting announces... BUSIMESS ACCOUNTS RECEIVABLE and INUOICE EMTRY SYSTEM

In on-line up-dating and reporting system which runs on Smake Signal's Random DOS with 48K bytes and 500K bytes of disc itorage which provide the following capabilities:
- Direct up-dating of account, invoice and payment information so that all changes are applied as entered.
- Audit records generated when account balance data is modified or an account is deleted.
- Invaice processing is used as the "front-end processar" for the accounts receivable system.
- Open invoices maintained in the system until payment is made.
- Billing information can either be printed or viewed on the CRT.
- Reports can be sorted by: account item number, account number, name, or zip code. Within each sequence, high and low ranges may be specified for each report.
Smoke Signal Broadcasting's Chieftain Series of 6800 based microcomputers has established a reputation of high quality, reliable equipment. This software package is designed to further enhance this reputation.
Software licenses available to qualified dealers and software houses. Contact Jim Allday for further information.

We're the "CHIEF" in 6800 products soffware SMOKL SIGNAL

BROADCASTHEC
CA 91361, (213) 889-9340

\title{
Even Oueve
}

\begin{abstract}
insorder to gain optimum cowerage of your organtzation's computer conferences, seminars, workshops, courses, etc, notice should reach our office at least three months in advance of the date of the event. Entries should be sent to: Event Queue, BYTE Publications, 70 Main St, Peterborough NH 03458. Each month we publish the current contents of the queue for the month of the cover date and the two following calendar months. Thus a given event may appear as many as three times in this section if it is sent to us far enough in advance.
\end{abstract}

\section*{December}

WPI Programs, WPI is holding two-day courses in management skills for engineering and research and design supervisors; managing under pressure; energy conservation management;and management planning, scheduling and control.

For more information, contact Worcester Polytechnic Institute, Worcester MA 01609.

\section*{YOU THINK YOU'VE SEEN WORD PROCESSING SOFTWARE? \\ the MAGIC WAND word Processing}

System offers you the best features of any system in the micro market

\author{
FEATURES INCLUDE:
}

Full-screen text editor
Simple, control key operation
Edit programs as well as text Assemble, compile or run programs without modification
Files larger than memory
Files up to 256 K
Library files
Merge part or all of one file with another
Spool printing
Print a file while editing another
Easy page formatting
Simple commands set margins, page
length, etc.
Override commands at run-time Give any command from the keyboard as well as in file
Variable pitch control Change pitch in mid-line, even mid-word
Up to 128 user-defined variables String, numeric or dollar format
Form letter generation from external data files

Compatible with both sequential and fixed-record files
Conditional commands
Any command may be conditional
Print to disk and/or printer
Save all or part of output on disk
Switch from specialty printer to CP/M
list device
Print the same file on either specialty or standard printer

\section*{EASE OF OPERATION}

With all its power, the MAGIC WAND is remarkably easy to use. This is no accident. The command structure is designed to be flexible and logical so that you can perform basic functions with a minimum of commands.

We have included in the manual a step-by-step instructional program, for the person who has never used a word-processor before. The trainee uses sample files from the system disk and compares his work to simulated screens and printouts.

In addition to the lessons, the manual has a complete documentation of the command structure, special notes for programmers, an introduction to CP/M for non-programmers and a glossary. The manual is typeset, rather than typewritten, for greater legibility.

We have written the manual in nontechnical English, because we want you to read it. We don't overload you with a bunch of jargon that could confuse even a PhD in Computer Sciences.

We send out newsletters so that users of the MAGIC WAND can learn special applications of the print commands. For example, we might show you how to create a mailing list or set up an index for a file.

In short, we've done everything we can to make things easy for you. Because the best software in the world is just a bunch of code if you can't use it.

For more information, call or write:
small business applications, inc.
3220 Louisiana • Suite 205 • Houston, Texas .77006 • 713-528-5158

December
Computer Management in the 80s. Computer Power Management Corp, POB 1403, Rockville MD 20850, is giving one- and two-day seminars on computer mangement for executives. The courses cover data processing, word processing and printing, the role of data communications in data processing, and planning and supervising automated facilities and operations. The courses will be held in major cities in the US.

\section*{December}

Yourdon Seminars. Yourdon Inc, 1133 Avenue of the Americas, New York NY 10036, is offering a series of seminars on software engineering, structure design and programming for microprocessors, data base modeling and design, programming in COBOL, and data base administration, throughout cities in the US during December.

December
Datapro Seminars, Datapro Research Corp, 1805 Underwood Blvd, Delran NJ 08075, is holding various seminars covering such topics as data communication, distributed systems, data processing, word processing, minicomputers and small business computers, and more. The seminars will be held in major cities around the US. They are two-day courses.

December 2-6
MUSE North American Annual Meeting, Bahia Mar Hotel and Yachting Center, Ft Lauderdale FL. This conference of Modcomp Users Exchange (MUSE) will feature technical sessions, workshops and user/ manufacturer interface sessions on the use of Modcomp computers and their related software. Contact Kathy Black, MUSE, 4620 W Commercial Blvd, Suite 6C, Tamarac FL 33319.

December 3-5
Winter Simulation Conference, Holiday Inn, Em-

\title{
68 MICRO JOURNAL \\ \\ Months ahead of all others with
} \\ \\ Months ahead of all others with
}

Crunchers Corner－Bryant＊A Look at the SWTPC CT－82－Ferguson＊ 6800 Relative Branch Calculation（Hand）－ Berenbon＊Relative Calculator（Machine） －Heatherington＊Maillist（Disk）－Lilly＊ Modems－Schuman＊Semiconductor－ Part 2 －Kinzer＊Locate－Pigford＊A20 MA，Printer－SWTPC－Perdue＊AS－50 Monitor Board－Pentecost＊TSC Basic for 6800 －Shirk＊Plus Much－Much More！ 6800／09 articles \＆new products

Crunchers Corner－Bryant（A monthly programming tutorial）＊Flex \({ }^{\text {／w }}\) to BFD－Puckett＊Tiny Music－ Thompson＊Semiconductor，Part 1 －Kinzer＊Soup Up Your TVT－Pass＊Hints \＆Kinks－fixes（soft \＆hard）＊

Crunchers Corner－Bryant＊A Case for the Small DOS－Mauch ＊MF－68 Motor Fix－Sorrels＊ Transfer（FLEX 1 to 2 or 5）－ Womack＊ 6800 Delay－Beren－ bon＊Make Like a 6809 －Fein－ tuch＊Games（Basic）－Harmon ＊Boot（Flex－BFD）－Puckett＊ Freeze Display（SSB）－Johnson ＊Paper Tape Reader－Adams＊ FLEX \({ }^{\text {T }}\) Fixes and Much More！
 \(\begin{array}{lllll}7.8 & 6.4 & 2.7 & 2.2 & 19.1 \\ \text { ea．mo．}\end{array}\) Average cost for all four each month： \(\mathbf{5 5 . 8 8}\) （Based on advertised 1－year subscription price） 68 cost per month：\＄1．21
Thats Right！Much，Much More
for About

1／5 the Cost！
EFFECTIVE SEPT．1， 1979
1．Year \(\$ 14.50 \quad 2\) Years \(\$ 26.00\) ． 3 Years \(\$ 36.50\)
ーーーーーーーーーーーーーーーーーーーーー・•・ー・ OK，PLEASE ENTEA MY SUBSCRIPTION Bill My：Master Charge \(\square\)－VISA ：－
Card \(=\quad\) Exp．Date．\(\quad\) For \(\square 1\) Year \(\square 2\) Years \(\square 3\) Years Enclosed：\(\$\)

Nafte
Etreet
City＿＿＿＿＿＿＿＿＿＿＿＿＿Siate＿＿＿
My Computer Is： \(\square\)
68 MICRO JOURNAL 3018 Hamill Road HIXSON，TN 37343

FOREIGN ADD： \(\$ 9.50\) Per Yr．Surface \(\$ 29.00\) Per Yr．Air Mail

\section*{＾MORE 6800 ARTICLES THAN ALL OTHERS COMBINED＊}

\section*{\(Z_{S}-S Y S T E M S\)}

The \(\mathrm{ZS}_{\mathrm{S}}\)－SYSTEMS 64 K RAM board is designed to operate in any \(Z 80\) based microcom－ puter having S－100 bus．It uses 16 K dynamic RAM chips， \＆features：
－Board select
－Bank select
－Transparent on－board refresh
-2 or 4 MHz operation （w／no wait state）
－Memory disable

\section*{FLOPPY DISK CONTROLLER}

Hondles with no modificotion up to：
4 standard \(8^{n}\) drives
（Shugart or compatible）or
3 minidrives \(5^{\prime \prime}\)
Run with 2 or 4 MHz CPU

\section*{64K RAM BOARD}

Compatible with Cromemco and M／PM multiuser．Fully assembled，burned in，\＆ tested．Available from stock to 60 days
As low as \(\$ 500.00\) in quantities of 100

Price of one．．．．．．．．\(\$ 695.00\)
With 16K RAM．．．．．．\(\$ 359.00\) Plus shipping charges

Use CP／M Disk Operating System Using the 1771 LSI controller
Price of one ．．．．．．．．．．．．．．．．\(\$ 245.00\) PC board only．．．．．．．．．．．．．．．．\(\$ 35.00\)
barcadero, San Diego CA. This conference will feature papers and panel discussions on discrete and combined (discrete and continuous) simulations. Contact Professor Robert E Shannon, University of Alabama in Huntsville, School of Science and Engineering, POB 1247, Huntsville AL 35807.

December 3-5
Crime by Computer, San Francisco CA. The seminar will address the following topics of what is becoming a leading crime category: computer crime methods, changing nature of business crime, the computer criminal, vulnerability, security techniques, principles of safeguard, and the auditor's role and tools.

For more information, contact Infotech International Inc, 234 E Colorado Blvd, Pasadena CA 91101.

December 3-5
The Application of Computer Technology to Accounting Systems,
Washington DC. The theme of the conference is "Information Systems as a Management Tool for the Financial Executive." The conference is sponsored by the Association of Government Accountants (AGA). Contact Ken Burroughs, DBD Systems Inc, 1500 N Beauregard St, Alexandria VA 22311.

December 3-5 Implementing Cryptography in Data Processing and Communications Systems, New York NY. Going beyond an introduction to cryptographic systems, the seminar will stress implementation of the DES and address public key implementation considerations. Contact Ms Jansen, Cryptotech, 12 Station Rd,

Bellport NY 11713, (516) 286-2626.

\section*{December 3-5} COMDEX '79, MGM Grand Hotel, Las Vegas NV. This conference and exposition for third-party sellers of computer systems, word processing systems, peripherals, software packages, and media will focus on solutions to business problems normally encountered in structuring a successful dealership and the operational aspects of the dealership from both the supplier and customer's side. Contact The Interface
Group, 160 Speen St, Framingham MA 01701.

\section*{December 3-7}

Pascal Programming for Mini and Microcomputers, Holiday Inn, Palo Alto CA. This course covers a general approach to the use of high-
level languages in small computers, including an intensive course in Pascal programming, a preview of ADA (the evolving Department of Defense standard real-time language), and an introduction to structured programming techniques.

For additional information, contact the Institute for Advanced Professional Studies, 1 Gateway Ctr, Newton MA 02158.

December 4-6 Understanding and Using Computer Graphics, New York NY. Computer users in business or engineering firms are invited to this conference covering computer graphics, data processing, systems analysis and design, financial management and analysis, and more. Contact Frost and Sullivan, Dept C-2 106 Fulton St, New York NY 10038.

\title{
6800 SYSTEM SOFTWARE
} Unmatched - Field Proven - Documented - Industry Wide

SDOS \({ }^{\text {™ }}\)
A totally interrupt-driven (both disk and other peripherals) disk operating system, including type-ahead. Provides device independent byte addressable random files. Supports any mixture of disk drives up to 2.5 BILLION bytes per drive. Disk files can grow dynamically to match application needs. Automatic, overlapped read-ahead on sequential files and LRU sector buffer pooling on random-access files optimize disk !/0. System utilities allow operator file manipulation, disk initialization, backup with wildcard file selection, and disk structure repair facilities to handle the infrequent but unavoidable disasters that occur in the real world. Turn-key application systems can be easily built, coupled with SD Business Basic. 242 pages of documentation.

\section*{IDB}

A RAM or EPROM-based assembly language debugger. Provides single-step with register display, multiple real-time conditional breakpoints, memory dump, multiple data display and entry modes. Can be used to debug interrupt-driven code. 39 pages of documentation.
6800 Hardware supported:
Conrac Model 480 (AMI MDC) + ICOM floppy
WaveMate + Persci floppy (1771 + DMA)
Electronics Product Associates + ICOM floppy
Motorola EXORcisor + EXORdisk I or II
SWTP + mini or DMAF floppy (FLEX)
CMI 6800 + Winchester (1.6 M) + Calcomp floppy \((1771+\) DMA)
MSI \(6800+\) FD-8 mini-floppy or 10M cartridge disk
Mizar Labs + double density Micropolis drives (1791 + DMA)
SSB Chieftain-mini or 8 -inch floppy
Computer and Data Machines (England)

\section*{BUSINESS BASIC COMPILER}

A super fast application oriented BASIC. 10 digit BCD for values to 100 million dollars with pennies. Random access to variable size, variable content records. Long, meaningful variable names, formatted output, IF-THEN-ELSE with multiple statements per line, and error-trapping make this BASIC extremely powerful. Compiled code, automatic integer optimization, and fast floating point make applications written in SD Basic run faster than on virtually any other microcomputer, and protect the source code of the application. 104 pages of documentation.
EDIT
A powerful and easy to use text editor with change, delete, insert, and remove commands. Automatic display of text or context changes, macro facilities for complex or repetitive editing. 44 pages of documentation.

\section*{ASM}

A lovely 2 pass assembler with conditional assembly, long labels, symbol table dump and cross-reference, error cross-reference, extensive arithmetic and listing control. 103 pages of documentation.
Write for a free catalogue or contact the hardware manufacturer. All SD software comes with a 1 year warranty.
innovailon in sofiware

SOFTWARE DYNAMICS
2111 W. Crescent, Suite G
Anaheim, CA 92804
(714) \(635-4760\)

\section*{CP-80 COMPUTER CLOCK/CALENDAR}

\author{
A Real Time Saving Device For Only \(\$ 149.95\) + Shipping Charge
}

\footnotetext{
CP-80 FEATURES:
Exact time and date on all computer printouts - Time and date not affected by computer shutdown - Time and date set by software - Functions as an elapsed timer - Compatible with all standard parallel ports • Will maintain time and date on 115 V AC or optional standby power

\section*{SPECIFICATIONS:}

Attractive two tone blue and white cabinet \(\cdot 51 / 4 \times 2 \times 8 \mathrm{in} . \bullet 4\) year calendar - Optional standby power - Requires one input and output parallel port TTL compatible and \(115 \mathrm{VAC} \cdot 12\) or 24 hour format \(\cdot 50\) or 60 HZ operation • All software and diagrams included

TERMS
CHECK WITH ORDER • C.O.D. - VISA • MASTER CHARGE

1427 Agnes Street
Kansas City, Mo. 64127
816-483-1000
}

Smoke Signal Broadcasting announces...

\section*{AUTO INDEK}

A computerized automatic data storage and retrieval system designed to run on Smoke Signal Broadcasting's Chieftain Series of microcomputers with the COBDL and BDS (Business Operating System).
- Performs the same function as manual card index and file systems.
- Allows the non-computer specialist to input and edit text recards with a minimum of training.
- All records in storage can be searched for particular user defined characteristics, i.e., college graduates, EE degrees, specialist in computers living in Southern California, stock records, customer names, prospect lists, membership lists, etc.
- Instant, automatic access to file information.
- Increases office efficiency.
- Assures security of confidential information.

Another example of Smoke Signal Broadcasting's popular line of high quality business software.
Software licenses available to qualified dealers and software houses. Contact Jim Allday for further information.

> We're the "CHIEF" in 6800 products software SMOKE SIGNAL

> BROADCASTIAG \({ }^{\circ}\)
> 31336 Via Colinas, Westlake Village, CA 91361, (213) 889-9340

December 8-9
Data Processing for Business People, Cherry Hill Inn, Cherry Hill NJ. Management Information Corp presents this seminar to meet the needs of company management in understanding computers. The seminar includes basic concepts of data processing, alternatives (service bureaus, time-sharing), small business computer systems, program packages availability and selection, managing the computer system, and the future of data processing. Contact Management Information Corp, 140 Barclay Ctr, Cherry Hill NJ 08034.

December 10-11 and December 13-14 New York NY and Washington DC, respectively, New User Documentation Workshops. These twoday workshops will focus on how to write good data processing user-manuals with emphasis on analysis of specific user needs, planning
and outlining, effective writing, illustration and packaging of documentation. The program includes lectures on basic concepts followed by small group discussions.

Contact Progressive Communications Inc, The Alamo 310, 128 S Tejon St, Colorado Springs CO 80903.

December 10-11 Mini and Microcomputers in Control, Galt Ocean Mile Hotel, Ft Lauderdale FL. This symposium will cover computer architecture and hardware for control, languages for control, algorithms for control, hierarchical control, methodology, and other topics. Contact The Secretary, Computers in Control Symposium, POB 2481, Anaheim CA 92804.

\section*{December 10-12} Project Management for Computer Systems, Chicago IL. This seminar will illustrate techniques for
planning, implementing, installing, and controlling projects. Contact The University of Chicago, 1307 E 60th St, Chicago IL 60637.

December 10-13

\section*{1979 Fall DECUS US}

Mini/Midi Symposium, San Diego CA. This symposium is an opportunity for Digital Equipment computer users to participate in a technical exchange. Contact DECUS, One Iron Way, MR2-3, Marlboro MA 01752.

December 10-14
IEEE Computer Society's Tutorial Week 79, Hotel Del Coronado, San Diego CA. Fifteen different one-day seminars will be offered throughout the week. Contact IEEE Computer Society, POB 639, Silver Spring MD 20901.

December 10-14
Advanced Programming Workshop, Lafayette IN. Course objectives include

developing skills required to plan, prepare, test, and document software. Projects will include using assemblers and high-level language compilers and interpreters. Contact Wintek Corp, 902 N 9th St, Lafayette IN 47904.

\section*{JANUARY 1980}

January 3-4
Hawaii International Conference on System Sciences, Honolulu HI. The conference will cover developments in theory or practice in software and hardware, and advanced computer systems applications in selected areas with emphasis on medical information processing and computer-based decision support systems for upper level managers in organizations. For more information, contact Perry G Patteson, Office of Management Programs, University of Hawaii, 2404 Maile Way, Honolulu HI 96822.

January 5-8
International Winter Consumer Electronics Show, Las Vegas Convention Center, Grand Ballroom of the Las Vegas Hilton and the Jockey Club Hotel, Las Vegas NV. The show will have over 850 exhibitors covering markets including audio systems, software, television and video tape and disk systems, home computers, calculator's, and many more. Contact Consumer Electronics Shows, 2 Illinois Ctr, Suite 1607, 233 N Michigan, Chicago IL 60601.

January 15 Invitational Computer Conference, Orange County CA. New developments in computer and peripheral technology such as Pascal systems, 2-page printers, and streaming tape drives, will be featured in this conference directed to the quantity buyer. For more information, contact B J Johnson and Associates, 2503
Eastbluff Dr, Suite 203,
Newport Beach CA 92660.

NO FRILLS! NO GIMMICKS! JUST GREAT DISCOUNTS MAIL ORDER ONLY

\section*{HAZELTINE}
\(\left.\begin{array}{l}1400 \ldots \ldots . . \\
1410 \ldots \ldots \ldots \\
1420 \ldots \ldots . . \\
1500 \ldots \ldots . \\
1500 \text { (Kit) } \ldots . .\end{array}\right\}\)\begin{tabular}{c}
\\
Call \\
For \\
Prices
\end{tabular}

CENTRONICS
779-2 995.00
700-2 1350.00
703 tractor 2195.00
Micro Printer 395.00

\section*{NORTHSTAR}

Horizon I assembled. . 1629.00
kit 1339.00
Horizon || assembled, , 1999.00
kit 1599.00

\section*{TELETYPE}

Mod 43 .
995.00

\section*{DIGITAL SYSTEMS}
Computer 54345.00
Double Density
Dual Drive 2433.00

\section*{TELEVIDEO}
\(\left.\begin{array}{l}912 \ldots \ldots . \\
920 \ldots \ldots .\end{array}\right\}\)\begin{tabular}{c}
Call \\
For \\
Prices
\end{tabular}

DEC
LA 34
.1149 .00
CROMEMCO
System III \$1000 off . . 4990.00
\(10 \%\) off on Cromemco products
TEXAS INSTRUMENTS
810 Printer 1595.00
Optima Cabinets (New) . . . 99.95
\(5^{\prime \prime}\) Scotch Diskette . . . Box/29.95
8" Scotch Diskette , .. . Box/34.95

Most items in stock for immediate delivery. Factory.fresh, sealed cartons
DATA DISCOUNT CENTER P.o. \(80 \times 100\) 135.53 Northem Blvd., Flushing, New York 11354, 2121465-6609
N.Y.S. residents add appropriate Sales Tax. Shipping FOB N.Y. BankAmericard, Master Charge add \(3 \%\). COD orders require \(25 \%\) deposit.

Smoke Signal Broadcasting announces...

\section*{6809 DISC OPERATING SVSTEM}

DOS 69 is Smoke Signal Broadcasting's new 6809 Disc Operating System that contains all the features of DOS 68 version 5.
- Compatible with text files created under DOS 68.
- Includes improved 6809 SMARTBUG ROM monitor on 2716.
- Includes a 6809 BASIC that is completely compatible with Smoke Signal Broadcasting's 6800 BASIC.
- 6809 Text Editor included.
- 6809 Assembler at no extra cost. This assembler will operate under either DOS 68 or DOS 69 and will both assemble new 6809 source code and translate 6800 source code to 6809 object code. (This is not the same as Smoke Signal Broadcasting's MACRO 69 Macro Assemblerl.

NOTE: DOS 69 is supported on Smoke Signal Broadcasting's Chief tain systems with Smoke Signal Broadcasting's 6809 CPU board; and on SWTPC systems with Smoke Signal's BFD or LFD disc system and SWTPC 6809 CPU board (I/O moved to \$E000 in accor dance with SWTPC instructions). Support for other hardware configurations including consultation on operation with other CPU boards cannot be provided.

Price \(\$ 100.00\) including ROM monitor.
Specify 5" or 8" disc and Chieftain or SWTPC System.

31336 Via Colinas, Westlake Villag , CA 91361, (213) 889.9340

\section*{January 15-18}

TV-Microelectronics and Microprocessing Exhibition, National Exhibition Centre, Birmingham, England. Manufacturers and suppliers of microprocessors, electronic and microcomputer games, video display units, video cameras and projection systems, and digital consumer electronics are invited to participate. Over 9000 retailers, wholesalers, distributors and government buying authorities are expected to attend this show. For more information, contact TMAC, 680 Beach, Suite 428, San Francisco CA 94109.

> January 23-26

International Microcomputers Minicomputers Microprocessors (IMMM), Harumi Exhibition Centre, Tokyo Japan. This is a show for manufacturers, commercial and financial establishments, service industries and institutions, and
design engineers interested in buying computer systems, components and services. For more information, contact Industrial and Scientific Conference Management Inc, 222 W Adams St, Chicago IL 60606.

Jamary 28-30
Communication Networks
'80, Sheraton Washington Hotel, Washington DC. The program will offer 50 conference sessions in areas such as fiber optics, satellite communications, systems networks, and innovations in electronic mail and office administrative networks.

For further information on registration, speaking opportunities or exhibit space, contact William Leitch, The Conference Co, 60 Austin St, Newton MA 02160.

Jamary 28-30 Principles of Programming Languages, Las Vegas NV. This symposium concerns practical and theoretical
aspects of principles and innovations in the design, definition, and implementation of programming languages. Some topics are algorithms and complexity bounds for language processing tasks, specification languages, error detection and recovery, and unusual or special-purpose languages that raise issues of principle. Contact Professor John Werth, Department of Mathematical Sciences, University of Nevada, Las Vegas NV 89154.

\section*{January 30-February 1}

\section*{MIMI '80 Asilomar,} Asilomar Conference Grounds, Pacific Grove CA. This symposium covers all aspects of mini and microcomputers including technology, hardware, software engineering, languages, education and more. Contact The Secretary, MIMI '80 Asilomar, POB 2481, Anaheim CA 92804.

FEBRUARY 1980

February 6
Invitational Computer Conference, Ft Lauderdale FL. This conference is directed to the quantity buyer and will feature the newest developments in computer and peripheral technology. Contact B J Johnson and Associates, 2503 Eastbluff Dr, Suite 203, Newport Beach CA 92660.

February 13-15
The IEEE International Solid State Circuits Conference, San Francisco CA. This conference is a forum for the presentation of advancements in all aspects of solid state circuits. It will cover design, performance, fabrication, testing, and applications in digital, analog, microwave, and other areas of new solid state circuits, device structures,
phenomena and systems. For more information, contact Lewis Winner, 301 Almeria Ave, POB 343788, Coral Gables FL 33134.

February 18-21
European Information Management Exhibition and Conference, Wembley Conference Centre, London, England. This show will exhibit microcomputer systems and peripheral items with demonstrations and applications focused on problem solving for the management executive. Contact, Expoconsul, 420 Lexington Ave, New York NY 10017.

February 25-27
Communication Networks '80, Shoreham Americana Hotel, Washinton DC. This conference and exposition will cover business communications. For program information, contact the Director of Program Developement, The Conference Co, 60 Austin St, Newton MA 02160. For exhibit information, contact the national sales manager, Communications Networks '80, POB 96, Haddon Heights NJ 08035.

SOFTWARE AVAILABLE FOR F-8, 8080, 6800, 8085, Z-80, 6502, KIM1, 1802, 2650.
EPROM type is selected by a personality module which plugs into the front of the programmer. Power requirements are 115 VAC . \(50 / 60 \mathrm{HZ}\) at 15 watts. It is supplied with a 36 inch sibbon cable for connecting to microcomputer. Requires \(11 / 2 / / O\) ports. Priced at \(\$ 155\) with one set of software. Personality modules are shown below.
\begin{tabular}{lcr}
Part No. & \multicolumn{1}{l}{ Programs } & Price \\
PM-0 & TMS 2708 & \(\$ 15.00\) \\
PM-1 & 2704, 2708 & 15.00 \\
PM-2 & 2732 & 30.00 \\
PM-3 & TMS 2716 & 15.00 \\
PM-4 & TMS 2532 & 30.00 \\
PM-5 & TMS 2516, 2716, 2758 & 15.00
\end{tabular}

Optimal Technology, Inc.
Blue Wood 127, Earlysville, VA 22936
Phone (804) 973-5482

The world's most popular microcomputer, with 16 K of memory and Level 11 basic for only \(\$ 750\), complete with full 90 day Radio Shack warranty. We accept check, money order or phone orders with Visa or AlasterCharge. (Shipping costs added to charge orders). Disk drives, printers, peripherals, software and games . . . you name it, we've got it (Both Radio Shack \& other brands). Write or call for our complete price list.

\section*{}

Smoke Signal Broadcasting announces... COMMERCIAL PAYROLL SYSTEM
...r.u.. .,.tem which runs on Smoke Signal Broadcasting' fandom DOS with 48 K bytes and a 500 K byte disk which offe the following capabilities:
- Direct updating of employee information, hours worked, wages, deduction, etc., means that any inquiry for a selected employee will provide up to the minute status on that employee.
- Simultaneausly handles hourly, salary and commissioned employees; weekly, bi-weekly, semi-monthly and monthly pay periods.
- Allows for payment against a cash advance.
- Vacation and sick hours accrue either as a rate per hour worked, or on anniversary dates. Time charged automatically reduces the amount available.
- Password protection maintains confidentiality of data.
- Generates ten reports including employee status, activity reports and audit report.
- All reports can be sorted several different ways. Reports can be generated for specific categories and can even be limited to ranges within the categories.
- Tax tables are easily modified with built-in routines. The system also handles state and local taxes.
Look to Smoke Signal Broadcasting to provide the high quality business software to run on the popular Chieftain Series of 6800 based microcomputers.
Software licenses available to qualified dealers and software houses. Contact Jim Allday for further information.
SMOKE SIGNAL , BMOMDASTHMG
31336 Via Colinas, Westlake Village, CA 91361, (213) 889-9340

Guaranteed software from Data Access Corporation.

\section*{TRS-80 ISDMS INDEXED SEQUENTIAL DATA MANAGEMENT SYSTEM}

\author{
Interactive Data Base Definition Random Key Access To Any Record Sequential Key Access To Any Record Fast Assembler Sorting On Any Field Complete Interactive File Maintenance Fast In-Memory Directory Of All Records Automatic Blocking \& Unblocking Of Records \\ Loads It's Assembler Program from BASIC BASIC \& Assembler Source Included Sample Data \& Programs Included Includes Assembler Disk Sort INKEY\$ Data Entry Routine Runs On 2, 3 or 4 Drives
}

IF YOU'VE GOT A TRS-80* DISK SYSTEM, WE'VE GOT A FAST, FEATURE PACKED SOFTWARE SYSTEM THAT'S READY TO GO TO WORK FOR YOU NOW! INTERACTIVELY DEFINE A DATA BASE AND BEGIN USING IT IN HOURS! BUILD YOUR APPLICATION WITH ISDMS, ITS A SOLID FOUNDATION!

PRICE: \(\$ 175\).

\section*{ISDMS WITH REPORT GENERATOR}

The complete ISDMS Package combined with a report definition and generation program. With ISDMS and the Report Generator you can create a complete file and report system without writing a line of code!

PRICE: \(\$ 225\)

\section*{TRS-80 BUSINESS PROGRAMS \\ TRS-80 Model II conversions available soon}

Accounts Receivable, up to 1200 Accounts. . . . \(\$ 500\)
On-Line Inventory, up to 1800 Items \(\$ 600\)
Point Of Sale Inventory, up to 3000 Items. \(\$ 750\)
General Ledger w/Check Writer. \(\$ 500\)
Payroll, All Fed., State Taxes, Tips \& EIC \(\$ 500\)
Mailing List, up to 1800 names on 4 Disks. \(\$ 200\)
Licensed copies of Data Access 'TRS-80 programs are guaranteed to load and run on operational systems, and to be free from programming defects.

DEALER INQUIRIES INVITED

\author{
Data Access Corporation \\ 4221 Ponce De Leon Blvd. \\ Coral Gables, FL 33146 \\ Phone: (305) 446-0669
}

\section*{NOW BETTER THAN EVER}
- Control Program for Microcomputers.
- Includes Editor, Assembler, Debugger, Utilities.
- Supports Floppy Disks and Hard Disks.
- For 8080, 8085, Z-80, MDS, Cromemco.
- \(\$ 150\)-Diskette and Documentation
- \$25-Documentation only

MP/M"

\section*{NEW INDUSTRY STANDARD}
- Multi-terminal access.
- Multi-programming.
- CP/M-compatible.
- Real-time features.
- \$300-Diskette and Manual
- \$25-Manual only

\section*{DIGITAL RESEARCM \\ OPTIONAL SOFTWARE PACKAGES}

MAC \({ }^{+M}\) MACRO ASSEMBLER:
- Compatible with new Intel macro standard.
- Complete guide to macro applications.
- \$90-Diskette and Manual.

SID \({ }^{\text {M }}\) SYMBOLIC DEBUGGER:
- Symbolic memory reference.
- Built-in assembler/diassembler.
- \(\$ 75\)-Diskette and Manual.

TEX'M TEXT FORMATTER:
- Powerful text formatting capabilities
- Text prepared using CP/M Editor.
- \$75-Diskette and Manual.

DESPOOL \({ }^{\text {M }}\)
- Background print utility.
- Use with CP/M
- \$50-Diskette and Manual.
P.O. Box 579 • Pacific Grove, Califomia 93950 (408) 649-3896

\section*{PET Printer Adapter}

The CmC ADA 1200 drives an RS-232 printer from the PET IEEE-488 bus. Now, the PET owner can obtain hard copy listings and can type letters, manuscripts, mailing labels, tables of data, pictures, invoices, graphs, checks, needlepoint patterns, etc., using RS-232 standard printer or terminal.

A cassette tape is included with software for plots, formatting tables and screen dumps. The ADA1200 selis for \$169.00 and includes case, power supply and cable.

Order direct or contact your local computer store.
VISA AND M/C ACCEPTED - SEND ACCOUNT NUMBEA, EXPIRATION DATE AND SIGN ORDER ADD \$3 PER ORDER FOR SHIPPING \& HANDLING - FOREIGN ORDERS ADO 10\% FOR AIR POSTAGE

CONNECTICUT microCOMPUTER,Inc. 150 POCONO ROAD
BROOKFIELD, CONNECTICUT 06804
TEL: (203) 77.5-4595 TWX: 71.0-456-0052

\section*{THE ?SSENCE of output quality}
- Any IBM SELECTRIC \({ }^{\oplus}\) can be converted to produce high quality output at an affordable price!
- Interfaces directly to S100, Parallel, RS-232 or IEEE-488.
- Compatible with TRS-80, Sorcerer, Pet, Apple, Horizon, etc.
- Why be printer bound? Prices from

\section*{VULCAN = DBMS}

\section*{THE PROFESSIONAL DATABASE MANAGEMENT SYSTEM}

For 8080/Z80 systems under CP/M or PTDOS
* VULCAN is a complete database management system that has 38 powerful, easy to learn, English-like commands to manipulate files, records, fields, and scratch-pad variables.
* VULCAN has a command repertoire which includes such com mands as: SORT, REPORT, APPEND, INSERT, EDIT, COPY, REPLACE, LOCATE, DISPLAY, DO, LIST, and LOOP.
* VULCAN structured data records can be selectively chosen for processing using complex Boolean, string, or mathematical expressions.
* VULCAN cán be used in interactive or program mode. The program mode uses modern structured command programs to combine powerful DBMS operations.
* VULCAN is written in assembly language for efficient infor mation processing and requires 36 K bytes \(\mathrm{CP} / \mathrm{M}\) system and one or more disk drives.
* VULCAN can accept or store data in standard ASCII files to be compatible with BASIC, FORTRAN, etc.
\[
\begin{array}{ll}
\text { *VULCAN (CP/M or PTDOS) } & \$ 490 \\
\text { Manual only } & \$ 25
\end{array}
\]

\section*{SCDP}

\section*{Software Consultation Design} and Production
6542 Greeley St.
Tujunga, CA 91042 (213) 352-7701
California residents add \(6 \%\) sales tax.

Smoke Signal Broadcasting announces...

\section*{FORTRAN}

A powerful scientific programming language complete with sub routine capability designed to run on 6800 based microcomputers.
- Complete FORTRAN Compiler for the 6800 .
- Produces Relocatable Object Code.

Included with the compiler is the Smoke Signal Linking Loader which loads the object code produced by the compiler into any portion of memory specified by the programmer. FORTRAN is completely integrated to operate with DOS 68, Smoke Signal's Disc Operating System and is ideal for scientific applications, number crunching and three dimensional array processing.
New updated FORTRAN includes large sub-routine library of mathematical functions.
\(\$ 149.00\) on \(5^{\prime \prime}\) disc. (Add \(\$ 1.00\) for \(8^{\prime \prime}\) disc). We're the "CHIEF" in 6800 products software
SMOFX SIONAL
RROLDCASTIXG \({ }^{\circ}\)
31336 Via Colinas, Westlake Village, CA 91361, (213) 889-9340

\section*{Learn to program your microcomputer using Assembly Language}

Assembly Language Programming primers for these five microprocessors, by Lance Leventhal.

Each book explains assembly language programming, describes the functions of assemblers and assembly instructions, and discusses basic software development concepts. A special section on structured programming complements the many practical programming examples, which range from simple memory load loops to complete rudimentary design projects.

\section*{JUST ARRIVED} 6502

\section*{and COMING SOON} 6809

In each book you'll find:
- Over 80 programming examples tailored to your microcomputer, with source program, object code, flowcharts, and explanatory text.
- Each instruction fully explained
- Assembler conventions
- I/O devices and interfacing methods
- How to program the interrupt system
- Table of Contents: Introduction to Assembly Language Programming; Assemblers: The Assembly Language Instruction Set; Simple Programs; Simple Program Loops: Character Coded Data; Code Conversion; Arithmetic Problems; Tables and Llsts; Subroutines; Input/Output; Interrupts; Problem Definition and Program Design; Debugging and Testing; Documentation and Redesign; Sample Projects.

\section*{Don't forget our other ALP Books} Z80-6800 - 8080A/8085

\section*{Order Form}

Price increase effectlve January 1, 1980. If ordering after January 1, please use price In brackets.
\begin{tabular}{|l|c|c|c|}
\hline \multicolumn{1}{|c|}{ Book } & Price & Quantity & Amount \\
\hline 6502 Assembly Language Programming & \(\$ 9.50\) (\(\$ 12.50\)] & & \\
\hline 280 Assembly Language Programming & \(\$ 9.50\) [\(\$ 12.50\)] & & \\
\hline 6800 Assembly Language Programming & \(\$ 9.50\) [\(\$ 12.50\)] & & \\
\hline 8080A/8085 Assembly Language Programming & \(\$ 9.50\) [\(\$ 12.50]\) & & \\
\hline
\end{tabular} \begin{tabular}{l}
Calif. residents add 6\% sales tax. \\
SF. BART residents add 6-1/2\% sales tax. \\
SHIPPING (Shipping for large orders to be arranged)
\end{tabular}

ㅁ Please notify me when 6809 ALP is avallable.

Name:
Address:
CIty:___ State_______

630 Bancroft Way,
Dept. 127 Berkeley, California 94710
(415) 548-2805. TWX 910-366-7277

\title{
6809!
}

\section*{MD-690 b Single Board Computer}
- 1K RAM
- 10K PROM space
- Parallel keyboard input \$239 Kit \({ }^{\circ}\)
- Memory-mapped video firmware
- Fully S-100 compatible (including 8080 type I/O)
- MONBUG II monitor included
- 2400 baud cassette interface
- 20 I/O lines
- RS-232 level shifters
- Real time clock
- DMA
- 6809

CATCH THE S-100 INC. BUS!
\begin{tabular}{|c|c|c|}
\hline & & \\
\hline & \[
\begin{aligned}
& \text { LIST } \\
& \text { PRICE }
\end{aligned}
\] & SPECIAL
CASH PRICE \\
\hline Imsai " 8080 " Kit complete w/Front
Panel & 750.00 & 625.00 \\
\hline Imsai VIO-C Kit & 325.00 & 275.00 \\
\hline Cromemco TU-ART Kit & 195.00 & 165.00 \\
\hline Thinker Toys Switchboard A\&T & 259.00 & 220.00 \\
\hline Shugart SA 400 Dual Density, Bare Drive & 450.00 & 295.00 \\
\hline Intertec "Intertube" & 995.00 & 779.0 \\
\hline
\end{tabular}

Subject to Available Quantities - Prices Quoted Include Cash Discounts. Shipping \& Insurance Extra.
We carry all major lines such as
S.D. Systems, Cromemco, IMSAI, Vector Giraphics, North Star, Sanyo, ECT, TEI, Godbout, Thinker Toys, Hazeltine, IMC For a special cash price telephone us.

\author{
Bus. S-IDO, inc. \\ Address. . . 7 White Place Clark, N.J. 07066 \\ Interface. . .201-382-1318
}
 PROM Programmer is the only programmer with all these features:
- Converts a PROM memory socket to a table programmer: No comples interfacing to wire - just plug it into a 2708 memory socket*
- A short subroutine sends data over the addre lines to program the PROM
- Programs 2 PROMS for less than the cost of a personality module. (2708s and TMS 2716s)
- Connect 2 or more in paralWey - super for production programming
- Complete with DC to DC switching invertor and 10
turn cermet trimmers for precision pulse width and amplitude alignment)
- All packaged in a handsome aluminum case
PP-2708/16 \(\therefore\) A \& T \$325.
PP-2716 (Programs Intel's
2716)A \& T \(\$ 295\).

OAE
Oliver Advanced Engineering, Inc. 676 West Wilson Avenue Glendale, Calif. 91203 (213) 240-0080

Smoke Signal Broadcasting announces...

\section*{6809 MACRO ASSEMBLER}

Macro 69 is an advanced assembler designed to let the professional programmer take full advantage of the capabilities of the world's mast pawerful 8 bit micropracessor.
- Supports conditional assembly.
- Produces relocatable object code.
- Includes linking loader.
- Operates under DOS 68 or DOS 69.
- Assembles 6809 code and translates 6800 source code ta 6809 object code.
- Cross-referenced symbol table provided.
- Very powerful macro instruction capability.

Smoke Signal Broadcasting, your number one source for high quality, reliable products.

Price - \$199.00 for 5" disc
(add \(\$ 1.00\) for \(8^{\prime \prime}\) disc.)

We're the "CHIEF" in 6800 products software SMOXE SIGAAK

\section*{SOFTWARE TOOLS}

\section*{IMMEDIATE DELIVERY} Domestic \& Export DEC LSI - 11
COMPONENTS A full and complete line with software support available.

Tini Computer Suppliers, inc.
25 CHATHAM ROAD SUMMIT, NEW JERSEY 07901 SINCE 1973
(201) 277-6150

Telex 13-6476

\section*{TRS-80 disk software}

DATA BASE MANAGER IOM-III 32K
\(\$ 49\)
You can use it to maintain a data base \& produce reports without any programming. Define file parameters \& report formats on-line. Features key random access, multi-keys, sort, field arith, audit log. Enhanced version \$69.
ACCCOUNT manage client accounts \& accounts receivable. Order entry. Print invoices, statements \& reports. 32 K

\section*{WORD PROCESSOR 16K}
\(\$ 39\)
Our Word-III is the first word processor specifically designed for the TRS-80 that uses disk storage for text. Written in BASIC. No special hardware and text limit. Use for letters, manuals \& reports. 32 K version features upper/lower case without hardware change. \$49.
MAILING LIST 1GK
Lets you maintain data base and produce reports \& labels sorted in any field. Random access. 2-digit selection code used. 32 K version fast SHELL sort \(\$ 49\). Advanced version with report writer \(\$ 59\).
INVENTORY 16K
While others use inefficient sequential file, we use 9-digit alphanumeric key for fast on-line random access. Reports give order info, performance summary, etc. Enhanced 32 K version \(\$ 49\).
KEY RANDOM-ACCESS UTIL 16K
Lets you access a record by specifying a key. Features hashing, blocking, buffering technique.
Send \(\$ 5\) for each manual.
MOO-II, superior, integrated software available.

C compilers and cross-compilers for PDP-11's, LSI-11's, 8080's and Z/80's, with complete runtime library. The full language is supported with efficient code generation.
- Interface libraries giving access to all system directives for UNIX; RT-11, RSX-11M, RSTS/E, IAS, CP/M, CDOS and ISIS-II.
- A-Natural narrative assembler for 8080's and Z/80's with librarian and linking loader.
- Over 75 installations in less than six months.
*UNIX is a trademark of Bell Laboratories.
Continuing maintenance and training available. An affordable alternative to Assembler, Fortran or Pascal, for as little as \(\$ 500\) per compiler binary license. Catalogue and references available upon request.
Write to

\section*{Whitesmiths,Ltd.}

127 East 59th Street • New York NY 10022•212 799-1200

\title{
Twenty-four Ways to Write a Loop \\ Dr Maurer Takes You Through a Loop
}

\author{
W D Maurer \\ Professor Dept of Electrical \\ Engineering and Computer Science \\ George Washington University Washington DC 20052
}

To start with, let us look at table 1. There are several things about this table that should be surprising.
All we are trying to do is move some quantities from one place to another. There are N of them, and they are called \(\mathrm{P}(1)\) thru \(\mathrm{P}(\mathrm{N})\). We are trying to move them to \(Q(1)\) thru \(Q(N)\), which we could do, of course, using a FOR statement in BASIC, as follows:
\[
\begin{aligned}
& 10 \mathrm{FOR} \mathrm{~J}=1 \text { TO N } \\
& 20 \mathrm{Q}(\mathrm{~J})=\mathrm{P}(\mathrm{~J}) \\
& 30 \text { NEXT J }
\end{aligned}
\]
which should make sense even if you don't know BASIC. But we are trying to do this without a FOR statement, in order to learn how loops function; and immediately we are confronted with a wide variety of choices. Table 1 shows the first twenty-four of these. They are all different; they are all short; and they all do exactly the same thing. (Well, not quite exactly. At the end of some of them, J is equal to \(\mathrm{N}+1\); at the ends of others, J may be equal to N , or to 1 , or to 0 . But since we are presumably not going to use J after we finish the loop, this should make no difference.)

Why are there so many ways to write a loop? There are certain things

we can do in either of two (or more) ways.
We can start with \(\mathrm{Q}(1)\) and go up to \(\mathrm{Q}(\mathrm{N})\) (first and second columns in table 1), or we can start with \(\mathrm{Q}(\mathrm{N})\) and go down to \(Q(1)\) (third and fourth columns).
We have three things to do in the loop: setting \(Q(J)\) equal to \(P(J)\); increasing (or decreasing) J by one; and making a test. These three things may be arranged in any of six ways; denoting them by \(U, V\), and \(W\), we may arrange them as UVW, UWV, VUW, VWU, WUV, or WVU. Each of these six arrangements corresponds to one of the six rows of table 1.
What may be further surprising about table 1 are the subtle ways in which not everything is quite symmetrical. For example, in the last column, the variable J is sometimes initialized to N , and sometimes to \(\mathrm{N}+1\). The latter takes a bit more time (unless N is really a constant, such as 10). In the first column, J is
sometimes set to 1 and sometimes to 0 , which on many computers takes a bit less time than setting it to 1 .

It does not take much ingenuity, however, to see that in enumerating twenty-four ways to write a loop, we have really only scratched the surface. What are some of the other things we could have done?

Looking at the top of the second column, we see that we are testing whether J is less than or equal to N . We could just as easily have tested whether \(J\) is less than \(N+1\). The same sort of change could have been made throughout the second and fourth columns, giving us a total of thirtysix ways to write a loop.

Most of the changes of this kind would rather obviously have been changes for the worse. It clearly takes more time testing against \(\mathrm{N}+1\) than it does testing against N , even if we set some new variable like N 1 to \(\mathrm{N}+1\) before the loop and then test against N1 inside the loop. A possible exception to this is the one at the top of the last column, where we could have tested for J greater than 0 . In assembly language on a 6800 -based system using 8 -bit signed integer data, you can do this with a branch-if-greater-than-zero (BGT) instruction directly after the decrementing.
\begin{tabular}{|c|c|c|c|}
\hline \(10 \mathrm{~J}=1\) & \(10 \mathrm{~J}=1\) & \(10 \mathrm{~J}=\mathrm{N}\) & \(10 \mathrm{~J}=\mathrm{N}\) \\
\hline \(20 \mathrm{Q}(\mathrm{J})=P(\mathrm{~J})\) & \(20 \mathrm{Q}(\mathrm{J})=\mathrm{P}(\mathrm{J})\) & \(20 \mathrm{Q}(\mathrm{J})=\mathrm{P}(\mathrm{J})\) & \(20 \mathrm{Q}(\mathrm{J})=P(\mathrm{~J})\) \\
\hline \(30 \mathrm{~J}=\mathrm{J}+1\) & \(30 \mathrm{~J}=\mathrm{J}+1\) & \(30 \mathrm{~J}=\mathrm{J}-1\) & \(30 \mathrm{~J}=\mathrm{J}-1\) \\
\hline \(40 \mathbb{F} \mathrm{~J}<>\mathrm{N}+1\) GOTO 20 & \(40 \mathrm{FF} \mathrm{J}<=\) N GOTO 20 & \(40 \mathrm{IF} \mathrm{J}<>0\) GOTO 20 & \(40 \mid \mathrm{FJ}\) J \(=1\) GOTO 20 \\
\hline \(10 \mathrm{~J}=1\) & \(10 \mathrm{~J}=1\) & \(10 \mathrm{~J}=\mathrm{N}\) & \(10 \mathrm{~J}=\mathrm{N}\) \\
\hline \(20 \mathrm{Q}(\mathrm{J})=P(\mathrm{~J})\) & \(20 \mathrm{Q}(\mathrm{J})=P(J)\) & \(20 \mathrm{Q}(\mathrm{J})=\mathrm{P}(\mathrm{J})\) & \(20 \mathrm{Q}(\mathrm{J})=P(\mathrm{~J})\) \\
\hline \(30 \mathrm{IFJ}=\mathrm{N}\) GOTO 60 & \(30 \mathrm{IF} \mathrm{J}>=\) N GOTO 60 & \(30 \mathrm{IFJ}=1\) GOTO 60 & \(30 \mathrm{FFJ} \mathrm{J}=1\) GOTO 60 \\
\hline \(40 \mathrm{~J}=\mathrm{J}+1\) & \(40 \mathrm{~J}=\mathrm{J}+1\) & \(40 \mathrm{~J}=\mathrm{J}-1\) & \(40 \mathrm{~J}=\mathrm{J}-1\) \\
\hline 50 GOTO 20 & 50 GOTO 20 & 50 GOTO 20 & 50 GOTO 20 \\
\hline \(10 \mathrm{~J}=0\) & \(10 \mathrm{~J}=0\) & \(10 \mathrm{~J}=\mathrm{N}+1\) & \(10 \mathrm{~J}=\mathrm{N}+1\) \\
\hline \(20 \mathrm{~J}=\mathrm{J}+1\) & \(20 \mathrm{~J}=\mathrm{J}+1\) & \(20 \mathrm{~J}=\mathrm{J}-1\) & \(20 \mathrm{~J}=\mathrm{J}-1\) \\
\hline \(30 \mathrm{Q}(\mathrm{J})=\mathrm{P}(\mathrm{J})\) & \(30 \mathrm{Q}(\mathrm{J})=\mathrm{P}(\mathrm{J})\) & \(30 \mathrm{Q}(\mathrm{J})=P(\mathrm{~J})\) & \(30 Q(J)=P(J)\) \\
\hline 40 IF J< > N GOTO 20 & \(40 \mathrm{IF} \mathrm{J}<\mathrm{N}\) GOTO 20 & \(40 \mathrm{IF} \mathrm{J}<>1\) GOTO 20 & \(40 \mathrm{IF} \mathrm{J}>1\) GOTO 20 \\
\hline \(10 \mathrm{~J}=0\) & \(10 \mathrm{~J}=0\) & \(10 \mathrm{~J}=\mathrm{N}+1\) & \(10 \mathrm{~J}=\mathrm{N}+1\) \\
\hline \(20 \mathrm{~J}=\mathrm{J}+1\) & \(20 \mathrm{~J}=\mathrm{J}+1\) & \(20 \mathrm{~J}=\mathrm{J}-1\) & \(20 \mathrm{~J}=\mathrm{J}-1\) \\
\hline \(30 \mathrm{IFJ}=\mathrm{N}+1\) GOTO 60 & \(30 \mathrm{IF} J>\mathrm{N}\) GOTO 60 & \(30 \mathrm{FF} \mathrm{J}=0\) GOTO 60 & 30 IF J<=0 GOTO 60 \\
\hline \(40 \mathrm{Q}(\mathrm{J})=\mathrm{P}(\mathrm{J})\) & \(40 \mathrm{Q}(\mathrm{J})=P(\mathrm{~J})\) & \(40 \mathrm{Q}(\mathrm{J})=\mathrm{P}(\mathrm{J})\) & \(40 \mathrm{Q}(\mathrm{J})=P(J)\) \\
\hline 50 GOTO 20 & 50 GOTO 20 & 50 GOTO 20 & 50 GOTO 20 \\
\hline \(10 \mathrm{~J}=1\) & \(10 \mathrm{~J}=1\) & \(10 \mathrm{~J}=\mathrm{N}\) & \(10 \mathrm{~J}=\mathrm{N}\) \\
\hline \(20 \mathrm{IFJ}=\mathrm{N}+1\) GOTO 60 & 20 l J J \(>\) N GOTO 60 & 20 IF J=0 GOTO 60 & \(20 \mathrm{IF} \mathrm{J}<=0\) GOTO 60 \\
\hline \(30 \mathrm{Q}(\mathrm{J})=\mathrm{P}(\mathrm{J})\) & \(30 \mathrm{Q}(\mathrm{J})=\mathrm{P}(\mathrm{J})\) & \(30 \mathrm{Q}(\mathrm{J})=\mathrm{P}(\mathrm{J})\) & \(30 \mathrm{Q}(\mathrm{J})=\mathrm{P}(\mathrm{J})\) \\
\hline \(40 \mathrm{~J}=\mathrm{J}+1\) & \(40 \mathrm{~J}=\mathrm{J}+1\) & \(40 \mathrm{~J}=\mathrm{J}-1\) & \(40 \mathrm{~J}=\mathrm{J}-1\) \\
\hline 50 GOTO 20 & 50 GOTO 20 & 50 GOTO 20 & 50 GOTO 20 \\
\hline \(10 \mathrm{~J}=0\) & \(10 \mathrm{~J}=0\) & \(10^{\circ} \mathrm{J}=\mathrm{N}+1\) & \(10 \mathrm{~J}=\mathrm{N}+1\) \\
\hline \(20 \mathrm{IF} \mathrm{J}=\mathrm{N}\) GOTO 60 & \(20 \mathrm{IF} \mathrm{J}>=\) N GOTO 60 & \(20 \mathrm{IFJ=1}\) GOTO 60 & \(20 \mathrm{IF} \mathrm{J}<=1\) GOTO 60 \\
\hline \(30 \mathrm{~J}=\mathrm{J}+1\) & \(30 \mathrm{~J}=\mathrm{J}+1\) & \(30 \mathrm{~J}=\mathrm{J}-1\) & \(30 \mathrm{~J}=\mathrm{J}-1\) \\
\hline \(40 \mathrm{Q}(\mathrm{J})=\mathrm{P}(\mathrm{J})\) & \(40 \mathrm{Q}(\mathrm{J})=\mathrm{P}(\mathrm{J})\) & \(40 \mathrm{Q}(\mathrm{J})=\mathrm{P}(\mathrm{J})\) & \(40 \mathrm{Q}(\mathrm{J})=\mathrm{P}(\mathrm{J})\) \\
\hline 50 GOTO 20 & 50 GOTO 20 & 50 GOTO 20 & 50 GOTO 20 \\
\hline
\end{tabular}

Table 1: Twenty-four ways to write a loop in BASIC. These twenty-four basic methods can be expanded with a variety of small changes to produce over 124 different types of looping.

We can consider the possibility of setting \(\mathrm{Q}(\mathrm{J}+1)\) to \(\mathrm{P}(\mathrm{J}+1)\), or \(\mathrm{Q}(\mathrm{J}-1)\) to \(P(J-1)\), rather than \(Q(J)\) to \(P(J)\). In some cases, this would speed up some of the other operations in the loop. For example, at the top of the first column, we could have set \(J\) to 0 and tested J against N rather than \(\mathrm{N}+1\), if we set \(Q(J+1)\) equal to \(P(J+1)\). Both of these changes represent timing improvements.
It might seem that setting \(\mathrm{Q}(\mathrm{J}+1)\) to \(P(J+1)\) wastes a certain amount of time of its own, compared with setting \(Q(J)\) equal to \(P(J)\). This, however, is not so, or should not be so on a well-constructed system (although it might be so in some versions of BASIC). Any additive or subtractive constant in a subscript (such as J+1, above) does not have to be computed. To see why this is so, we need some knowledge of assembly language; those who know only BASIC may skip the following paragraph, in which the explanation is given.

Every time we make reference to \(t(v)\), for an array \(t\) and a variable \(v\), we have to add the value of \(v\) to the address of \(t\). On the 8080 , this is done explicitly; we typically do an LXI H,t followed by a DAD D where the DE register contains \(v\) (that is, where the E register contains \(v\) and the D register contains 0) and then we can reference \(t(v)\) by doing ADD M or MOV r, M or MOV M,r or the like. On the 6502, it is done in the hardware; we do an LDA \(t, X\) or an STA \(t, X\) or an ADC \(t, X\) or the like, where the X register contains \(v\), but the hardware adds the \(X\) register to the address given in the instruction, which effectively adds \(v\) to the address of \(t\) in this case. Every microcomputer has slightly different details, but the idea is the same in all cases. Now suppose we want to make a reference to \(t(v+k)\), where \(k\) is a constant. We have to add the value of \(v+k\) to the address of \(t-\) which is the same as adding the value of \(v\) to the address of \(t\) plus \(k\). The point is
that both \(k\) and the address of \(t\) are constants; they do not change during the running of this program. Thus the address of \(t\) plus \(k\) is also a constant, and this addition can be done before the program starts. On the 8080, for instance, we would simply say LXI \(\mathrm{H}, t+k\) rather than LXI H, \(t\); this is a single instruction whose address field (second and third bytes of the instruction code) contains the 16-bit quantity obtained by adding \(k\) to the address of \(t\). On the 6502, we might say LDA \(t+k, \mathrm{X}\) and again we have a single instruction whose address field contains the address of \(t\) plus \(k\). The same trick works, of course, for references to \(t(v-k)\) rather than \(t(v+k)\).
At any rate, by adding 1 or subtracting 1 in our subscripts, we have produced two new ways of writing a loop from every way we already have. We now have 108 ways to write a loop. Of course, theoretically, we could have set \(\mathrm{Q}(\mathrm{J}+2)\) equal to \(\mathrm{P}(\mathrm{J}+2)\), or \(\mathrm{Q}(\mathrm{J}-2)\) equal to \(\mathrm{P}(\mathrm{J}-2)\),

\section*{CP／M ：＝PASCAL； \\ }
－Compiles directly to fast machine code！
－Needs only 32K CP／M system［or equivalent］！
－Includes Interactive Symbolic Debugger！
－Business arithmetic［1B digits］or Binary floating point［ 6.5 digits］［ 9511 version available］
－8080／Z80 Now！
－8086／Z8000 in 1980！

PMT－日［日usiness Arith．］99．95
PMT－S［Source for run－time］50．00

PMT－F［Floating Point］99．95 PMT－M［Manual Alone］3ロ．ロロ

We Accept：
LIPS COD，
Checks．
MC，Vise

\footnotetext{
－pASCAL／MT，trademerk of MT Microsystems
－CP／M，trademark of Digital Research
}
and so on ad infinitum. There is now no bound at all (except for integer overflow considerations) on the number of new ways to write a loop we can set down.

One of these, by the way, has a certain amount of practical importance. The IM6100 microcomputer (or PDP-8) has an increment instruction, but no decrement instructions. Furthermore, the increment does a test against 0 (it is called ISZ, or increment and skip on 0). This does not correspond to anything in table 1 at all; if we are testing against 0 , in table 1, we are always decrementing. However, consider the following loop:
\[
\begin{aligned}
& 10 \mathrm{~J}=-\mathrm{N} \\
& 20 \mathrm{Q}(\mathrm{~J}+\mathrm{N}+1)=\mathrm{P}(\mathrm{~J}+\mathrm{N}+1) \\
& 30 \mathrm{~J}=\mathrm{J}+1 \\
& 40 \mathrm{IF} \mathrm{~J}<>0 \text { GOTO } 20
\end{aligned}
\]

This time we cannot use the trick we mentioned earlier unless N is a constant. If N is a constant, however, the above loop does the same thing as all the other loops of table 1 ; and the last two instructions in it are meant to be executed, on the IM6100, by the single instruction ISZ J, followed by a jump to the label 20.

Are we finished with all possible speed improvements in our loop? Not at all. Consider the following loop:
\[
\begin{aligned}
& 10 \mathrm{~J}=2 \\
& 20 \mathrm{Q}(\mathrm{~J}-1)=\mathrm{P}(\mathrm{~J}-1) \\
& 30 \mathrm{Q}(\mathrm{~J})=\mathrm{P}(\mathrm{~J}) \\
& 40 \mathrm{~J}=\mathrm{J}+2 \\
& 50 \mathrm{IF} \mathrm{~J}<=\mathrm{N} \text { GOTO } 20
\end{aligned}
\]

Suppose that N is 100 . Then, instead of going through this loop one hundred times, we would go through it fifty times. Each time, two elements of the Q array would be set to corresponding elements in the P array. The advantage is that \(\mathrm{J}=\mathrm{J}+2\) is done only fifty times, where \(\mathrm{J}=\mathrm{J}+1\) was done one hundred times in the loops of table 1; also, the IF statement is done only fifty times instead of one hundred times.

In practice, the improvement here is not quite as good as it looks. The assignment \(\mathrm{J}=\mathrm{J}+2\) is generally slower than \(\mathrm{J}=\mathrm{J}+1\). In fact, on many microcomputers, the fastest way to do \(\mathrm{J}=\mathrm{J}+2\) is to do \(\mathrm{J}=\mathrm{J}+1\) twice. On the 6502 , the two array assignments can be done very neatly, one after the other, with:
\[
\begin{aligned}
& \text { LDA } P-1, X \\
& \text { STA } Q-1, X \\
& \text { LDA P, } X \\
& \text { STA Q,X }
\end{aligned}
\]
as soon as the value of J is in the X register. On the 8080, though, assuming that the address of \(P(J-1)\) is in \(D E\) and the address of \(Q(J-1)\) is in HL, you would have to do something like:

> LDAX D
> MOV M,A
> INXD
> INX H
> LDAX D
> MOV M,A
> INX D
> INX H
where the second INX D and INX H set up the DE and HL registers for the next time through the loop. Thus the only improvement here is in having fewer executions of the test at the end of the loop.

Obviously the same idea as above could be implemented by increasing the variable J by 3, by 4, or however many each time, although there will be a corresponding increase in the size of program memory. Another difficulty with these schemes is that they do not work unless J is a multiple of 2 , or whatever the increment is. If this is not the case, then some extra elements will be transferred from one array to the other, and this may cause unpredictable results. The general technique (known as "unrolling" a loop) does, however, have some useful applications on big computers. Even on a small system it is often useful, particularly when N is a very small number, such as 3 , to write:
\[
\begin{aligned}
& 10 \mathrm{Q}(1)=\mathrm{P}(1) \\
& 20 \mathrm{Q}(2)=\mathrm{P}(2) \\
& 30 \mathrm{Q}(3)=\mathrm{P}(3)
\end{aligned}
\]
which is better than any of the loops we have so far discussed.
Another speed improvement in loops arises from an analysis of the case in which \(\mathrm{N}=0\). If we are moving N quantities, then, if N is 0 , we should be moving no quantities; that is, we should be doing nothing at all. Many of our loops, however, either become endless, or they move a single quantity \((\mathrm{P}(1)\) or \(\mathrm{P}(\mathrm{N})\)) in this case. In particular, this holds for all of the
loops in the first and third rows of table 1. The reason that this is a bit unsettling is that these are the only loops in table 1 which have three repeated statements in them (line numbers 20,30 , and 40). They are therefore the fastest of our loops, since all the other loops in table 1 have four repeated statements (line numbers \(20,30,40\), and 50).

It would seem that we have a choice between slowing down our loops and having a loop that doesn't work for \(\mathrm{N}=0\). In FORTRAN, in fact, the choice that was made was to disregard the case \(\mathrm{N}=0\) in favor of a faster loop. (This could be called an "institutionalized bug" in FORTRAN.) After all, the FORTRAN people reasoned, we can always check if \(\mathrm{N}=0\) just before starting the loop, if we are worried about this case. But there is a better way; we can write:
\[
\begin{aligned}
& 10 \mathrm{~J}=1 \\
& 20 \mathrm{GOTO} 50 \\
& 30 \mathrm{Q}(\mathrm{~J})=\mathrm{P}(\mathrm{~J}) \\
& 40 \mathrm{~J}=\mathrm{J}+1 \\
& 50 \mathrm{IF} \mathrm{~J}<=\mathrm{N} \text { GOTO } 30
\end{aligned}
\]
thus having only three repeated statements (line numbers 30, 40, and 50) and a loop which works properly if \(\mathrm{N}=0\).

It might seem as if the above loop is violating a sacred precept by jumping into the middle of the loop (at line number 20). In fact, however, the problems associated with jumping into the middle of a loop do not apply to the special case of jumping to one of the incrementation and testing statements at the end of the loop, provided that we know what we are doing. (If we have a FOR loop in BASIC, we still can't jump from outside the loop to the NEXT statement at the end of it; we are merely talking about ways in which the FOR loop might be implemented.)

Let us now take up the general subject of implementation of loops in machine language.

In the first place, there are a few computers that perform certain loops in hardware. That is, there is a single instruction that performs an entire loop. On the Z 80 , the instructions LDIR, LDDR, CPIR, CPDR, INIR, INDR, OUTIR, and OUTDR are of this type. Single instructions that perform loops are also found on certain
big computers; thus the UNIVAC 1106 and other computers of the 1100 series have block transfer, search, and masked search instructions, and the now obsolete UNIVAC 1103 had a special instruction called "repeat" that caused the instruction which followed it to be repeated a specified number of times. The trouble with such instructions is that each of them is an implementation of only one specific type of loop, although an admittedly common one. For example, on the Z 80 , as long as the value of N is in the double register BC , we can perform the data-moving operation of table 1 by either of the sequences:

> LD DE,Q
> LD HL,P
> LDIR
or:

> LD DE,QEND
> LD HL,PEND LDDR
assuming that the arrays \(P\) and \(Q\) end at PEND and QEND respectively. (These two sequences correspond roughly to the second and fourth columns of table 1, respectively.) While this gives a significant speed improvement in this case, it is of no help if the repeated instruction, instead of \(Q(J)=P(J)\), is \(Q(J)=J\) or \(Q(J)=0\) or \(\mathrm{R}(\mathrm{J})=\mathrm{P}(\mathrm{J})+\mathrm{Q}(\mathrm{J})\), or if the count could have been kept in the B register while the C register is used to hold something else. The same sort of thing could also be done in one instruction on the UNIVAC 1106, using a block transfer instruction.
In the second place, even if an entire loop cannot be executed by means of a single instruction, some microcomputers have a single instruction which performs the functions associated with the loop index - that is, increasing it or decreasing it by 1 and then performing a conditional transfer. On the Z80, there is DJNZ, which decrements the \(B\) register by one and jumps (presumably back to the start of the loop) unless the B register has been decreased to 0 . On the Signetics 2650, there is BDRR, which does the same thing with any specified register; there is also BDRA, which performs a jump to an absolute rather than a relative address, and BIRR and BIRA, which increment in-
stead of decrementing. The EA9002's DRJ and IRJ are also similar. The 8080 , the 6800 , the 6502 , and the COSMAC, however, have no instructions of this kind, although it is a technique very common on big computers.
Even though there may not be a single instruction on your processor that decreases a register by 1 and also does a conditional jump, this method of ending a loop is the one that is the most common on small systems. It corresponds to the loop at the top of the third column in table 1. Typically, you use the B register on the 8080 and 6800 and the Y register on the 6502 . The decrementing instruction (DCRB on the 8080, DECB on the 6800, DEY on the 6502) sets the zero flag, so that a jump on nonzero (JNZ on the 8080 and BNE on the 6800 and 6502) can immediately follow. On the COSMAC, there is no zero flag; after decrementing, the register that was decremented must be moved to the \(D\) register before the branch on nonzero (BNZ).

One important difference between the typical loop and the one at the top of the third column in table 1 is that the movement of data in that loop proceeds backwards; that is, \(\mathrm{Q}(\mathrm{N})\) first, then \(Q(N-1)\), and so on. In many loops the logic makes this impossible, and in any event it is unnecessary. Even if we have a register which decrements to 0 during a loop, we usually have one or more further indices which are initialized at the beginning of the loop and which increase, rather than decreasing, every time we start a new iteration.
Figure 1 illustrates the progress of such a loop. The loop moves the string DATA from one place to another in memory; it is given for the 8080 by:

\author{
LOOP: LDAX D \\ MOV M, A INX D \\ INX H \\ DCR B \\ JNZ LOOP
}

Figure 1: Progress through a loop to move the string "DATA" from one place in memory to another.
where the registers \(B, D E\), and \(H L\) are presumed to be loaded before the loop starts. Specifically, register \(B\) is loaded with the number of characters to be moved (four, in this case); DE is loaded with the source starting address, or the address of the first character of the string in its old location; and HL is loaded with the destination starting address, or the address of the first character of the string in its new location. The six instructions of the loop are executed four times each, and the contents of the \(A, B, D E\), and \(H L\) registers and the source and destination string area are illustrated. In the case of the DE and HL registers, an arrow is drawn from the register to the cell with address \(\alpha\), where the number \(\alpha\) is currently in the given register. (We say that the register contains a pointer to that cell, or points to that cell.) The six instructions take 7, 7, 5, 5, 5, and 10 cycles respectively, giving a total
timing of \(39 n\) cycles for \(n\) characters to be moved; in this case it would be 156 cycles, or \(78 \mu\) s if a 500 ns clock is used. To this must be added, of course, the time taken for initialization; using LXID, \(\alpha\) and LXI H, \(\beta\) and MVI \(B, 4\), the total time would become \(93 \mu \mathrm{~s}\) in this case.

If you are new at writing assembly language code, do not worry if it takes you a while to get used to loops. Endless loops, and loops which are supposed to be done \(n\) times but which in fact are done either \(n+1\) times or \(n-1\) times, are quite commonly written by beginning programmers. The most important rules to remember are the following:
- When you jump back to the start of the loop, never jump back to the place where you set up the count or the starting addresses (registers \(\mathrm{B}, \mathrm{DE}\), and HL in the example above). This will always result in
an endless loop. You should jump back to the point immediately following this initialization, as it is called.
- Remember that sometimes a loop must start with the count set to N , sometimes to \(\mathrm{N}+1\), and sometimes to \(N-1\), depending on the logic. You should "walk through" your loops a few times when you are just starting out, until you are sure of the proper starting values.
- If you are using a step size greater than one, try not to test for equal or unequal. For example, if you are looping for \(\mathrm{J}=1\) to 10 by steps of two (FOR J=1 TO 10 STEP 2 in BASIC) then the values of \(J\) will be \(1,3,5,7,9,11\), and so on; if your test at the end of the loop is a test for \(J=10\), then \(J=10\) will never hold and the loop will become endless. A test involving \(>\) or \(<\) (such as \(\mathrm{J}<=10\)) will avoid this difficulty.

\section*{Morse Code Trainer}

\author{
Mark Bernstein Dept of Chemistry Harvard University \\ Cambridge MA 02138
}

A commonly suggested application for microprocessors is translating text to Morse code. The subroutine described in figure 1 translates letters into Morse code and drives a speaker to serve as a Morse code trainer. Minor changes to the speaker driver routine would enable a microcomputer to key a transmitter directly.

The main entry to the routine is at hexadecimal address 0180. When the routine is called, the letter to be transmitted must be stored in register \(A\) as a number between decimal 0 and 25: \(0=A, 1=B\) and \(25=2\). By subtracting hexadecimal 41 from an ASCII letter code, this routine may be made compatible with ASCII text handling programs.

The program in listing 1 is relocatable. A data table (table 1) is expected to start at hexadecimal location 0080. The table may be relocated by changing the address stored in hexadecimal memory locations 0181 and 0182 to point at the location before the first word of the table.

Since the translation routine alters the contents of all registers, the user must write the mainline logic defensively. Registers containing important information must be saved by the user before calling the Morse code translator.

\section*{Intermediate Code}

The heart of the Morse code translator is a binary representation of Morse code, illustrated in figure 2. This representation is stored in a data table for each letter, starting at hexadecimal 0080. The first letter's code is stored in the first position, the second letter's code in the next position, and so forth through the alphabet.

The intermediate code (stored as a binary coded decimal number) is very simple. The four high order bits define the number of dots or dashes in the letter. The four low order bits determine the sequence of dots and dashes for the letter. The first dot or dash is stored in the low order bit, with a 1 indicating a dash and a 0 indicating a dot.

Figure 1: Flowchart for the Morse code translation routine.

Figure 2: Intermediate code used by the ASCII-to-Morse-code translator. The data is stored in binary coded decimal (BCD) format. The high order bit indicates how many characters are in the letter; the low order bit defines whether they are dashes or dots.

Figure 3: Simple circuit for connecting a speaker to the computer output port for listening to computer output in Morse code.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Hexadecimal Address & & Hexadecim Code & & Mnemonic Op Code & Operand & Commants \\
\hline 0178 & 16 & & & TAB & & entry for byte splitter \\
\hline 0179 & 84 & OF & & AND & & get low byte \\
\hline 017 B & 54 & 54 & & LSR & LSR & shift right four times \\
\hline 0170 & 54 & 54 & & LSR & LSR & to get high order byte \\
\hline 017 F & 39 & & & RTS & & \\
\hline 0180 & CE & - 00 & 7F & LDX & & main entry: point \(X\) to byte before start of data table \\
\hline 0183 & 08 & & & INX & & \\
\hline 0184 & 4A & & & DEC & A & point \(X\) to Ath entry \\
\hline 0185 & 2A & FC & & BPL & & \\
\hline 0187 & A6 & 00 & & LDA & A & fetch intermediate code \\
\hline 0189 & 8D & ED & & BSR & & call byte splitter (0178) \\
\hline 018B & 5D & & & TST & B & all signals sent? \\
\hline 018C & 26 & 01 & & BNE & & \\
\hline 018E & 39 & & & RTS & & all done \\
\hline 018F & 85 & 01 & & BIT & A & check lowest bit of \(A\) \\
\hline 0191 & 27 & 04 & & BEQ & & jump if zero (dot) \\
\hline 0193 & 8D & - 08 & & BSR & & send a dash \\
\hline 0195 & 20 & 02 & & BRA & & skip \\
\hline 0197 & 8D & - 17 & & BSR & & send a dot \\
\hline 0199 & 44 & & & LSR & A & shift A to get next signal code \\
\hline 019A & 5A & & & DEC & B & \\
\hline 019 B & 20 & EE & & BRA & & start another pass through loop \\
\hline 019D & CE & - 20 & 00 & LDX & & load timer for a dash \\
\hline 01A0 & OF & & & SEI & & start tone here \\
\hline 01 A 1 & 09 & & & DEX & & \\
\hline 01A2 & 27 & 05 & & BEQ & & all done? \\
\hline 01A4 & 7C & - 80 & 06 & INC & & increment PIA \\
\hline 0147 & 20 & F8 & & BRA & & start a new loop \\
\hline 01A9 & CE & - 10 & 00 & LDX & & start a pause after tone \\
\hline 01 AC & 09 & & & DEX & & loop for a while \\
\hline 01AD & 26 & FD & & BNE & & \\
\hline 01AF & 39 & & & RTS & & tone finished \\
\hline \(01 \mathrm{B0}\) & CE & - 10 & 00 & LDX & & load timer for a dot \\
\hline \(01 \mathrm{B3}\) & 8D & EB & & BSR & & go to tone generator \\
\hline 0185 & 39 & & & RTS & & \\
\hline
\end{tabular}

Listing 1: Morse code conversion program written in 6800 assembler code. This program can be relocated without any change.

The 2's bit gives the second dot or dash, if necessary, and so forth. For example, the code for \(A(-\)) is hexadecimal 22 (0010 0010).

\section*{How it Works}

The subroutine in listing 1 loads the index register with the starting address of the intermediate code table. The code indicated by register \(A\) is fetched, and the four high order bits are split off by a call to the subroutine at hexadecimal 0178 and stored in register B.

The low order bit of register \(A\), which contains the code for a dot or dash, is now tested. If a dash is to be sent, the dash generator routine is called (hexadecimal 019B). A dot is handled by the dot generator routine (hexadecimal 01B0). These routines drive a speaker. They may be rewritten to drive a transmitter interface.

The speaker driving routines begin by setting a timing value into the index register. The values given in listing 1 (dot \(=1000\), dash=2000) result in sending speeds of about seven words per minute on my computer using a 614 kHz clock speed. Different speeds and dot-to-dash ratios may be obtained by changing these values.

The speaker is actually driven by the instruction sequence beginning at hexadecimal 01A0. This loop subtracts 1 from the index register and adds 1 to an output port. The use of a peripheral interface adapter (PIA) is assumed by this program. The address of the output port is stored in hexadecimal locations 01A5 and 01A6 until the \(X\) register is 0 . The initial value of the \(X\) register determines the length of the tone. The program assumes that the appropriate output port has been initialized. By adding 1 to the output port each time the routine loops, the low order bit (PBO) changes very rapidly, the second bit (PB1) only half as quickly, and so forth; each bit gives a different tone. The speaker is connected to one output bit via a buffer, which provides sufficient drive capacity to power the speaker arrangement in figure 3. Users may select any bit to fit their own tonal preference.

After each dot or dash is sent, the main subroutine performs a logical shift right on register A. This places the next dot or dash code into the low order bit. Register \(B\) is decremented, and the program tests whether it is 0 . If so, the entire letter has been sent. If register \(B\) is not 0 , the program loops
until all dots and dashes have been sent. Control is then returned to the user's mainline program.
\begin{tabular}{|c|c|c|c|}
\hline Hexadecimal Address & Hex Code & Letter & Morse \\
\hline 0080 & 22 & A & - - \\
\hline 0081 & 41 & B & -•• \\
\hline 0082 & 45 & C & -•-• \\
\hline 0083 & 31 & D & - \\
\hline 0084 & 10 & E & . \\
\hline 0085 & 44 & F & -•- \\
\hline 0086 & 33 & G & --. \\
\hline 0087 & 40 & H & . . . \\
\hline 0088 & 20 & , & , \\
\hline 0089 & 4E & J & ---- \\
\hline 008A & 35 & K & -. \\
\hline 0088 & 42 & L & - \(\cdot\) \\
\hline 008C & 23 & M & - - \\
\hline 008D & 21 & N & -. \\
\hline 008E & 37 & 0 & - \\
\hline 008F & 46 & P & - - \\
\hline 0090 & 4B & Q & - \\
\hline 0091 & 32 & R & .-. \\
\hline 0092 & 30 & S & . . . \\
\hline 0093 & 11 & T & - \\
\hline 0094 & 34 & U & . - \\
\hline 0095 & 48 & \(V\) & . . - - \\
\hline 0096 & 36 & w & - \\
\hline 0097 & 49 & \(\times\) & -..- \\
\hline 0098 & 4D & \(Y\) & -. -- \\
\hline 0099 & 43 & \(Z\) & - - . \\
\hline
\end{tabular}

Table 1: Intermediate code data table is expected by the program to start at hexadecimal memory location 0080.

\section*{BYTEs Bits}

\section*{Inexpensive \\ Communications \\ Via Meteor Trails}

The hundreds of millions of meteors that enter the earth's atmosphere every day leave in their wake a very inexpensive communications medium - the meteor trail. This band of ionized particles is an effective alternative to satellites for communication. Meteor trails can be used to relay data on icebergs, pollution, earthquakes, oil reserves, and can link remote villages and distant sources of supplies and emergency assistance.

Meteor burst transmission has proven reliable and costeffective for the snow telemetry program operated by the US Department of Agriculture's Soil Conservation Service. By transmitting snowfall data from remote locations, the program has
eliminated costly manual measurements.

Meteor burst transmission systems work in several stages. Remote sensors gather data while a microprocessor-controlled station emits a continuous radio signal, which bounces off a meteor trail whenever one occurs within range. When this signal reaches a transceiver at a remote site, data is transmitted via the meteor trail to the central station.

For more information, contact SRI International, 333 Ravenswood Ave, Menlo Park CA 94025.

> Texas Instruments Has an Award Winning Bubble Memory

\section*{Texas Instruments has} been awarded the 1979 Information Product of the Year Award for its Models 763 Bubble Memory Data

Terminal and 765 Portable Bubble Memory Data Terminal. Both terminals have a full 128-character alphanumeric keyboard. Up to 80,000 characters can be collected and stored in the nonvolatile bubble memory, then transmitted at rates from 110 to 9600 bits per second (bps) to a host computer system. Both units have a quiet 30 characters per second (cps) print speed and built-in acoustic couplers.
A bubble memory is a small electromagnetic circuit that stores digital information by changing the magnetic polarity of a thin, crystalline film. The bubbles are cylindrical magnetic islands polarized in a direction opposite from that of the film. Bubble memory has no moving parts, and, because it works magnetically, retains information when the power is turned off. If offers higher access speeds, smaller size, and less weight and power consumption over paper tape, cassette and floppy disk systems. Bubble memory
terminals can access any indexed record in memory in less than \(15 \mathrm{~ms}-10\) times faster than on floppy disk. If the data location is unknown, the character string search speed is 1000 cps, about 4 times the speed of a cassette search.

For more information, contact Texas Instruments, POB 1444, M/S 7784, Houston TX 77001.

\section*{Coming up in BYTE}

In the January 1980 issue of BYTE, the theme is "The Domesticated Computer" the idea of using computers around the home in various forms. A key part of that theme is played by Steve Ciarcia's article (written with some research aid from Ira Rampil) on adapting a widely sold and massproduced household electrical controller to the typical personal computer.

\title{
Thirty Days to a Faster Input
}

\author{
Arthur Armstrong 3345 Moore St Los Angeles CA 90066
}

Remember the last time you typed something into your computer? Did you look at the text to find out what to type, then at the keyboard to find out how to type it, then at the screen to see what you had typed? If you did, then it's time you learned to touch type. This is simply a means of learning the positions of the keys so well that typing becomes unconscious and automatic, and the material seems to flow directly from your mind to the page. The mechanical process becomes completely removed from the cerebral process, much like a musician playing an instrument.

Learning touch typing is not difficult. (Consider the millions of people who have mastered it.) All it takes is a convenient and permanent assignment of fingers to keys, some way of measuring progress, and a lot of systematic practice. Fortunately for you, your computer can perform all the tedious error checking and bookkeeping while you concentrate on the process. The program listed at the end of this article will help you become, if not rich and famous, at least less frustrated in your typing.

Admittedly, the traditional keyboard is not an efficient one. However, if that is what

Figure 1: Standard touch typing finger assignments for the conventional typewriter keyboard.
you have, you should use the conventional finger assignment shown in figure 1. Naturally, the keys work no matter what finger you use, but this scheme seems comfortable. The important thing is to always use the same finger for each key. Otherwise the process cannot become automatic.

The program will ask you what characters you want to practice. This allows you to learn groups rather than to attempt the entire keyboard at once. One good way is to start with the group ASDFG. When you have mastered these learn HJKL; Then combine the entire row ASDFGHJKL; (Use lower case if your keyboard makes this easier. Don't complicate things with the shift key until later.) As you type, keep the tips of the fingers resting on the "home" keys ASDF JKL; This gives you a fixed reference for reaching other keys. After you have gained facility with the home row, use groups that will allow you to keep a reference on the home keys. Try groups like QWASZX or TYGHBN. This gives you practice in reaching up and down the board. If you try to learn each row separately, you will lose the sense of distance between rows.

The program then asks, "How many in each word?" This means how many of the characters from your group should be presented at one time. When starting a new group of keys, use a word length of one character. When you have learned the individual characters, increase the word length using the same group: this will allow you to develop rhythm. The time interval between keystrokes should always be the same, and don't worry about speed. If you work on accuracy and rhythm, the speed will develop. As you gain facility, use long word lengths (20 to 30) and include spaces in your groups. This gives a sense of typing sets of words.

\section*{Stereotyping}

The program asks if you want "echo." This means do you want to see the letters you are typing. Perhaps it is better to use echo until you have gained confidence but your goal should be to type with no echo and without looking at the keyboard. If you find yourself peeking at the board use smaller groups of letters. Learn to type while looking only at the text you are copying.
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Notes On the Program} \\
\hline Line Numbers & Commentary \\
\hline 100-130 & Establishes the values for one set of trials. WL is word length. NT is number of trials. \(E\) is echo flag. \\
\hline 200-380 & Constitutes the main loop preseriting the trials. Neis themumper of keystrokes possible. \\
\hline 220 & Sets AS to a null string. 230-260 select a random set of characters and form the word, \(A \$\), to be presented. \\
\hline 250 & A catenation of strings. MIDS (CS,R,1) selects ane character of \(C \$\) from position \(R\), \\
\hline 270 & Prints the word. \\
\hline 300-370 & The input loop. \\
\hline 310 & Gets one character from the keyboard ldecimal ASCII, no parity). \\
\hline 315 & Converts the value to a string. \\
\hline 320 & Checks for echo and prints the character if echo is on. \\
\hline 350 & Compares the input character with the appropriate character in the test word. If they are not the same, the program jumps to line 500 for error processing. If the character is correct, line 360 tallies the number right (NR) and 370 returns for the next input character. \\
\hline 375 & Checks the echo flag and prints a new line if echo is on. \\
\hline 400.430 & Presents the results of the trials. 400 calculates the percentage of correct keystrokes based on number right and number possible. \\
\hline 405-410 & Tabutates the characters missed. \\
\hline 500.540 & Keeps score on wrong characters. The missed character is in AS pointed to by I. This character is compared with the characters in CS using \(J\) as a pointer. When a match is found, line 515 tallies the miss in array \(A\). \\
\hline 520 & Teils you which character you missed. \\
\hline 530 & A delay loop to allow time torespond to the error notice. \\
\hline 540 & Goes back to the main loop for the next trial. \\
\hline
\end{tabular}
```

C FEM TYPING DFILL
20 FEI AFT AFMSTPONG
30 FEM 9/3/77
50 CLEAPZOQ
100 INPUT"WHAT CHAFACTEFS DO YOU WANT"';C\&
105 L=LEN(C$): DIMA(L)
11E INPUT'HOW MANY IN EACH WOFE";'kL
120 INFUT'DO YOU WANT ECHO'';AS
125 I FLEFTS(A&, 1)='Y"'THENE=!
130 INPUT'HOW MANY TFIALS";NT
200 FOPT= 1TONT
210 NP=NP+WL
220 AS=""
230 FOFII = 1 TOWL
240 F=INT(L* FND(1)+1)
250 A$=A$+MID$(C$,F,M)
260 NEKT
270 PFINT: PFINTAS
300 FOFI=1TOWL
310 WAITD, , 1:X=INP(1)ANDI27
315 EL=CHPS(X)
320 I FE= DTMEN350
330 PRINTES;
350 IFES<>MIDS(AS,I,1)TMEN5CD
362 N R=N F+1
37E NEXT
375 I FE=1 THENPPINT
300 NEXTT
400 PRINT: PFINT"YOLP SCOPE IS ";INT(100*NF/NP);"\"
4 0 2 ~ I ~ R N P = N P T R E N 4 1 5 ~
405 PRINT'ERFOFS:":FOFI=1TOL:IFA(I)=0THEN410
407 PFINTMID&(CE,I,1);A(I)
410 NEXT
415 PPINT: INPUT"AGAIN''; AS
420 IFREFT$(AS, 1)= "Y"THENFLN
4 3 0 ~ E N D ~
500 FOPJ=1TOL
510 IFMIDE(CS,J,1)<<MIDS(A\$, I, 1) THEN NEXT:GOTO520
515 A(J)=A(J)+!
520 PFINT: PPINT"ERFOF ON ";MIDS(AS,I,|)
530 FOPI=1TO300:NEXT
540 GOTO 38 \&

```

Listing 1: A BASIC program designed to teach touch typing. The user inputs the subset of typing characters to be used in the drill, and the program responds with random combinations of these characters. The user then attempts to duplicate this string of characters by touch typing only (ie: without looking at the keyboard). Any mistakes are immediately signalled by the computer, and the score is printed out. The program was written for MITS 3.2 BASIC and requires 8 K of programmable memory. Any BASIC package that features numeric arrays, strings, and a random number generation capability will suffice.

BLN
What Chapacteps do you want? asdfghukl;
HOW MANY IN EACH WOFD? 6
DO YOU WANT ECHO? YES
HOW MAVY TFIALS? 3

\section*{SKFHKS}

SD
EPPOR ON K
G. FGLF
G.FGLF

GFGDCA
GFGDDS
ERPOP ON A
YOUF SCOPE IS 66 2
EPPORS:
A 1
K 1
AGAIN? YES
WAT CHAPACTEPS DO YOU WANT? ASDFGHJKL;
HOW MANY IN EACH WORD? 6
DO YOU WANT ECHO? NO
HOW MANY TFIALS? 3
AAAS:J
G. SDSF

EPPOF ON \(S\)
AAFFGF
EPPOP ON G
YOUR SCOPE IS \(77 \%\)
EPPOPS:
51
G 1
AGAIN? YES
W!AT CHAPACTEFS DO YOU WANT? SG
HOW MANY IN EACH WOFD? !D
DO YOU WANT ECHO? N
HOW MANY TPIALS? 2

SGSSGSSGGS

GGGSGSGSSG
YOUP SCORE IS 100 \&

AGAIN? NO
Listing 2: A sample touch typing program.

The program then asks, "How many trials?" This is the number of times the program will present you with a word before telling you your score.

After you have finished the set, the program will indicate your score and show you a tabulation of your errors. Note that the program checks each character as it is typed in. It doesn't wait for you to finish the word. As soon as you miss a character, the program tells you which one it was and gives you another word. This is to prevent learning wrong responses.

The program was written in MITS 3.28 K BASIC but should be easy to modify for other dialects if necessary.

One extension would be to modify the program to select words or phrases from DATA statements. This would allow you to practice on "real" words instead of random strings.

In any event, I hope this turns out to be your type of program!■

\title{
What's New?
}

\section*{SYSTEMS}

\section*{C4P MF Personal Computer}

Ohio Scientific has introduced the C4P MF computer which includes a 32 by 64 character display, a 24 K byte static random access memory which is expandable to 48 K bytes and two 5 -inch floppy disks. The system features a line printer and modem interface, keyboard with lowercase, and software including a word processor and library of program development tools, highspeed animation, sound output, a digital-to-analog (\(D / A\)) converter for music and voice output, joystick interfaces, a home control operating system, an AC remote control interface, and a home security and fire alarm interface.

The price is \(\$ 1695\). For further information, contact Nancy M Valent, Ohio Scientific, 1333 Chillicothe Rd, Aurora OH 44202.

Circle 578 on inquiry card.

\section*{System 8000 for Small Business}

This microprocessor-based small system incorporates \(\mathrm{S}-100\) bus architecture and up to 64 K bytes of programmable memory. Called the System 8000 , this product includes a \(\mathrm{Z80}\)-based processor, a video terminal, a dot matrix printer, and a floppy disk subsystem ranging in storage from 180 K bytes to 2 M bytes. The video terminal has a 12 -inch screen displaying 80 characters
on each of 24 lines. The printer has a 7 by 7 dot matrix with bidirectional printing capability and rear tractor feed. Software used by the System 8000 consists of the CP/M operating system with an interpreted or compiled BASIC language. Some of the software options include FORTRAN, COBOL and APL. For further information, contact Computer Markets, 75 the Donway W \#910, Don Mills, Ontario, CANADA M3C 2E9.

Circle 579 on inquiry card.

\section*{Z80 Microprocessor-Based System}

Informer 3's hardware consists of a Z80 microprocessor; 48 K bytes of programmable memory; two RS-232 serial interface ports; one parallel interface port; a software monitor in 2 K bytes of programmable read-only memory; 8 -inch floppy disk; and a 24 -line by 80 -character video terminal. The software includes Floppy BASIC (an extended disk BASIC); diagnostics; and basic utilities, which include file copy and disk copy for either single or multiple drive systems. The business software includes inventory management, payroll, accounts payable and receivable, word processing, customer mailing list, general ledger, program development, and others.

The Informer 3 system sells for less than \(\$ 4000\). For further information, contact Digital Sport Systems, Division of Rohner Machine Works, 7th and Elm, W Liberty IA 52776

Circle 580 on Inquiry card.

\title{
Whats Now? \\ PERIPHERALS
}

\section*{Percom Adds Music Board to SS-50 Product Line}

Percom Data Co has added the Newtech Model 68 Music Board to its SS-50 bus product line. The Music Board produces computer generated sounds such as melodies and rhythms, computer game sound effects, Morse code sounds, audible prompts for interactive computer operation, train sounds for model railroading, play-along and sing-along music, and sounds for many other applications.

The Music Board uses a single I/O (input/output) slot of Southwest Technical Products' 6800 computer and is supplied with a comprehensive user's manual that includes a theory of operation, a BASIC program for writing music scores, and an assembly language routine for program execution. The card includes address decoding, digital-toanalog conversion, audio amplification circuits, and its own speakers. The audio circuit includes a volume control.

An auxiliary jack for connecting the ouput audio to a remote speaker or audio system is mounted at the top of the card.

Also available, on either cassette or 5 -inch disk, is Americana Plus, 14 tunes including "The Entertainer" and Chopin's "Minute Waltz." The cassette version of Americana Plus is compatible with Percom's CIS-30+ cassette and data terminal interface unit and the SwTPC AC-30 unit. The disk version runs on Percom's LFD-400 system using MINIDOS-PLUSX. The Americana Plus programs are in machine language and do not require an assembler or interpreter program.

The Music Board sells for \(\$ 59.95\) assembled and tested. The cassette version of Americana Plus (MC-1SW) is priced at \(\$ 15.95\), and the disk version (MD-1PC) is \(\$ 19.95\). For further information, contact Percom Data Co, 211 N Kirby, Garland TX 75042.

Circle 533 on inquiry card.

\section*{Thermal Strip Printer}

The Model STSP-1 is a serial thermal strip printer which responds to an ASCII input by printing uppercase 5 by 7 dot matrix characters on a narrow paper strip. Originally designed for use with portable battery-powered items, the control circuit uses CMOS integrated circuits for low power consumption. The mechanism has only one moving part, and the printing process is silent. The last fifteen characters can be easily seen

in the viewing area of the paper cassette. The parallel input port is at 5 V CMOS level. A busy line is provided to simplify interfacing.
The STSP-1 mechanism with control interface is priced at \(\$ 225\); the STSP-1E mechanism with control interface, enclosure, power supply, and input cable sells for \(\$ 295\); and a package of ten thermal print tape cassettes is \(\$ 25\). For further information, contact Prentke Romich Co, RD 2, POB 191, Shreve OH 44676. Circle 535 on inquiry card.

\section*{Buffered Tabletop Teleprinter}

Teletype Corp has announced a tabletop buffered teleprinter featuring a microprocessor-based controller. The
teleprinter comes with a send, edit and receive buffer, and with extensive useractivated options that make it attractive for a variety of applications. The tabletop Model 43 BSR (buffered send/receive) provides 16 K characters of solid-state storage. It can automatically send and receive data via its buffer at up to 180 characters per second. Simultaneously, data can be entered and edited off-line for future transmission.

The 43 BSR is designed for switched network timesharing and message switching applications where it can reduce transmission costs and computer connect time. The 43 BSR is also ideal for data base inquiry systems where several inquiries can be entered into the buffer off-line and then automatically sent to the host computer, which sends back information after each inquiry.

The price of the 132 -column pin-feed teleprinter with 16 K buffer is \(\$ 2483\). In an 80 -column friction feed configuration, the price is \(\$ 2505\). For further information, contact Teletype Corp, 5555 Touhy Ave, Skokie IL 60077. Circle 534 on inquiry card.

\begin{abstract}
Where Do New Products Items Come From?
The information printed in the new products pages of BYTE is obtained from "new product" or "press release" copy sent by the promoters of new products. If in our judgement the information might be of interest to the personal computing experimenters and homebrewers who read BYTE, we print it in some form. We openly solicit releases and photos from manufacturers and suppliers to this marketplace. The information is printed more or less as a first in first out queue, subject to occasional priority modifications. While we would not knowingly print untrue or inaccurate data, or data from unreliable companies, our capacity to evaluate the products and companies appearing in the "What's New?" feature is necessarily limited. We therefore cannot be responsible for product muality or company herformance.
\end{abstract}

\title{
What's New? \\ PERIPHERALS
}

\section*{Disk Module Doubles Disk Storage of Vector Graphic Systems}

A 630,000 character dual floppy disk module has been announced by Vector Graphic Inc, 31364 Via Colinas, Westlake Village CA 91361. Called MICRO-STOR, this unit is used to expand Vector Graphic MZ and Memorite II systems from 2 to 4 disk drives. The unit features 2 Micropolis MOD II quad-density disk drives in an attractive chassis, using the standard 5 -inch, 16 -sectored disk. The module simply plugs into the existing disk controller board. The operating systems presently in use on Vector Graphic hardware were prepared in advance to make use of 4 drives.
Tested and assembled, the MICROSTOR is priced at \(\$ 1395\).

Circle 525 on inquiry card.

\section*{Intelligent Printer Features 96-Character Set}

The Trendcom 100 Intelligent Printer provides the microcomputer user with 40 -column hard copy on \(41 / 2\) inch (11.43 cm) wide paper. Interfaces are available for TRS-80, Apple II, PET and Sorcerer computers. The Trendcom 100 features bidirectional 40 character per second printing with a full 96 -character ASCII set, including upper and lowercase letters, numerals, and punctuation marks. The 5 by 7 dot matrix characters are printed with either black or blue images, depending upon the paper used. The microprocessor-controlled unit is quiet, since it uses no print hammers, gears, or drive belts. This new printer uses a thick film thermal printhead to eliminate wear and reliability problems.
The Trendcom 100 is fully enclosed in a metal and high-impact plastic case and is available in both 115 V and 230 V AC versions. The printer is priced at \(\$ 375\). For further information, contact Trendcom, 484 Oakmead Pky, Sunnyvale CA 94086.

Circle 526 on inquiry card.

\section*{Four Printers from Dataroyal}

These versions of the IPS-7000 series feature a 9 -wire print head, a 7 by 9 dot matrix with full lowercase descenders, a 96 American Standard Code for Information Interchange (ASCII) character set that prints at 200 characters per second, and includes an 8-bit microprocessor. Models 7048 and 7248 feature a 500 -character circular buffer, and Models 7049 and 7249 offer a 3500 character buffer. The new models include programmable vertical format control, an audible alarm, and a self-test switch.

The 7048 serial and 7248 parallel models are \(\$ 1594\), and the 7049 serial and 7249 parallel models are \(\$ 1669\). For further information, contact Dataroyal Inc, Main Dunstable Rd, Nashua NH 03061.

Circle 527 on Inquiry card.
it suitable for fast and accurate entry, and high-intensity blink or nondisplay (zero intensity) modes.

The terminal also features a programfunction key mode as well as column and field tabs. All of the basic elements needed for up-to-date, fast data entry and data inquiry are included in the video terminal, including an enhanced separate numeric keypad. The Hazeltine 1420 operates with a standard EIA RS-232 interface with eight transmission rates up to 9600 bits per second (bps) which are switch selectable and accommodate all 128 ASCII codes.

The microprocessor design of the terminal permits utilization of fewer parts and increases its dependability. Its state-of-the-art design results in cool operating temperatures and makes possible the elimination of a fan.

For further information, contact Hazeltine Corp, Computer Terminal Equipment, Greenlawn NY 11740.

Circle 528 on inquiry card.

\title{
What's New?
}

\section*{Add-on Disk Drives for TRS-80}

A family of add-on disk drives for the TRS-80 has been introduced by Microcomputer Technology Inc, 2080 S Grand Ave, Santa Ana CA 92705. The MTI single-head disk drive family
(TF-X) offers the user a choice of MPI, Pertec, or Shugart SA400 5-inch floppy disk drives. The Shugart drive is the same device offered by Radio Shack, while the Pertec provides quieter operation and the use of both sides of the disk. The MPI unit provides additional features normally found in the 8 -inch size disk drives, such as door lock and automatic disk ejection.
Prices for the TF-X single-head units start at \(\$ 379\). MTI's dual-headed units (TDH-X) provide the same capacity as two single-headed drives and are priced at \(\$ 675\).

Circle 529 on inquiry card.
Light Pen for Radio ShackTRS-80

This self-contained light pen which plugs directly into the TRS-80 bus con-

\section*{Pen Plotter with Built-in Microcomputer-Based Controller}

The Model 1553 is a compact, portable, desktop Digital Incremental Plotter with an integral microcomputerbased controller. The built-in RS-232 interface provides for on-line, off-line or remote operation via communication
lines, as a timeshared terminal.
The unit's high speed (10 inches per second (ips) along axes, 14.14 ips diagonal movement) and the intelligence of the controller (hardware symbol and character generation, circle and arc generation, dot and dash generation, scale and rotate), make it suited for business graphics, process control and scientific analysis plotter applications. The resolution is 0.0025 inch for excellent line quality. A universal pen holder and dynamic adjuster allow the use of ballpoint, liquid roller, and fiber tip pens. Pen type and color changes can be accomplished easily during a plot through programmable plotter pause commands.

The price of the Digital Incremental Plotter is \(\$ 5950\). For further information, contact Nicolet Zeta Corp, 2300 Stanwell Dr, Concord CA 94520. Circle 531 on inquiry card.

\section*{Microprocessor-Based Cassette Terminal Features NCR Compatibility}

This NCR-compatible, microprocessor-based cassette terminal is for applications including data communications, data logging, and program loading. The MFE Model 5450VRL Microprocessor Cassette Terminal is an 8080-based data storage system that features an optional variable record length read capability for compatibility with NCR's variable block length systems. The standard 5450 is compatible with Sweda, Texas Instruments, and all other RS-232-compatible systems. Accommodating ANSI/EMCA-compatible cassettes, all MFE terminals automatically perform read after write, cyclic redundancy check, and parity error checks to insure data integrity.

The storage capacity for the MFE 5450VRL varies with record length; for the 5450 , capacity is 442 K formatted characters. The MFE product line also includes the Model 5000 (221 K characters), and the 2500 (350 K characters). All, except the 2500, incorporate high-speed skip, search, and edit capability. The terminals operate in full and half duplex modes; full duplex provides echoplex operation for each character. Dual RS-232C I/O (input/output) interfaces are standard; 20 mA current loop is optional.
MFE Microprocessor Cassette Terminals are priced from \(\$ 1995\) each for the 5000 and 5450 , and from \(\$ 1190\) for the 2500 ; the VRL option for the 5450 is \(\$ 200\). For further information, contact MFE Corp, Keewaydin Dr, Salem NH 03079.

Circle 532 on inquiry card.

\title{
Whats New?
}

\section*{PERIPHERALS}

\section*{Miniature Printer Prints Text and Graphics}

Called the ESP-40, this miniature printer can print images transmitted by digital facsimile equipment or can be used with any keyboard to form a lowcost printer terminal. The ESP-40 utilizes a nonimpact matrix printing process, and prints on electrosensitive paper 4 inches (10.16 cm) wide at rates up to

280 characters a second. A built-in microprocessor with a 320 -character buffer memory enables the unit to print upper and lowercase characters (7 or 9 dots high) in a variety of styles and widths under program control. Between 5 and 20 characters per inch can be printed, and characters of different widths can be printed on the same line.
For plotting diagrams, the buffer output is applied directly to the printhead.

This enables up to 8 vertical dots to be printed at 240 printhead positions across the width of the paper, and in this mode the line shift is 8 dots high. The unit can plot curves and circles with great accuracy, and produce maps, drawings, and copies of photographs as well as diagrams. The printing mechanism is controlled by a timing disk which synchronizes the printhead with the data buffer. This ensures that the quality of printing is unaffected by changes in voltage or in mechanical friction.
The ESP- 40 is 8 by 8.3 by 4.1 inches (20.32 by 21.08 by 10.41 cm) without the cooling fan. An electronic watchdog monitors all functions and sounds an alarm in case of impending or actual failure. Used with a hand-held keypad, test routines for fault diagnosis are provided by the on-board software. For further information, contact English Numbering Machines Ltd, Printer Div, Queensway, Enfield EN3 4SB, Middlesex, ENGLAND.

Circle 536 on Inquiry card.

New Terminal Fully Compatible with DEC VT-100

The DT80/1 video terminal offers full compatibility with Digital Equipment Corporation's VT-100. A key feature of the DT80/1 is its ability to interface with a printer in three different modes: on-line as data arrives; as a printer controller; and as a source for feeding data from the screen directly to the printer. The terminal offers a special display tube saver and self-diagnostics, and is protected by a one-year warranty.
For optimum space flexibility, the DT80/1 has a detachable keyboard. The capacity of its video screen is 24 lines by 80 or 132 characters, with light-emitting diode indicators for operator awareness and status. The DT80/1 screen also offers such functions as underline, blink, and dual-intensity. In addition, the user may employ a split screen, double-high
or double-wide characters, composite video input and output, and limited graphics. Reverse video is also keyboard selectable.

Other user convenience features include a typewriter-style keyboard, fixed and settable tabs, and bidirectional smooth scrolling. Internally, the DT80/1 houses a large-scale integrated technology video controller with two serial I/O (input/output) ports, which operate asynchronously with either RS-232C or 20 mA current loop. Communication speeds are up to 19,200 bits per second (bps).

For more information, contact Datamedia Corp, 7300 N Crescent Blvd, Pennsauken NJ 08110.

Circle 537 on Inquiry card.
inches (12.7 cm) in diameter.
The Model 730s can handle payroll checks on preprinted forms, inventory listings on computer-grade fanfold paper, direct-mail letters on cut sheets and general information on roll paper. Some other applications include electronic mail, message logging. technical and scientific data logging and reservation systems.
These units weigh less than 10 pounds (4.5 kg) and measure 14.5 inches (36.8 cm) wide by less than 12 inches (30.5 \(\mathrm{cm})\) deep and less than \(5(12.7 \mathrm{~cm})\) inches tall. The parallel printers are \(\$ 995\) and the serial printers are \(\$ 1045\). Contact Chuck Clemente or Sterling Hager at Centronics, Hudson NH 03051.

Circle 538 on Inquiry card.

\title{
Whatis Now?
}

\section*{SOFTWARE}

\section*{Pascal Business Software}

A fully integrated system of Pascal business accounting packages has been announced by PS inc, Fargo ND. Standardized on the UCSD implementation of the language, the software includes a general ledger package that permits a company to name and number over 1000 of its own accounts, and to generate financial reports for the overall operation and for separate profit
centers. Accounts payable with aging and cash requirements reporting; accounts receivable with aging and sales analysis; order entry; and inventory control are all tied into the general ledger. It is menu-oriented for ease of training and use.
PS inc can supply their software on floppy disk or cartridge disk media.

For more information, contact PS inc, 619 NP Ave, Fargo ND 58102.

Circle 551 on inquiry card.

\section*{Macroassembler and Text Editor for PET, Apple II or SYM}

The 6502 Macroassembler and Text Editor (ASSM/TED) is written specifically for the PET, Apple II, and SYM microcomputers. This software package was written in assembly language and occupies 8 K bytes of memory starting at hexadecimal location 2000. ASSM/TED provides 27 commands and 20 pseudo operations. Specific features include macroinstructions and conditional assembly support;
extensive text editing commands (which include automatic line numbering, and string search and replace); tape load; record and append commands; vectors for interfacing to disk systems; free format source input; source-code syntax similar to MOS Technology specifications, and other functions.
The user manual and cassette tape in either PET, Apple II or SYM (HS) format are available for \(\$ 35\) plus \(\$ 2\) for shipping and handling. For further information, contact C W Moser, 3239 Linda Dr, Winston-Salem NC 27106.

Circie 552 on inquiry card.

\section*{Pascal for North Star Horizon}

North Star Computers Inc has announced that Pascal is now available for use with the North Star Horizon computer and Micro Disk System (MDS). North Star Pascal incorporates the complete UCSD Pascal program development system. North Star's version of Pascal includes such standard language features as the four elementary data types: real and integer numbers, boolean (true and false), and char (characters). The programmer may also define custom data types. Both elementary and programmer-defined data types may be organized into arrays, records, sets, or sequential files.

Pascal programs are easily understandable since descriptive names may be given to variables, constants, procedures, and functions within a program. Several types of loops and two conditional statements are provided to control program execution. A restricted form of GOTO is also available. In addition, North Star Pascal includes several extensions which ease the task of writing major business and personal programs.

The North Star Pascal package includes its own operating system. Pascal programs are compiled into fast executing p-code and are executed at
runtime by a program which simulates the operation of a hypothetical computer called the P -machine. The program development system is available on two single-density 5 -inch disks or one double-density disk. Software provided with the system includes the \(P\)-machine simulator, Pascal operating system, Pascal compiler, and a screen-oriented text editor. A line-oriented text editor is also included with the system for use in situations where a suitable video terminal is not available.
For advanced applications, an auxiliary Pascal software package is available, containing a special assembler and numerous utility programs. With the assembler, it is possible to generate machine code procedures and functions which may be linked into compiled Pascal programs prior to execution. The auxiliary Pascal software package supplements the primary package described above.
The primary North Star package is \(\$ 49\) including reference manual. The auxiliary software package is available for \(\$ 29\). In ordering either package, specify whether single-density or doubledensity disk operation is desired. The system documentation package alone may be ordered for \(\$ 20\). For further information, contact North Star Computers, 2547 Ninth St, Berkeley CA 94710.

Circle 553 on inquiry card.

\section*{Development and Debugging Software for 6800 Microcomputer Programming}

Percom Data Co has expanded its 6800 microcomputer software products line to include additional support programs for use in program development and debugging. The six programs that have been added include an assemblerlinking loader, three disassemblers, a relocator,"and a monitor with debugging conveniences. The programs are available on either cassette or disk, except the monitor which is in erasable read-only memory. Cassettes are Kansas City standard format at 300 bits per second (bps). The programs work with Percom operating systems. For prices and detailed description of the programs, write to Percom Data Co, 211 N Kirby, Garland TX 75042. Circle 554 on inquiry card.

\section*{Software Packages for the USCD Pascal Operating System}

Two new software packages are available for the UCSD Pascal operating system. The first package, FORMOUT, is a collection of routines to do formatted output from Pascal programs. Included routines allow formatted printing of strings and numbers, tabbing to a specific column, and printing an arbitrary number of spaces or some other printing character. FORMOUT allows the user to easily switch from one I/O (input/output) device to another so that programs can be switched between devices during processing.

CPMREAD, the second package, translates CP/M disk files to Pascal text files. It allows the user to investigate the CP/M disk directory and choose the files to be translated. Assembler and BASIC source code can be brought across and then modified for use on the Pascal system using the standard Pascal editors. Since CMPREAD is written completely in Pascal, it can run on any machine running the UCSD Pascal system, allowing LSI-11 (and other) systems to have access to \(\mathrm{CP} / \mathrm{M}\) files.
FORMOUT is available as a source listing with manual for \(\$ 20\). A machinereadable copy of FORMOUT is available on an 8 -inch soft-sectored, single-density disk, for an additional \(\$ 10\). CPMREAD is distributed as an executable code file only and is available for \(\$ 25\). For further information, contact Pickles and Trout, POB 1206, Goleta CA 93017.

Circle 555 on inquiry card.

\title{
What's New?
}

\section*{Tiny Pascal for TRS-80}

A compact version of Tiny Pascal fits in the standard 16 K byte TRS-80 system and consists of the compiler, text editor, runtime routines, p -code interpreter (which saves storage space), and a system monitor. Execution speed is about 4 times faster than Level II BASIC using integer variables. This verison is available from SuperSoft, POB 1628, Champaign IL 61820 for \(\$ 40\).

Circle 556 on inquiry card.

\section*{Software for Texas Instruments}

This software system is written in BASIC, works on floppy and hard disk systems and includes inventory control, order entry, sales analysis, general ledger, accounts payable, accounts receivable, and payroll.

Some of the capabilities of this software include invoice printing; back order reports; sales analysis by salesmen, customer, and product; purchase order journals and much more.

This system works on the Texas Instruments 990 and 771 computers. It is available from Kitzmiller Systems, 252 S Oxford Ave, Los Angeles CA 90004. Circle 557 on inquiry card.

\section*{Digital Research Introduces CP/M 2.0 and MP/M}

Digital Research has announced two new disk operating systems that are adaptable to nearly any 8080 or \(\mathbf{Z 8 0}\) computer system with disk backup storage. \(\mathrm{CP} / \mathrm{M} 2.0\), an enhanced version of CP/M, release 1, can run simple floppy disk systems to large-capacity hard disk drives. Configuration is accomplished through a disk definition table which drives the file management algorithms, allowing simple field alteration.
MP/M is a CP/M compatible multiterminal operating system which supports real-time multiprogramming at each terminal, along with background and foreground modes. It can serve as a complete program development environment for one or more users, or as the nucleus of clustered terminals or processors accessing a common data base. MP/M device drivers can be altered in the field to operate with interrupt driven or polled I/O (input/output) devices.
CP/M 2.0 is \(\$ 150\) and MP/M is \(\$ 300\), which includes documentation and floppy disk in single-density 8 -inch form. Contact Digital Research, POB 579, Pacific Grove CA 93950.

Circle 558 on inquiry card.

\section*{8080 Simulator and Debug Package for Apple II}

The Apple-80 is an 8080 simulator and debug package designed for the 6502-based Apple II computer. It allows any 16 K byte or larger Apple II to run programs written for the 8080, and can be used as a design and debugging aid for the development of original 8080 software.
Apple-80 provides single step, trace, and run modes, and executes all valid 8080 op codes. Illegal op codes are rejected. All 8080 registers are visible on the Apple screen and may be modified at will. 8080 I/O (input/output) port addresses are arranged in a table for ease of user modification. Up to eight
breakpoints may be set to facilitate program debugging. 6502 subroutines may be called directly from 8080 programs, allowing full access to Apple monitor and user-written functions. Conversely, 8080 routines may be embedded in 6502 programs. Vectored interrupts are also simulated.
The complete Apple-80 package includes Apple-80 routines, a manual, an 8080 program which demonstrates Apple-80 features, and an Apple-80 ready-reference card. The package is priced at \(\$ 20\) plus \(\$ 1.50\) for shipping and handling. For further information, contact Dann McCreary, POB 16435-B, San Diego CA 92116.

Circle 559 on inquiry card.

\section*{Text Output Processor}

Script-80 is an 8080 microcomputerbased text output processing program that is compatible with the Script text processors available on most large mainframe computers. Developed to handle form letters, document files, and mailing lists, Script-80 requires an 8080 or Z80-based microcomputer with at least 16 K bytes of memory, a printer or hard copy terminal, a floppy disk drive, and \(\mathrm{CP} / \mathrm{M}\) or a compatible (CDOS, IMDOS, etc) operating system. The Script-80 system supports over 50 standard Script commands for the combining of multiple files, formatting and right-justifying of text, margin and line length control, centering of title lines, spacing, immediate and conditional page eject, page headings, page footings, and several formats of page numbering. Text from up to 255 files may be nested and embedded in the ouput text as though they are a
part of the original file. Additional features include picture (pixel) processing, automatic multidisk search for embedded files, and extended upper and lowercase conversion capabilities.
The Script-80 Professional version extends page, multiple disk, and output device handling. The user's manual explains how to use Script-80 with BASIC for selective mailing of form letters. The Commercial version goes beyond the Professional version to support mass personalized-letter mailing techniques.
The single-drive Hobbyist version is \(\$ 45\); the multidrive Professional version sells for \(\$ 125\); the full Commercial version with two-year update and maintenance service is \(\$ 625\); the manual alone (specify version) is priced at \(\$ 25\). For further information, contact J Vilkaitis Consultants, POB 26, 417 High St Ext, Thomaston CT 06787.

Circle 560 on inquiry card.

\section*{Apple Releases New Software}

Apple Computer Co has released volumes 3 through 5 of the Apple Software Bank, a library of user-contributed programs. The new programs include File Cabinet, a personal directory and record keeping system; Character Generator, a program to label highresolution graphic images; California Driver's Test, (a simulation of the actual exam); Integer Basic Renumber/Append; and 25 others.

Accompanying the 3 new volumes is a 90 -page manual providing detailed descriptions and operating instructions for each of the programs. Called the Bonus Issue, the manual is an effective aid for Apple II users trying to establish or improve good programming techniques.
Apple also introduced 2 new graphicsoriented games, Apple Bowl and

Microchess. Both games use highresolution graphics. Apple Bowl creates a life-like simulation of bowling, including ball speed and spin control capabilities to help bowlers perfect their games. Microchess is a strategy game and includes 8 levels of ability, from which the user can select the one most closely matching their playing skill.
The Apple Software Bank usercontributed programs are available from Apple dealers. Users must provide their own blank disk or cassette tape for copying the programs. A copy fee of \(\$ 10\) per disk or \(\$ 2\) per program is charged. The Bonus Issue manual is free with the purchase of all or any programs. Microchess is priced at \(\$ 20\) on cassette and \(\$ 25\) on disk, and Apple .vl Bowl is priced at \(\$ 20\) on cassette or disk. For further information, contact Apple Computer Inc, 10260 Bandley Dr, Cupertino CA 95014.

Circle 561 on inquiry card.

\title{
TheDATATRANS 1000
}

\section*{A completely refurbished IBM Selectric Terminal with built-in ASCII Interface.}

\section*{Features:}
\(\$ 1395\)
- 300 Baud
- 14.9 characters per second printout
- Reliable heavy duty Selectric mechanism
- RS-232C Interface
- Documentation included
- 60 daywarranty-parts and labor
- High quality Selectric printing Off-line use as typewriter
- Optional tractor feed available
- 15 inch carriage width

\section*{HOW TO ORDER DATA-TRANS 1000}
1. We accept Visa, Master Charge. Make cashiers checks or personal check payable to:
DATA-TRANS
2. All orders are shipped
F.O.B. San Jose, CA
3. Deliveries are immediate

For orders and information
DATA-TRANS
2154 O'Toole St. Unit E
SanJose, CA 95131
Phone: (408) 263-9246

This book cover all aspects of microprocessors, from the basic concepts to advanced interfacing techniques, in a progressive presentation. It is independent from any manufacturer, and presents uniform standard principles and design techniques, including the interconnect of a the interconnect of a
standard system, as well as specific components. it introduces the MPU, how it works internally, the system components (ARM, RAM, UART, PIO, others), the system interconnect, applications, programming, and the problems and techniques of system development, By \(R\) Zaks. SYBEX. Ref. C201. \$9.95

Microprocessor interfacing is no longer an art. It is a set of techniques, and in some cases just a set of components. This comprehensive book intraduces the basic interfacing concepts and techniques, then presents in detail the implementation details, from hardware to software. It covers all the essential peripherals, from keyboard to floppy disk. as well as the standard buses (S100 to IEEE 4BBI and introduces the basic troubleshooting techniques. (2nd Expanded Edition). By Austin Lesea and R. Zaks. Ref. C207 SYBEX. \(\$ 11.95\)

PROGRAMMING THE 6502
PROGRAMMING THE 280
PROGRAMMING THE 8080*
It covers all essential aspects of programming, as well as the advantages and disadvantages of the 6502 and should bring the reader to the point where he can start writing complete applications programs. For the reader who wishes more, a companion volume is available: The 6502 Applications Book. By R. Zaks. 6502: Ref. C202: 280: Ref. C2日0; BOBO: Ref. C20B. SYBEX. Each \(\$ 10.95\)

44 BUS MOTHER

\section*{BDARD}

Has provisions for ten 44 pin (.156) connectors, spaced \(3 / 4\) of an inch apart. Pin 20 is connected to \(X\), and 22 is connected to 2 for power and ground. All the other pins are connected in parallel. This board also has provisions for bypass capacitors. Board cost \(\$ 15.00\) Part No. 102. Connectors \(\$ 3.00\) each Part No. 44WP.

AN INTRODUCTION TO PERSONAL AND BUSINESS COMPUTING
No computer background is required. The book is designed to educate the reader in all the aspects of a system, from the selection of the microcomputer to the required peripherals. By Rodnay Zaks. Ref. C200, SYBEX \$6.95

\section*{TVT CODKBDOK}

Bk 1064 - by Don Lancaster. Describes the use of a standard television receiver as a microprocessor CRT terminal. Explains and describes character generation, cursor contral and interface information in typical, easy -to- understand Lancascaster style. \(\$ 9.95\)

\section*{COMPUTER PROGRAMMING} HANDBOOK
A complete guide to computer programming \& data processing. Includes many worked-out examples. By Peter Staak, TAB \(\$ 9.95\)

\section*{DIGITAL CASSETTE}

5 min. each side. Box of \(10 \$ 9.95\). Part No. C-5.

\section*{COMPUCRUISE}

Put a computer in your car. which gives you the most effective and functional cruise control ever designed, plus complete trip computing. fuel management systems, and a remarkable accurate quartz orystal time system. So simple a child can operate, the new CompuCruise combines latest camputer technolagy with state-of-the-art reliability in a package which will not likely be available on new cars for years to come Cruise Control - Tirne, E. T., Lap Timer, Alarm - Time, Distance, Fuel to Arrival - Time, Distance. Fuel to Empty Time, Distance and Fuel on Trip - Current or Average MPG, GPH •Fuel Used, Distance since Fillup Current and Aver-age-Vehicle Speed Inside, Dutside or Coolant Temperature - Battery Voltage English or Metric Display. \(\$ 199.95\) without cruise cantrol \$159.95.

\section*{FLOPPY DISK} STORAGE BINDER This black vinyl three-ring binder comes with ten transparent plastic sleeves which accommodate either twenty, five-inch or ten, eight-inch floppy disks. The plastic sleeves may be ordered separately and added as needed. A contents file is included with each sleeve for easy identification and organiz ing. Binder \& 10 holders \$14.95 Part No. 8800; Extra holders 95* each. Part No. 800

OPTO-ISOLATED PARALLEL INPUT BOARD FOR APPLE II
There are 8 inputs that can be driven from TTL logic or any 5 volt source. The circuit board can be plugged into any of the 8 sockets of your Apple li: It has a 16 pin socket for standard dip ribbon cable connection.
Board only \$15.00. Part Na. 120, with parts \$69.95. Part No. 120A.

\section*{TIDMA}
- Tape interface Direct Memory Access - Record and play programs without bootstrap loader (no prom) has FSK encoder/decoder for direct connections to low cost recorder at 1200 baud rate, and direct connections for inputs and outputs to a digital recorder at any baud rate © S-100 bus compatible Board only \(\$ 35.00\) Part No. 112 , with parts \(\$ 110\) Part No. 112A

\section*{SYSTEM MONITOR}
8080. 80B5, or \(Z-80\) System monitor for use with the TIDMA board. front panel. Complete with
wane
documentation \$12.95.

16K EPROM
Uses 2708 EPROMS, memory speed selection provided, addressable anywhere in 65 K of memory. can be shadowed in 4 K increments. Board only \(\$ 24.95\) part no. 7902 , with parts less EPROMs \$49.95part no. 7902A.

ASCII KEYBOARD
TTL \& DTL compatible • Full 67 key array - Full 128 character ASCll output • Positive logic with outputs resting low • Data Strobe - Five user-definable spare keys - Standard 22 pin dual card edge connector • Requires \(+5 V D C, 325 \mathrm{~mA}\). Assembled \& Tested. CherryProPart No. P70-05AB. \(\$ 119.95\).

\section*{ASCII KEYBOARD}

53 Keys popular ASR-33 format - Rugged G-10 P.C. Board - Tri-mode MOS encoding - Two-Key Rollover - MOS/OTL/TTL Compatible - Upper Case lockout • Data and Strobe inversion option - Three User Definable Keys •Lowcontact bounce • Selectable Parity - Custom Keycaps • George Risk Model 753. Requires \(+5,-12\) valts. \(\$ 59.95\) Kit.

\section*{ASCII TO CORRESPONDENCE CODE CONVERTER}

This bidirectional board is a direct replacement for the board inside the Trendata 1000 terminal. The on board connector provides RS-232 serial in and out. Sold only as an assembled and tested unit for \(\$ 229.95\). Part No. TA 1000C

\section*{DISK JACKET \({ }^{\text {M }}\)}

Made from heavy duty 0095 matte plastic with reinforced grommets. The minidiskette version holds two 5-1/4 inch diskettes and will fit any standard three ring binder. The pockets to
the left of the diskette can be used for listing the contents of the disk. Please order only in multitudes of ten. \$9.95/10 Pack.

ATARI 800
Computer with 8 K \$995.00, disk drive \(\$ 549.00\). printer \(\$ 599.99\)

\section*{VIDEO TERMINAL} 16 lines, 64 columns \({ }^{*}\) Upper and lower case \(5 \times 7\) dot matrix \(\cdot\) Serial RS-232 in and out with TTL parallel keyboard input - On board baud rate generator 75, 110. \(150,300,600\), \& 1200 jumper selectable - Memory 1024 characters (7-21L02) - Video processor chip SFF96364 by Necuonic - Control characters (CR, LF \(\rightarrow\), \(\leftarrow\) d, non destructive cursor, CS, home, CL - White characters on black background or vice-versa - With the addition of a keyboard, video monitor or TV set with TV interface (part no. 107A) and power supply this is a complete stand alone terminal •also 5-100 compatible - requires +16, \& -16 VDC at 100 mA , and BVDC at 1A. Part No. 1000A \(\$ 199.95\) kit.

\section*{RS-232/20mA INTERFACE}

This board has two passive, opto-isolated circuits. One converts RS-232 to 20 mA the other converts 20 mA to RS232. All connections go to a 10 pin edge connector. Requires +12 and -12 volts. Board only \$9.95, part no. 7901, with parts \$14.95 Part No. 7901A

\section*{COMPUCOLOR II}

Model 3, 8K \$13 95 Model 4. 16K \$15 95 Model 5, 32K \$18 95 Prices include color monitor, computer. and one disk drive.

PET COMPUTER
With 32K \& manitor \$1195. Dual Disk Drive - \$1195.

\section*{appie II}

APPLE II PLUS
16K - \$979. 32K \$1059, 4BK - \$1123 Disk \& cont. \$589

\section*{parAllel triac OUTPUT BOARD FOR APPLE II}

This board has 8 triacs capable of switching 110 volt 6 amp loads (6BO watts par channell or a total of 5280 watts. Board only \(\$ 15.00\) Part No. 210, with parts \$119.95 Part No. 210A

T0 Order: Mention part no. description, and price. In USA shipping paid by us for orders accompanied by check or money order. We accept C.O.D. orders in the U.S. only, or a VISA or Master Charge no., expiration date, signature, phone no. shipping charges will be added. CA residents add \(6.5 \%\) for tax. Dutside USA add \(10 \%\) for air mail postage and handling. Payment must be in U. S. dollars. Dealer inquiries invited. 24 hour order line (408) 448-0800

\section*{TRS-80 \({ }^{\text {E.S }}\)} SERIALI/O
- Can input into basic - Can use LLIST and LPAINT to output, or output continuously -RS-232 compatible Can be used with or without the expansion bus - Onboard switch selectable baud rates of 110, 150,300,600, 1200, 2400, parity or no parity odd or even, 5 to 8 data bits, and 1 or 2 stop bits. D.T.R. line - Requires +5 , -12 VDC - Board only \$19.95 Part No. 8010 , with parts \$59.95 Part No. 801 OA, assembled \(\$ 79.95\) Part No. 8010 C. No connectors provided, see below.

ElA/RS-232 con-
nector Pert No.
D8250
N600
 c.sble \(\$ 10.55\)

Box of 10, 5" \$29.95, 8" \(\$ 39.95\).
Plastic box, holds 10. diskettes, 5"- \$4.50, B' \({ }^{\prime \prime}\) \$6.50.

\section*{RS-232/ TTL INTERFACE}
- Converts TTL to RS232, and converts RS232 to TTL. Twoseparate circuits - Requires -12 and +12 volts - All connections go to a 10 pin gold plated edge connector, kit \$ 9.95 Part No. 232A 10 Pin edge connector \$3.00 Part No. 10P.

\section*{RS-232/TTY INTERFACE}

This board has two active circuits, one converts RS-232 to 20 mA , and the other converts 20 mA to RS-232. Requires +12 and -12 volts. \(\$ 9.95\) Part No. 600 A Kit.

\section*{S-100 BUS ACTIVE TERMINATOR}

Board only \(\$ 14.95\) Part No. 900, with parts \(\$ 24.95\) Part No. 900A
 half duplex Works up to 300 baud - Originate or Answer - No coils, only low cost components - TTLinput and output-serial - Connect \(8 \Omega\) speak er and crystal mic. directly to board 0 Uses XA FSK demodulator - Requires +5 volts - Board only \(\$ 7.60\) Part No. 109 with parts \(\$ 27.50\) Part No. 109A

\section*{DISKETTES}

withattachedcon-
netars tofitifsac ond aur sermal o. 3CAB40.

\section*{APPLE II \(\%\) SERIAL I/O INTERFACE}

\section*{WAMECO PRODUCTS \\ WITH}

ELECTRONIC SYSTEMS PARTS
FDC-1 FLOPPY CONTROLLER BDARD will drive shugart. pertek, remex 5 " \& B"drives up to 8 drives, on board PROM with power boot up. will operate with CPM (not
 displays. Byte or instruction single step
 MEM-1A \(8 \mathrm{~K} \times 8\) fully buffered, \(\mathrm{S}-100\), uses 2102 type RAMS.
PCBD
 nated, S-100 board onlyisi \(\$ 954.95\)
CPU-1 8080A Processor board \(\mathrm{S}-100\) with 8 level vector interrupt PCBD
RTC-1 Realtime clock board. Two independent interrupts. Software grogrammable.

EPM-2 \(2708 / 271616 \mathrm{~K} / 32 \mathrm{~K}\)
EPROM card PCBD
\(\$ 49.95\) with parts less ÉPRȮȮMS
\(\$ 24.95\)
QMB-9 MOTHER BOARD. Short Version of QMB-12. 9 Slots PCBD \$30. 95
MEM-2 \(16 \mathrm{~K} \times 8\) Fully Buffered 2114 Board
Baud rate is continuously adjustable from 0 a and output 1 ow , On output switch selectable 5 to parity either odd or even Jumper selertable address - SOFTWARE - Input and Output routine from monitor or BASIC to teletype or other serial printer - Program for using an Also in out video or an intelligent terminal. interface with some selectrics. Also watches DTR • Board Only \$15.00 Part No 2. with parts \$42.00 Part No. 2A, assembled

\section*{8K EPROM}

IICEDN
Saves programs on PROM permanently Cuntil erased via UV lightl up to BK bytes. Programs may be directly run from the program saver such as fixed routines or assemblers. - S100 bus compatible - Room for 8K bytes of
 board PROM programming - Address relocation of each 4 K of memory to any 4 K boundary within 64K © Power on jump and eset jump optionfor turnkey systems and saver software available solder mask both - Full sikscreen for easy assembly Program saver software in 12708 EPROM \$25. Bare board \(\$ 35\) including custom coil,
board with parts but no EPROMS \(\$ 139\), with 4 EPROMS \(\$ 179\), with B EPROMS \(\$ 219\).
2.95, \$269.95

\section*{T.V. \\ TYPEWRITER}
- Stand alone TVT - 32 char/line. 16 lines, modifications for 64 char/line included - Paraliel ASCII (TTL) input Video output - 1K onboard memory - Output for computer controlled curser Auto scroll - Nondestructive curser Curser inputs: up, down, left, right, home. EOL, EDS - Scrall up, down - Requires +5 volts at 1.5 amps , and -12 volts at 30 mA - All 7400, TTL chips Char. gen. 2513 Upper case only Board only \(\$ 39.00\) Part No. 106, with parts \$145.00 Part No. 106A

\section*{UART E BAUD RATE GENERATOR}
- Converts serial to parallel and parallel to serial - Low cost on board baud rate generator - Baud rates: \(110,150,300,600\) 1200, and 2400 . Low power drain +5 volts and -12 volts required - TTL compatible All characters contain a start bit, 5 to 8 data bits, 1 or 2 stop bits, and either odd or even parity. All connections go to a 44 pin gold plated edge connector - Board only \(\$ 12.00\) Part No. 101. with parts \$35.00 Part No. 101A, 44 pin edge connector \$4.00 Part No. 44P

\section*{HEX ENCODED KEYBOARD}

\section*{E.S.}

This HEX keyboard has 19 keys. 16 encoded with 3 user definable. The encoded TTL outputs, 8-4-2-1 and STRDEEare debounced and available in true and complement form. Four anboard LEDs indicate the HEX code generated for each key depression. The board requires a single +5 volt supply. Board only \(\$ 15.00\) Part No. HEX-3, with parts \(\$ 49.95\) Part No. HEX3A. 44 pin edge connector \(\$ 4.00\) Part No. 44 P .

\section*{DC POWER SUPPLY}
- Board supplies a regulated +5 volts at 3 amps., \(+12,-12\), and -5 volts at 1 amp. Power required is 8 volts \(A C\) at 3 amps., and 24 volts AC C.T. at 9.5 amps. - Board only \(\$ 12.50\) Part No. 6085 , with parts excluding transformers \$42.50 Part No. 60B5A

\section*{TAPE INTERFACE}
- Play and record Kansas City Standard tapes - Converts a low cost tape recorder to a digital recorder - Works up to 1200 baud •Digtral in and out are TTLserial - Output of board connects to mic. in of recorder - Earphone of recorderconnects toinput on board - No coils - Requires +5 volts, low power drain - Board only \$7.60 Part No. 111. with parts \$27.50 Part No. 111 A

\title{
M/48t\& NeN?
} PUBLICATIONS

\author{
New Trackball Products Catalog
}

> Trackball Products

MS
Measurtment Syutens, incorporated

Measurement Systems Inc has announced publication of their 12-page catalog of Trackball products. Trackballs are widely used for the human operator to perform positioning or contouring tasks on interactive displays either in computer peripherals or radar systems. Almost one half of the catalog contains technical and application data so that the reader gains a full understanding of this product. The balance of the catalog provides extensive data on specific standard items with options available. Fourteen trackballs are described, ranging in size from 2 to \(31 / 2\) inches in diameter (5.08 to 8.89 cm). For further information, contact Measurement Systems Inc, 121 Water St, Norwalk CT 06854.

Circle 539 on inquiry card.
Free TIB0203 Data Book from Texas Instruments

\section*{Free Apple Software Catalog from Rainbow}

This 45-page catalog includes over 100 games of all types, fifteen business applications, twelve demonstration programs from voice recognition and speech synthesis to high-resolution and color graphics, and software

\section*{PIPS for VIPS}

PIPS written by Tom Swan contains 160 pages of programs and documentation for use on the RCA COSMAC VIP, and an appendix describing modifications which can be made to allow the PIPS programs to be run on the ELF computers.
The first program, "Character Designer," facilitates building and editing a complete American Standard Code for Information Interchange (ASCII) and graphics character set, the remaining three programs use the display capabilities generated by the "Character Designer" to build text files. "Messager" allows easy text and graphics display from within CHIP-8; "Text Editor-21" is a general-purpose text editor, and "Disassembler-7" is an 1802 machine language disassembler. All these programs utilize a high-resolution display method described in PIPS. The remaining programs in the book are a "CHIP-8 Program Editor" and two games written in CHIP-8: Space Wars and Surround.
The book is available from Aresco, POB 1142, Columbia MD 21044, for \(\$ 19.95\). The price includes a companion cassette containing all the PIPS programs.

Circle 542 on inquiry card.

A data book on the TIB0203 magnetic bubble memory has been announced by Texas Intruments Inc, POB 225012, Dallas TX 75265. The 48 page book, publication number LCC4430, contains complete specifications on the TIB0203 and, in addition, an 8 page discussion on the basic fundamentals and advantages of magnetic bubble memories. Also included in the manual are specification sheets for the interfacing integrated circuits which have been designed for use with the TIB0203. The additional data sheets include those for SN74LS361 function timing generator, SN75281 sense amplifier, SN75380 function driver, and SN75382 coil driver. Data sheets for standard devices which are needed for bubble memory system design, such as TSP102 thermistor and VSB53 Schottky-diode bridge, are also included.

Circle 540 on Inquiry card.
development programs. Rainbow's "Pot \(\mathrm{O}^{\prime}\) Gold" of 49 games and demonstrations is also featured.

Prices for programs on cassette and diskette average around \(\$ 10\) to \(\$ 20\). Write Rainbow Computing Inc at 9719 Reseda Blvd, Northridge CA 91324 or call (213) 349-5560 for your free catalog. Circle 541 on inquiry card.

\section*{New Book Series on Computers}

Academic Press Inc, 111 5th Ave, New York NY 10003, is publishing a series of books that cover a wide range of topics in the computer field.
Physics of Computer Memory Devices, Artificial Intelligence, Computer Vision Systems, Pattern Recognition and Artificial Intelligence, and Associative Networks are some of the books now on the market.
The prices range from \(\$ 29\) to \(\$ 39.50\) Circle 543 on inquiry card.

Book on Microprocessors from Texas Instruments

Written in nontechnical language, Understanding Microprocessors covers the aspects of microcomputer systems which use a microprocessor chip as the central unit for processing and control. This book provides the layman with the basics of what comprises a microprocessor, how it fits into the microcomputer system, what other system parts are necessary and how the microcomputer system functions. It introduces the reader to digital electronics, integrated circuit functions and includes 8 - and 16 -bit microprocessor applications with exercises and solutions. It is priced at \(\$ 4.95\) and is available from Texas Instruments Inc, POB 3640, MS 84, Dallas TX 75285.

Circle 544 on inquiry card.

SSM PBI 2708/16 EPROM BOARD - S-100 Bus Programs eproms. Has provisions for 4 K or 8 K
lool sockets.
Cit Cal No. 1440

\section*{SSM AIO \\ SERIAL/ \\ PARALLEL \\ INTERFACE}
- Apple Bus

One RS- 232 serial, two bidirectional parallel. Interface your Apple to printers, plotters,
terminals. With firmware, cables. terminals. With firmware, cables.
Cat No. 1918 AlO kit \(\$ 129\) \(\begin{array}{lll}\text { Cat No. } 1918 & \text { AlO kit } & \$ 129 \\ \text { Cal No. } 1919 & \text { AIO a\&t } & \$ 169\end{array}\)

\section*{SSM VBIB \\ VIDEO}

INTERFACE
- S-100 Bus

64 : 16 videa, upper and lower case, greek. Composite and
parallel video. White on black, or reverse.
\(\begin{array}{lll}\text { Ceverse. } \\ \text { Cat No. } 1417 & \text { VB1B kit } \\ \text { C2t No. } 1419\end{array}\) Cat No. 1419 VB1B bbd \(\$ 26\)

SSM 1O4 2 SERIAL +
2 PARALLEL
PORTS - S.100 Bus Full handshaking 20160mA current loop. Dip switch address selection.
\(\begin{array}{lll}\text { Cat No. } 1411 & 104 \mathrm{kit} & \mathbf{\$ 1 3 9} \\ \text { Cat No. } 1413 & 104 \mathrm{kit} & \mathbf{\$ 2 6}\end{array}\)
SSM CB1A 8080A CPU BOARD - 5.100 Bus 2K of PROM, TK of RAM. Power ondreset, vector jump, parallel
port with status. port with status Cat No. 2045

\section*{MARINCHIP M9900 16 BIT CPU}

\section*{- S-100 Bus}

Includes DOS, BASIC, word prolinsor, diagnostics and debug tools. Increases system perfor. mance by a factor of 2 !
Cat No. Description 1379 M9900 CPU Bit Price 1950 as above, ast
1951 PROM/RAM/SIO 1904 kit 1964 as above, a\& 1941 META 1942 M.TA \(\begin{aligned} & \$ 150 \\ & \$ 50\end{aligned}\) 1943 Full documentation \(\$ 20\)

\section*{SSM CB2 \\ Z-80(A) \\ CPU BOARD}

2 or 4 MHz , dip switch selectable. 2 sockets for 2716 's or 2732
eproms or \(\mathbf{T M S 4 0 1 6}\) rams. eproms of TMS4016 rams.
MWRITE, firmware vector jump. Allows more than 64 K ram. Cat No. 2046 kit \(\$ 199\)

\section*{SSM VB3 80 CHAR. VIDEO BOARD \\ 80 char/line, 24 lines. upper \(\&\) lower case, plus 256 user defined symbols, plus \(160 \times 204\) graphics. Memory mapped. US and Euso-
pean campatible. \(\begin{array}{lll}\text { Cat No. } 2047 & 2 \mathrm{MHz} \mathrm{kit} & \mathbf{\$ 3 6 9} \\ \text { Cat No. } 2049 & 4 \mathrm{MHz} \text { kit } & \mathbf{\$ 3 9 5}\end{array}\)}

ITHACA Z-80 CPU
BOARD - s. 100 Bus 2.5 MHz or \(4 \mathrm{MHz}_{\text {, on }}\) board 270日, optional MWRIIE, allows
operation without front panel. operation without front panel.
Cat No. 1512 bareboard
\(\mathbf{\$ 3 2}\)

\section*{ITHACA \\ 2708/16 \\ EPROM BOARD \\ Accepts up to 16 eproms. Dip switch adressable to any 1 K laca-
tion. Unused ROM locy tion. Unused ROM locations may switch.
Cat No. 1511 bareboard \(\$ 28\)}

\section*{TARBELL \\ CASSETTE \\ INTERFACE}

Fastest fransfer rate: 187 to 540 byteslisec. Phase encoding (self. clockingl. Generates Kansas City Cat No. 1756
\begin{tabular}{ll}
kit & \(\$ 120\)
\end{tabular}

\section*{TARBELL}

\section*{32K STATIC}

\section*{RAM - S. 100 Bus}

Exlended addressing(bank switch. ingl, phantom line, low power requirements. 9 on-hoard regula Cons! No. 1979 \(\mathbf{5 6 2 5}\)

\section*{TARBELL}

FLOPPY DISK INTERFACE

\section*{- S. 100 Bus}

Up to 4 single drives in daisy chain. 250 bits per sec. Works
with modified CPM and BASIC compiler. Build in phantom boolstrap.
\(\begin{array}{ll}\text { Cat No. } 1901 & \text { kif } \\ \text { Cat No. } 1774 & \text { barebo }\end{array}\) Cat No. 1774 bareboard \(\begin{aligned} & \mathbf{5 1 9 0} \\ & \$ 40\end{aligned}\)

\section*{SSM SB1 MUSIC \\ SYNTHESIZER}
- S-100 Bus

Freq range \(15-20,000 \mathrm{~Hz}\). Sofiware uses only 4K RAM. Uses
standard ASCII encoding for music encoding. Includes timer Use more than one board fo Chords and harmonies. SBI kit
(with software) Cal No. \(1410 \quad \begin{array}{ll}\text { (with software) } \\ \mathbf{S 8 1} \text { bbd }\end{array}\)

SD SYSTEMS VERSAFLOPPY - 5-100 Bus

Operates with Z-40, s088(A) 80" drives. Dozens of features Cat No. 1516 kit \(\$ 159\)

SD SYSTEMS EXPANDORAM
- S-100 Bus Interfaces with Sol, Altais, Imsai, Cromemco, etc. Expand dynamic
memory in blocks of 8 to 64 K . Dip switch selection for positioning boundaries. Write protect, phantom output disable. Uses 4116 pams.

SD SYSTEMS VIDEO DISPLAY BOARD • \(5-100\) Bus interfaces to monitor and a
keyboard to the \(\mathrm{s}-100\) Bus. Ort board Z-80 controls functions. 80 \(\times 24\) display. 2 K on-board RAM. Cat No. \(1599 \quad\) kit \(\quad \$ 318\)

WAMECO
QMB-12
12 SLOT
MOTHERBOARD
- S-100 Bus
very quiet! Onboard kluge area Alscepts up to two 40 -pin sorkets. \(\begin{array}{cc}\text { Also area for } \\ \text { Cat No. } 1507 & \text { separate voltages. } \\ \text { bareboard } \\ \$ 36\end{array}\)

WAMECO FDC-1 FLOPPY DISK
CONTROLLER
Controls up to eight Shugarts, Pertecs, Remex's, or MPl's. Also
designed to operate with CPM designed to operate with CPM
software. Compatible with \(\mathrm{Z}-\mathrm{BO}\) or 8080 systems. Cal No. 1377

\section*{WAMECO FPB-1 FRONT PANEL} BOARD
Similar to Imsai. Controls 8080 A computer. Features memory exSIOP, RESET. Hex displays. Byt or instruction single step.
Cal No. 1322 bareboard

\section*{CCS 7115A APPLE II}

PROM MODULE
Add firmware without changing
ROMs. 14K space available. Uses
ROMs. 14K space available. Uses
5 V 2716 eproms.
\(\begin{array}{lll}\text { Cat No. } 1630 & \text { kit } & \mathbf{5 6 2} \\ \text { Cat No. } 1631 & \mathbf{a \& t} & \$ 72\end{array}\)
CCS 771OA
APPLE II ASYNCHRONOUS SERIAL
INTERFACE
Interfaces printers, etc. Features serial with full handshaking, and
Cal No. 1623 thru
Cat No. 1623
Cat No. 1624
CCS 7712A
APPLE II
SYNCHRONOUS
SERIAL

\section*{INTERFACE}

RS-232C (A thru E). Standard syrchronous signalling rate per
RS269/ANSI x 3.71976 . RS269IANSI
Cat No. 1627
K.7.1976.
kit \(\quad \$ 90\) \(\begin{array}{llr}\text { Cat No. 1627 } & \text { kit } & \mathbf{5 9 0} \\ \text { Cat No. } 1628 & \text { a\&it } & \mathbf{5 1 4 5}\end{array}\)

CCS 752OAK
APPLE II EXTENDER BOARD Use for debugging or testing
modules in the Apple II. Caino. \(1611 \quad\) kit \(\quad \mathbf{1 6 1}\)

CCS 7720A APPLE II PARALLEL INTERFACE
Interface printers and other rupt, 2 bi-directional ports, full handshaking.
CaINo. 1632 \(\begin{array}{llr}\text { Cat No. } 1632 & \text { kit } & \$ 62 \\ \text { Cat No. } 1633 & \text { a8kt } & \$ 105\end{array}\)

CCS 7470A APPLE II BCD A/D CONVERTER
Single channel AIO, 12 bits.
Allows conversion of -4 io +4 VDC to a BCD number, 200useciconversion. Cat No. 1621
Cat No. 1622

CCS 252OA EXTENDER/ TERMINATOR BOARD

OBus Aclive andlor dynamic termination Lebeled S-100 signals. Cat No. 1610 kil \(\$ 38\)

CCS MXVI 16K STATIC RAM MODULE
Fully buffered, addressable in 4 K blocks, plugs right in most s-100 computers. 2 versions of bank select: bank byte or bank port. \(\begin{array}{lll}16018 & 200 \mathrm{~ns} \text { kit } & \$ 330 \\ & \$ 33\end{array}\) 1602A 450 ns aRt 1602 A 200 ns a\&it 1603 bbd only

\section*{CCS APPLE}
\& S-100
PROTOTYPING BOARDS
\begin{tabular}{llr}
Signals labeled onboard. & \\
Cat No. & Description & Price \\
1606 & Apple Wirewrap & \(\mathbf{\$ 2 1}\) \\
1667 & Apple soldertail & \(\mathbf{\$ 2 1}\) \\
\(\mathbf{1 6 0 8}\) & Apple etch & \(\$ 18\) \\
1604 & \(\mathbf{S . 1 0 0}\) soldertial & \(\mathbf{\$ 2 6}\) \\
1605 & \(\mathbf{\$ 1 0 0}\) wirewrap & \(\mathbf{\$ 2 6}\) \\
1609 & \(\mathbf{S . 1 0 0}\) etch & \(\$ 23\) \\
\hline
\end{tabular}

CCS 7811A
APPLE II
ARITHMETIC
PROCESSOR
Add high powered math to your Apple! Increases math power by graphics. number crucnhing. graphics.
Cat No. 163

\section*{CCS GPIB}

IEEE 488 BUS INTERFACE
Interface test equipment (equip ped with 488 bus) to the Apple! Also interfaces the PET to the Ap Caino. 2051 a\&t \(\$ 295\)

\section*{Send for FREE CATALOG}

The best selection of computer accessories add-ons, semi's, software, PC aids, prototyping aids, books test equipment, and more! Always updated! Dozens of new products every issue!

\section*{HOW TO ORDER}

Pay by check, COD, VISA, or clude expiration date. Order by phone or mail. Minimum order \$10. Please include phone number and magazinefissue you for ordering rom. USA: add \(\$ 2\) add 53 for air. FOREIGN: Add \(\$ 3\), for shipping'handling surface, \$6 or air. COD's \(\mathbf{5 1}\) addt'l. Guaranteed satisfaction for 120 days of your money back! Nol errors. We reserve typographical limit quantities.

\title{
What's New? \\ PUBLICATIONS
}

\section*{New COS/MOS Integrated Circuit Manual Issued by RCA}

A new 168 -page edition of the RCA COS/MOS Integrated Circuits Manual, CMS-272, is available for \(\$ 5\) from RCA Solid State Division, Rt 202, Somerville NJ 08876. This manual provides detailed
information on the design, operation, and application of COS/MOS digital integrated circuits ranging from simple gates to highly complex large-scale integrated devices.
The manual begins with the basic principles of complementary symmetry MOS integrated circuits, and then describes the circuit elements from which the more complex COS/MOS integrated circuits are developed. It gives the features and characteristics of current RCA A-series and B-series types as well as device handling and operating considerations. Design examples and performance data are given for COS/MOS devices in a wide variety of circuit applications, such as, astable and monostable multivibrators, crystal oscillators for digital timekeeping, shift registers and counters, display drivers, and digital frequency synthesizers.
New material includes an introduction to microprocessors and memory interfacing, as well as guidelines to the design of custom large-scale integrated circuits. The information in this manual is presented in thirteen well-illustrated, easy-to-read text sections.

Circle 545 on inquiry card.

\section*{Belais' Master Index to Computer Programs in BASIC}

Source information and detailed reviews of 531 docurnented, ready-torun programs in 72 fields covering home and business are included in this book. Updates and reprints also are listed. The book utilizes technical and layman's languages to describe the programs.
This 192-page paperback is available for \(\$ 9.95\) plus \(\$ 1\) shipping from Falcon Publishing, Dept G, 140 Riverside Ave, POB 688, Ben Lomond CA 95005.

\section*{Free Word Processing Supplies Guide}

An 84-page illustrated Guide to Word Processing Accessories and Supplies, 1979 Edition, describing almost 1300 items for word and data processing installations, is available from American Word Processing Co, 18730 Oxnard St, Tarzana CA 91356. Included are many 5 -inch and 8 -inch disk storage systems, anti-static mats, video work stations, fireproof media safe, competitive brands of Diablo and Qume printer ribbons, various lines of durable plastic printwheels, thimbles, and ribbons for the NEC Spinwriter. printers and more.

\section*{Management Guide to 100 Word Processors}

This new report tells a manager which word processors are commonly used in different industries, which models are used in specific applications, who services the system after it is purchased, and which word processors are feasibly priced. In addition to charting this information for 100 models, the guide provides a directory of suppliers, which includes name, address, and phone number.
Word Processing Market Report is available for \(\$ 15\) from Alltech Publishing Co, 212 Cooper Ctr, N Park Dr and Browning Rd, Pennsauken NJ 08109.

Circle 549 on inquiry card.

\section*{The First New England Microcomputer Resource Handbook}

This guide to microcomputers for novices, prospective purchasers and system owners contains sections on product comparisons, application software, buying tips, support devices, computer stores, introductory information, publications, user groups, consultants, books, repair companies and a glossary which defines buzz words in terms of real-life situations. The, 115-page book is available for \(\$ 2\) from New England computer stores or from The Boston Computer Society, 17 Chestnut St, Boston MA 02108.

\section*{ATTENTION ELF OWNERS: QUEST SUPER BASIC}

Quest, the leader in inexpensive 1802 systern announces another first. Quest is the first company worldwide to ship a full size basic for 1802 systems. A complete function Super Basic by Ron Cenker including floating point capability with scientific notation (number range \(\pm .17 E^{36}\)), 32 bit integer \(\pm 2\) billion, Multi dimarrays, String arrays, String manipulation, Cassette I/O, Save and load, Basic, Data and machine language programs and over 75 Statements. Functions and Operators.

Easily adaptable on most 1802 systems. Requires 12 K RAM minimum for Basic and user programs. Cassette version in stock now. ROM

\section*{RCA Cosmac Super Elf Compute} Compare features before you decide to buy any other computer. There is no other computer on the market today that has all the desirable benefits of the Super Elf for so little money. The Super Eff is a small single board computer that does many big things. It is an excellent computer for training and for learning programming with its machine language and yet it is easily expanded with additional memory, Full Basic, ASCI Keyboards, video character generation, etc. Before you buy another small computer, see if it includes the following features: ROM monitor:
State and Mode displays: Single step: Optional State and Mode displays: Single step; Optional address displays: Power Supply; Audio Amplifier and Speaker: Fully socketed for all IC's; Real cost of in warranty repairs; Full documentation.
The Super Ell includes a ROM monitor for pro gram loading, editing and execution with SINGLE STEP for program debugging which is not in Cluded in others at the same price. With SINGL STEP you can see the microprocessor chip opera-
ting with the unique Quest address and data bus displays before, during and after executing in structions. Also, CPU mode and instructioncycle are decoded and displayed on 8 LED indicators. An RCA 1861 video graphics chip allows you to connectto your own wis and speaker system included for writing your own music or using many music programs already written. The speaker amplifier may also be used to drive relays for control purposes.

\section*{Super Expansion Board with Ca}

This istruly an astounding value! This board has been designed to allow you to decide how you comes with 4 K of low power RAM fully address able anywhere in 64 K with built-in memory protect and a cassette intertace. Provisions have been made for all other options on the same ooard and it fits neatly into the hardwood cabinet alongside the Super Elf. The board includes slot 2716) and is fully socketed. EPROM can be used for the monitor and Tiny Basic or other purposes. A IK Super ROM Monitor \(\$ 19.95\) is avaliable as an on board option in 2708 EPROM which has been preprogrammed with a program loader/ editor and error checking multi file cassette read/write software. (relocatible cassette file) another exclusive from Quest. It includes register save and readout, block move capability and video graphics driver with blinking cersor. Break points can be used with the register save feature to isolate program bugs quickly, then follow with
single step. The Super Monitor is written with

Multi-volt Computer Power Supply \(8 v 5 \mathrm{amp},=18 \mathrm{v} .5 \mathrm{amp}, 5 \mathrm{v} 1.5 \mathrm{amp}\). -5 v .5 amp . \(12 \mathrm{v} .5 \mathrm{amp},-12\) option. \(\pm 5 \mathrm{v}, \pm 12 \mathrm{v}\) are regulated. Kit \(\$ 29.95\). Kit with punched frame
\(\$ 37.45, \$ 4.00\) shipping. Woodgrain case \$10.00. \(\$ 1.50\) shipping.
ersions coming soon with exchange privie Super Basic on Cassette Tom Pittman's 1802 Tiny Basic Source listing now available. Find out how Tom Pittman wrote Tiny Basic and how to get the most out af it. Never offered belore.
S- 100 Slot Expansion
\(\$ 9.95\)
Coming Soon: Assambler and Editor; Ell II Adapter Board. High resolution alpha/numerics with color graphics expandable up to \(256 \times 192\) resolution for less than \(\$ 100\).
16K Dynam. RAMbd. expand. 32K; less than \(\$ 150\).

\section*{\(\$ 106.95\)}

A 24 key HEX keyboard includes 16 HEX keys plus toad, reset, run, wait, Input, memory protect, monitor select and single step. Large, on board displays provide output and optional high and low address. There is a 44 pin standard connector slot for PC cards and a 50 pin connector slot for the Ques: Super Expansion Board. Power supply and sockets for all IC's are included in the price plus a detailed 127 pg . instruc ion manual which now includes over 40 pgs of software info. including a series of lessons to help get you started and a music program and graphics target game.
Many schools and universities are using the Super Eli as a course of study. OEM's use it for raining and research and development.
Remember, other computers only offer Super Elf teatures at additional cost or not at all. Compare belore you buy. Super Ell Kit \$106.95, High address option \(\$ 8.95\), Low address option \$9.95. Custom Cabinet with drilled and labelled plexiglass front panel \(\$ 24.95\). ExpansionCabinet with room for \(4 \mathrm{~S}-100\) boards \(\$ 41.00\). NICad Battery Memory Saver Kit \$6.95. All kits and options also completely assembled and tested. Ouestdala, a 12 page monthly sottware publicaion for 1802 computer users is available by subscription for \(\$ 12.00\) per year.
Tiny Basic Cassette \(\mathbf{\$ 1 0 . 0 0}\), on ROM \(\mathbf{\$ 3 8 . 0 0}\), original Elf kit board \(\$ 14.95\). 1802 soltware; Moews Video Graphics \$3.50. Games and Music \$3.00, Chip 8 interpreter \(\$ 5.50\).

\section*{sette Interface \(\$ 89.95\)}
subroutines allowing users to take advantage of monitor functions simply by calling them up. mprovements and revisions are easily donewith he monitor. If you have the Super Expansian Board and Super Monitor the monitor is up and running at the push of a button.
Other on board options include Parallal Input and Output Ports with full handshake. They allow easy connection of an ASCll keyboard to the input port. RS 232 and 20 ma Current Loop for teletype or other device are on board and if you need more memory there are two \(\mathrm{S}-100\) slots tor static RAM or video boards. Also a 1 K Super Monitor version 2 with video driver for full capability display with Tiny Basic and a video interface board. Parallel I/O Ports \$9.85, RS 232 \$4.50, TTY 20 ma I/F \(\$ 1.95, \mathrm{~S}-100 \$ 4.50\). A 50 pin connector set with fibbon cable is available at \(\$ 12.50\) for easy connection between the Super Ell and the Super Expansion Board.
Power Supply Kit for the complete system (see Multi-volt Power Supply below).

60 Hz Crystal Time Base Kit \(\$ 4.40\) Converts digital clocks from AC line frequency to crystal time base. Outstanding accuracy. Kit includes: PC board, IC, ciystal, resistors, ca pacitors and trimmer

\section*{integrated circuits}

\section*{Rockwell AIM 65 Computer}

6502 based single board with full ASCll keyboard and 20 column themal printer. 20 char, alphanumeric display. ROM monitor, fully expandphanumeric display, RoM monitor, fully expand-
able. \(\$ 375.00\). 4 K version \(\$ 450.00\). 4 K Assemable. \(\$ 375.00\). 4 K version \(\$ 450.00\), 4 K Assem-
bier \(\$ 85.00\), 8 K Basic Interpreter \(\$ 100.00\). Power supply assy, in case \(\$ 60.00\). AIM 65 in Power supply assy, in case \(\$ 60.00\), AMM
thin briefcase with power supply \(\$ 485.00\).

Not a Cheap Clock Kit \(\$ 14.95\) Includes everything except case. 2-PC boards. 6-50" LED Displays. 5314 clock chip, transformer, all components and full instructions. Orange displays also avail. Same kit w/.80" displays. Red only. \(\mathbf{\$ 2 1 . 9 5}\) Case \(\$ 11.75\)

Video Modulator Kit \(\$ 8.95\) Convert your TV set into a high quality monitor without affecting normal usage. Complete kit with full instructions

\section*{S-100 Computer Board}

8K Static RAM Kit Godbout
16K Static RAM Kit
24K Static RAM Kit
32K Dynamic RAM Kit
32K Static RAM Kit
64K Dynamic RAM Kit 8K/16K Eprom Kit (less PROMS) Video Interface Kit Video interiace Kit
Motherboard \(\$ 39\).

Extender Board
79 IC Update Master Manual \(\$ 35.00\) Complete IC data selector, 2500 pg . master reference guide. Over 50,000 cross references. Free update service through 1979. Domestic postage \(\$ 3.50\). No foreign orders.

\section*{Auto Clock Kit}
\(\$ 17.95\)
DC clock with \(4-50^{\prime \prime}\) displays. Uses National Min- 1012 module with alarm option. Nc. Fully regulated, comp instructs. Add \(\$ 3.95\) for beautiful dark gray case. Best value anywhere.

\section*{Stopwatch Kit}
\(\$ 26.95\)
Full six digit batitery operated. \(2-5\) volts. 3.2768 MHz crystal accuracy, Times to 59 min., 59 sec., \(991 / 100\) sec. Times std., split and Taylor 7205 chip. all components minus case. Full instructions.

\section*{NiCad Battery Fixer/Charger Kit}

Opens shorted cells that won't hold a charge and then charges them up, all in one kit w/full and then charges them
parts and instuctions.
\(\$ 7.25\)

\section*{PROM Eraser}

Will erase 25 PROMs in 15 minutes. Ultraviolet, assembled \(\$ 34.50\)
Hickok \(\mathbf{3}^{1 ⁄ 2}\) Digit LCD Multimeter Batuac oper. \(0.1 \mathrm{mv}-1000 \mathrm{v} .5\) ranges. \(0.5 \%\) accur. Resistance 6 low power ranges 0.1 ohm-20M ohm. DC curr. . 01 to 100 ma . Hand held, \(y_{2}\) "LCD displays, auto zero, polarity, over range. s69.95.

Digital Temp. Meter Kit \(\$ 34.00\) Indoor and outdoor. Switches back and forth Beautiful. \(50^{\prime \prime}\) LED readouts. Nothing like it available. Needs no additional parts for complete, full operation. Will measure \(-100^{\circ}\) to \(+200^{\circ} \mathrm{F}\), tenths of a degree, air or liquid. Beautiful woodgrain case w/bezel \(\$ 11.75\)

TERMS: \(\mathbf{8 5} 00 \mathrm{00}\) min. order U.S Funds. Califresidents add \(6 \%\) lax. Shipping charges will be added on charge cards.

\title{
A low cost Modem for your APPLE that lets you be a part of it all.
}

\author{
Complete with software on cassette
}

Keep up with the latest information, share your ideas and programs with other hobbyists, time-share clubs, colleges, businesses, friends . . . anywhere, everywhere across the country.

The MICRONET MODEM, an originateanswer and auto-answer modem, part of the Automodem II series, is furnished with an FCC registered coupler and two interconnecting cables and plugs into any standard telephone jack.

\section*{MICRONET . . . enhanced by a} handsomely styled and coordinated enclosure with a simple inexpensive interface to the APPLES' game jack, allows you to make full use of all the input/output slots provided for other peripherals. Full compatability with Bell, Westinghouse 103, and Westinghouse 113. Don't be left behind
Order the MICRONET MODEM today! Manufactured by Micromate Electronics, Inc.
Dealer's Inquiries Invited

\section*{ASCII KEYBOARD * KIT \(\$ 79.95\)}

ASCII KEYBOARD KIT - Assembled and Tesied \$95.95
- Single +5V Supply • Full ASCII Set (Upper and Lower Case) - Parallel Output - Positive and Negative Strobe - 2-Key Rollover - 3 User Definable Keys P.C. Board Size: \(17-3 / 16^{\prime \prime} \times 5^{\prime \prime}\) - Control Characters Molded on Key Caps • Optional Provision for Serial Output. OPTIONAL: Metal Enclosure \(\$ 27.50\) • Edge Con. \(\$ 2.00\) - Sockets \(\$ 4.00\) - Upper Case Lock Switch \(\$ 2.50\) - Shitt Register (for Serial Output) \$2.00. Dealer inquiries invited.

\section*{APPLE II 1/0 BOARD * KIT \$49.00}

APPLE II I/O BOARD KIT — Plugs into Slot of Mother Board
- 18 -Bit Parallel Output Port (expands to 3 Ports) - 1 Input Port - 15 mA Output Current Sink or Source - Can be used for peripheral equipment such as printers, floppy discs, cassettes, paper tapes, etc. - 1 Free Software Listing for SWTP PR40 or IBM selectric. PRICE: 1 Input and 1 Output Port \$49.00, 1 Input and 3 Outpot Ports \(\$ 60.00\). Dealer inquiries invited.

\section*{VENUS 2001 VIDEO BOARD kit \$19995}

\footnotetext{
Assembled and Tested \$259.95 - Complete Unit with 4K Memory and Yideo Driver on Eprom assemblad and testad \(\$ 339.95\). OPTIONAL: - Sockets \(\$ 10.00\) - 2 K Memory \(\$ 30.00\) - 4 K Memory \(\$ 50.00\) - Video Driver Eprom \(\$ 20.00\). S-100 Plug-In • Parallel Keyboard Port - On board 4K Screen Memory (optional). On board Eprom (optional) for Video Driver or Text Editor Software. Up and down scrolling through video memory - Reverse Video, Blinking Characters. Display: 128 ASC 11 Characters \(64 \times 32\) or \(32 \times 16\) Screen Format (Jumper Selectable), 7 by 11 Dot Matrix Characters.
American or European TV Compatible (CRT Controls Programmable). Dealer inquiries invited.
}

THE APPLESTICK \({ }^{\text {TM }}\) s \(49^{95}\)
Just plug it into your game connector and make your present games more enjoyable.
The APPLESTICK is a wonderful add-on for your Apple II. With an APPLESTICK you can enjoy the smooth, easy control of a true \(360^{\circ}\) joystick.
Manufactured by Micromate.

Not recommended for scientilic appiications requiring linearity.

HEW! ADREAM COME TRUE! Introducing:30 MZH DUAL TRACE PORTABLE SCOPE
s.isim 555.

- Dual trace 2-channel; separate, chopped or alternate modes - 30 megahertz bandwidth - External and internal trigger - Time base -0.05 , Microseconds to 0.2 SEC/div 21 settings - Battery or line operation - Line synchronization mode - Power consumption less than 50 W " Vertical gain 0.1 to 50 volts/div12 settings • Size: \(2.9^{\prime \prime} H, 6.4^{\prime \prime}\) W, \(8.5^{\prime \prime} D\) - Weighs only 3.5 lbs with batteries - Complete with input cable and rechargeable batteries and charger unit. OPTIONAL: Leather case \(\$ 45.00\) - 10:1 probe \(\$ 27.00\) (2 for \(\$ 49.00\))

MS-215 - 15 MHZ DUALTRACE PORTABLE SCOPE - \({ }^{3} 399^{\circ 0}\) MS-15 15 MHZ SINGLE TRACE SCOPE - \({ }^{\text {S29900 }}\)

SHIPPING \(\$ 3.50\) / California residents add \(6 \%\) sales tax

\section*{ELECTRONICS WAREHOUSE Inc.}

15820 Hawthorne Boulevard
Lawndale, CA 90260
(213) 370-5551

\title{
California Dicital Post Office Box 3097 B • Torrance，Galifornia 90503
}

With Purchase of The INTEGRAL DATA 440

\section*{Paper Tiger}

Your Choice， \(\mathbf{\$ 2 0 0}\) Value 1）Graphics Option Package 2）Interface for APPLE II 3）TRS－80 Printer interface California Digital has resently researched the complete low cost printer market．It is our opinion that the IDS 440 Paper Tiger is，without doubt，the most versatile and offers the ing under \(\$ 1,000\) ．
This quality dot matrix printer incorporates such reatures as
o allow print densities upto 132 software selectable character size to allow print densities upto 132 characters per line．Fult mansirn adjustable to 9．5＂．The Paper Tiger is engineered to accept either parallel or RS232 serial ASCII． \(110 / 220 \mathrm{~V} .50 / 607 \mathrm{z}\) ．

\section*{CONNECTORS \\ Conge \\ \\ male plus shood \\ O825s temate \\ s395 \\ \\ IMSAI／ALTAIR \\ \(\begin{array}{lll}\text { Altair soldertail．} 140 \text { row } & 84.95 & 3 / 813.00 \\ 3 / 815.00\end{array}\) \\ 22／44 Kim eyelet．155＂ \\ 22／44 Kim eyelet．156＂
\(25 / 50\) solder tab \(155^{\prime \prime}\) \\ \(\$ 1.953 / 85.00\) \\ \(\$ 1.953 / 85.00\)
\(\$ 1.09\)
\(\$ 1.953 / \$ 2.00\)
\(3 / 5.00\)}

\section*{ \\ Certilied Digital CASSETTES Won＇t drop a BIT！}
（T）

S－100 Mother Board
Quiet
Busis
\({ }^{5} 29.95\)
8803－18
18 slot
ImSAI

\section*{TELETYPEE MODAL 43}

Even if we have to give them away，werte going to shlp more of all our competiters．

Model 43AAA TTL）
\(\begin{array}{lllll}\text { EACH } & \frac{3}{875} & \frac{10}{850} & \frac{25}{825} .\end{array}\) RS－232 Interface＂K＂Add45000 shlppiag DOC

\section*{Minidisk Drive for TRS－80}

Lobo Uista \(\$\) \(3=3\) Includes Interface Cable

PLASTIC LIBRARY CASE with purchase of each box of
Verbatim mini－diskettes．\(\$ 5\) value Verbatim mini－diskettes，\(\$ 5\) value RRE

A．Shugart Associates
SA800－R Floppy Disk Drive The most cost effective way to store dala proc
essing information，when random recall is a essing information，when random recall is a
prime factor．The SABoo is fully compatble prime factor． 1 The sA800 is fuly compacies
with the \(I B M M 40\) format．Write protect cir cuitry，low maintenance \＆Shugart quality．
\(\$ 44950\)

Buying a CRT Terminal？

\section*{Hazeltine• Soroc• Lear Siegler}

Well if you really insist upon purchasing one of the above termuals，sure，we＇ll sell it to you．But when the key
board starts to double bounce，the screen fades and the power supply iust craps out don＇t call us，complain to the manufacturer．
The alternative，take a serious look at the ADDS Regent 5，we have，and concluded that this terminal offers，the best value in todays market．Through years of research tremely durable CRT terminal capable of withstanding an abusive 24 hour duty cycle．The Regent 25 features intel 8085 microprocessor controlled circuitry along with the Cherry Switch long－life capacitance keyboaid． 18 key cursor and numeric pad doubles to allow for user definable special functions．True descending lower case chat＊acters along with a fully addressable cursor makes the Regent 25 the ideal word processing terminal．
High－resolution screen is capable of displaying 96 upper and lower case ASCII characters and 32 comirol codes． The Regent 25 is switch selectable to display gix Euro－ pean languages along with Katakana．
Clearly the Regent 25 is not your adverage terminal． but than，ADDS is not your adverage terminal company．

Reyen／゚es applied digital dATA SYSTEMS

गIscouvt Mwitches
需 曹 CT
our choice
\(\$.98 \frac{10}{501001 \mathrm{k}}\) SPDT Winiature Toggles 7101 C8K ON－NONE－ON 1107 jbt ON－OFF（mnt．ON） 7108 CK ON－（moment．ON） \(\begin{array}{ll}\text { Rotary } & 3 \text { 3P－4．Pos．} \\ \text { Rotary } & 3 \mathrm{P}-6 . \text { Pos．}\end{array}\) Push B（N．O．）\＄．39ea．4／81 DIPSwich \({ }^{5} 129 \frac{102510018}{51.191 .09 .97 .83}\)

Wire Wrap Senter
IC SOCKETS \begin{tabular}{ccc}
wire wrap & low profite \\
ea． \(25 \quad 50\) & ea． \(25 \quad 50\) \\
\hline
\end{tabular} \begin{tabular}{lll}
& ea． 25 & 50 \\
\hline & 17 C 1615
\end{tabular} \(\begin{array}{llllll}37 & 36 & 35 & 18 & 17 & 16\end{array}\) \(\begin{array}{llllll}38 & 37 & 36 & 19 & 18 & 17\end{array}\) \(\begin{array}{llllll}99 & 93 & 85 & 36 & 35 & 34\end{array}\) \(5-295{ }^{2}\)
B630

EPROMS 1 1－15 \(\begin{array}{llll}16-63 & 64+\end{array}\) \(\begin{array}{lllll}1702 \mathrm{~A} & 2 \mathrm{~K} & 4.95 & 4.50 & 4.00\end{array}\) \(\begin{array}{llllll}2708 & 8 \mathrm{~K} & 9.95 & 9.50 & 9.00\end{array}\) \(\begin{array}{lll}2716 \text { TI } & 24.88 & 20.00\end{array}\) 2532

AY5－1013A UART 4.95 WD 1771 single D．39．95 WD 1781 Double D 65． 00 WD 1791 D 103740 ＊
VISA maser charge

As JADE enters its fourth year, we would like to express our appreciation to all our friends and customers who have supported us through the years. We could not have grown from a ten-employee, half-million dollar company into a fifty-employee, eight-million dollar company without your continuing support. We at JADE thank. YOU for being part of our family and wish you a joyous Holiday Season.

\section*{S D SYSTEMS \\ EXPANDORAM}

EXPANDABLE TO 64K USING 4116 RAMS

Interfaces with most popular S-100 boards
Bank selectable; PHANTOM provision
Draws only 5 watts fully populated
Designed to work with Z-80, 8080, and 8085 systems No wait states required
16 K boundaries \& protect via dip switches
Kits come with sockets for full 64 K
Invisible refresh
MEM-16130K (16K KIT)
\(\$ 199.00\)
MEM-16130A (16K A\&T) \(\$ 249.00\)
MEM-32131K (32K KIT) \(\$ 265.00\)
MEM-32131A (32K A\&T)
MEM-48132K (48K KIT) \(\$ 315.00\)

MEM-48132A (48K A\&T)
MEM-64133K \((64 \mathrm{~K}\) KIT)
MEM-64133A (64 K A\&T) 339.00 389.00 394.00

\section*{S D SYSTEMS}

PROM-100
VERSATILE EPROM PROGRAMMER

S-100 bus compatible (note: board height 7") Dip switch selects \(2708,2716,2732,2758\), or 2516 's 25 VDC programming pulse generated on board Programming time only 100 seconds for 16 K bits Support-software listing provided in manual Program and erasure verification Software provides for reading of object file from \(C P / M\) and programming into EPROM MEM-99520K (KIT) \(\$ 145.00\)
MEM-99520A (A\&T) \(\$ 215.00\)

\section*{S D SYSTEMS}

\section*{EXPANDOPROM}

EXPANDABLE TO 32K USING 2716 EPROMS

S-100 bus compatible, uses 2708 or 2716 EPROMs Dip switches allow selection of : each EPROM, 16K or 32 K boundary, wait states
MEM-32220K (KIT)
\(\$ 135.00\)
MEM-32220A (A\&T).
\$199.00

\section*{GET THE INSIDE TRACK JADE DOUBLE-D \\ DOUBLE DENSITY DISK CONTROLLER}

Read/write single or double density, 8 "or \(51 / 4\) "drives On board Z-80 insures reliable operation
CP/M compatible in either single or double density Density is software selectable
Up to 4 single or double sided, single or double density drives may be mixed on the same system EIA level serial printer interface on board-up to 9600 baud (perfect for despooling operations)
All the hard work of disk access is done by the on board Z-80A and 2 K memory, leaving your host CPU free for its normal duties
Uses IBM standard formats for proven reliability THIS BOARD REALLY WORKS III!!
IOD-1200K (DOUBLE-D KIT),
\(\$ 285.00\) OD-1200A (DOUBLE-D A\&T) \(\$ 349.00\) IOD-1200D (MANUAL ONLY \(\$ 15.00\)

\section*{S D SYSTEMS}

\section*{VERSAFLOPPY II}

DOUBLE DENSITY DISK CONTROLLER

Single or double density floppy disk controller 985600 bytes on \(8^{\prime \prime}\) double sided diskettes 259840 bytes on double sided \(51 / 4^{\prime \prime}\) diskettes S-100 bus (IEEE) standard compatible IBM 3740 format in single density \(8^{\prime \prime}\) and \(514^{\prime \prime}\) drives controlled simultaneously Operates with Z-80, 8080, and 8085 CPU's Controls up to 4 drives
Vectored interrupt operation optional IOD-1160K (KIT)

\section*{S D SYSTEMS \\ VERSAFLOPPY}

VERSATILE FLOPPY DISK CONTROLLER

IBM 3740 soft sectored format
S-100 Z-80 or 8080 compatible
Controls up to 4 single or double sided drives Compatible with all popular disk drives
CP/M compatible
Listings for control software included IOD-1150K (KIT)
\(\$ 139.00\)
IOD-1150A (A\&T)
\(\$ 229.00\)

\section*{DECEMBER SPECIAL}

\section*{JADE P/S I/O KIT}

1 PARALLEL, 2 SERIAL I/O PORTS
One bi-directional parallel I/O port and two serial ports; one is RS232/TTL, the other is RS232/Kansas City Standard cassette interface
IOI-1040K (KIT)
\(\$ 89.95\)
IOI-1040A (A\&T)
\(\$ 159.95\)
IOI-1040B (BARE BOARD)
\(\$ 20.00\)

\section*{S D SYSTEMS \\ EXPANDORAM}

4 MHz RAM BOARD EXPANDABLE TO 256K

S-100 bus compatible, up to 4 MHz operation Expandable memory from 16 K to 256 K
Dip switch selectable boundaries
Page-mode allows up to 8 boards on the same bus Invisible refresh; PHANTOM output disable Designed to operate in Z-80 based systems MEM-16631K (16K KIT) \(\$ 275.00\)
MEM-16631A (16K A\&T) \(\$ 325.00\) MEM-32632K (32K KIT) \(\$ 359.00\) MEM-32632A (32K A\&T) \(\$ 410.00\) MEM-48632K (48K KIT) \(\$ 445.00\) MEM-48632A (48K A\&T) \(\$ 495.00\) MEM-64632K (64K KIT) \(\$ 529.00\)
MEM-64632A (64K A\&T) \$579.00

S D SYSTEMS VDB-8024

\section*{\(80 \times 24\) IIO MAPPED VIDEO BOARD}

80 character by 24 line display, \(7 \times 10\) dot matrix Composite or seperate TTL video outputs On-board keyboard interface with power On-board 2-80 and 2K RAM
Blink, underline, reverse, protect, up/down scroll Upper/lower case characters, 32 special characters Optional 128 user-programmable characters
IOV-1020K (KIT)
\(\$ 295.00\)
OV-1020A (A\&T)
\(\$ 459.00\)

\section*{S D SYSTEMS}

SBC-100/200
2 OR 4 MHz SINGLE BOARD COMPUTER

4 EPROM sockets accomodates 2708,2716 , or 2732 One parallel and one serial I/O port
4-channel counter timer chip (Z-80 CTC) Software programmable serial baud rates CPC-30100K (2 MHz KIT)
\(\$ 215.00\)
CPC-30100A (2 MHz A\&T)
\(\$ 345.00\)
CPC-30200K (4 MHz KIT)
\(\$ 255.00\)
CPC-30200A (4 MHz A\&T)

\title{
PRICES SLASHED FOR DECEMBER !!! CALL TOLL-FREE AND SAVE
} 800-421-5809 CONTINENTAL U.S. 800-262-1710 INSIDE CALIFORNIA

\section*{S D SYSTEMS \\ Z-80 STARTER KIT}

COMPLETE 2-80 MICROCOMPUTER

On-board keyboard, display, EPROM programmer, and cassette interface
On-board S-100 interface
Wire-wrap area and room for 2 S-100 connectors Two 8-bit parallel I/O ports, 4 -channel CTC, 5 programmable breakpoints
Examine and change memory, I/O ports, or register
CPS-30010K (KIT).
\(\$ 219.00\)
CPS-30010A (A\&T)
\(\$ 365.00\)

\section*{CP/M 2.0}

Digltal Research has done it again! This new release of their industry standard disk operating systern is bound to be an even bigger hit than the original version. All of the fundamental file-size restrictions of release \(\uparrow\) have been eliminated, while maintaining full compatibility with the earlier versions. This new release can be field-configured by the user for a single mini-disk up through a multiple drive hard-disk system with 128 megabyte capacity. Field configuration can be accomplished easily through use of the Macro Library (DISKDEF) provided with CP/M 2.0
A powerful operating system for only ... \(\$ 150.00\)

\section*{JADE'S NEW MOTHERBOARDS THE ISO-BUS \\ WE'RE PROUD OF OUR MOTHER!}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{6-SLOT} \\
\hline BARE BOARD & \$24.95 \\
\hline KIT & \$49.95 \\
\hline ASSEMBLED \& TESTED & \$59.95 \\
\hline 12-SLOT & \\
\hline BARE BOARD & \$39.95 \\
\hline KIT & \$89.95 \\
\hline ASSEMBLED \& TESTED & \$99.95 \\
\hline 18-SLOT & \\
\hline BARE BOARD & \$59.95 \\
\hline KIT & \$129.95 \\
\hline ASSEMBLED \& TESTED & \$149.95 \\
\hline
\end{tabular}

SPECIAL PACKAGE PRICE
ROCKWELL AIM-65
THE HEAD-START IN MICROCOMPUTERS
KIM-1 compatible On-board printer Full ACSII keyboard
AIM-65 w/1K RAM.. \(\$ 375.00\)
AIM-65 w/4K RAM.. \(\$ 450.005\) 8K BASIC ROM.. \(\$ 100.00\) POWER SUPPLY.. \(\$ 59.95 /\)
CASE for AIM-65.. \(\$ 49.95\) 4K Assembler/Editor.. \(\$ 80.00\)

Special Package Price

4 K AIM-65, 8K BASIC ROM, Power Supply, and Case.

\section*{MEMORY EXPANSION KITS FOR}

TRS-80 APPLE EXIDY
Everything you need to add 16 K of memory to your computer. Your kit comes neatly packaged with easy to follow instructions. In just minutes your computer is ready to tackle more advanced software.

\section*{\(\$ 75.00\)}

\section*{NEW REVISION C BOARD THE BIG Z}

Z-80 CPU BOARD WITH SERIAL I/O PORT
Features include - \(\mathrm{S}-100\) Compatible available in 2 MHz or 4 MHz versions. On-board 2708, 2716, or 2532 EPROM can be addressed on any \(1 \mathrm{~K}, 2 \mathrm{~K}\) or 4 K boundary with power-on jump to EPROM. On-board EPROM may be used in SHADOW mode, allowing full 64K RAM to be used. Automatic MWRITE generation in front panel is not used -On-board USART for synchronous or asynchronous R232 operation (on-board baud rate generator). Reverse operation (on-board baud rate generator). Reverse
channel capability on USART allows use with buffered peripherals or devices with not-ready signal.
\begin{tabular}{|c|c|}
\hline CPU-30200K (\(2 \mathrm{MHz} \mathrm{KIT} \mathrm{)}\) & \$149.95 \\
\hline CPU-30200A (2 MHz A\&T) & \$199.95 \\
\hline CPU-30201K (\(4 \mathrm{MHz} \mathrm{KIT)}\) & \$159.95 \\
\hline CPU-30201A (4 MHz A\&T) & \$209.95 \\
\hline
\end{tabular}

PLACE ORDERS TOLL FREE
800-262-1710
800-421-5809
INSIDE CALIFORNIA CONTINENTAL U.S.
WAITE FOR OUR FREE 1979 CATALOG
FOR GUSTOMER SERVICE OR TECHNICAL INOUIRIES
TERMS OF SALE: Cash, checks, money orders, and credif cards accepted. Minimum order \(\mathbf{\$ 1 0 . 0 0}\). California residents add \(6 \%\) sales tax. Minimum shipping and handling charge \(\$ 2.50\). Prices are for U.S. and Canadian delivery only and are
subject to change subject to change
information send for a

\section*{}

\section*{JADE} THE PAPER TIGER

132 COLUMN DOT MATRIX PRINTER Up to 198 CPS 1.75 to 9.5 inch adjustable
tractor and friction feed. tractor and friction interface.
98 character ASCII set. 80 to 132 columns. 6 or 8 lines per inch. Eight software selectable character sizes. \(110,300,600\), or 1200 baud
PRM-33440.

\(\$ 995.00\)
PRM-33441(with graphics \& 2k buffer). . \(\$ 1195.00\)

\section*{DISKETTE SPECIAL}
5.25" SOFT, 10, OR 16 SECTOR 10 for \(\$ 29.95\)
\(8^{\prime \prime}\) SOFT SECTOR IBM COMPATIBLE 10 for \(\$ 34.95\)

\section*{S-100 CONNECTOR SALE}

100 PIN IMSAI TYPE SOLDER-TAIL CONNECTOR
6 for \(\$ 15.00 \quad 12\) for \(\$ 25.00\)
SPST DIP SWITCHES
\begin{tabular}{|c|c|c|c|}
\hline & 567. & & 170 \\
\hline PART NUMBER & NUMBER OF & & PRICE \\
\hline SWD-103 & 3 & \$1.00 & \$1.18 \\
\hline SWD-104 & 4 & \$1.05 & \$1.20 \\
\hline SWD-105 & 5 & \$1.10 & \$1.24 \\
\hline SWD-106 & 6 & \$1.15 & \$1.28 \\
\hline SWD-107 & 7 & \$1.20 & \$. 30 \\
\hline SWD-108 & 8 & \$1.25 & \$1:34 \\
\hline SWD-109 & 9 & \$1.30 & \$1.36 \\
\hline SWD-110 & 10 & \$1.35 & \$1.38 \\
\hline
\end{tabular}

16 PIN ZIP* DIP II
24 PIN ZIP* DIP II
. \(\$ 7.50\)
40 PIN ZIP* DIP I
10.25

ZERO INSERTION PRESSURE

\section*{SPECIAL HOLIDAY PRICE!} NOVATION CAT

ACOUSTIC COUPLER/MODEM

\section*{Introducing . . .}

\title{
Graphic Golf TRS-80**
}

> Welcome to "Small Woods Country Club," where you can play on our scenic 18 hole, par 72, 6,840 yard course. Will you make it over the lake, or take the long way? You choose the club and angle, 80\% skill, 20\% chance. A challenge to all. Plays like a real course. Instruction tape included. Easy to order . .
> \(15^{95}\)

Send check or money order to . Ken Smallwood
(Calit. residents add 6\%)
389 Coral St.
Visa or Mastercharge accepted Santa Cruz. Ca. 95060 Bank Card order for 1 day delivery (408) 688-4187 Dealer inquiries invited CIRCLE 336 ON READER SERVICE CARD

\section*{T.D.Q.}

\section*{TAPE DATA QUERY}

\section*{THE IDEAL SOLUTION FOR PERSONAL AND} VERY-SMALL BUSINESS DATA MANAGEMENT

\section*{PET-8K}

TRS-80-LVL II
* COMPLETE CASSETTE FILE MANAGEMENT SYSTEM ENGLISH-LIKE COMMAND LANGUAGE -REPORT GENERATOR UTILITY PACKACE
-NO PROGRAMMING KNOWLEDGE REQUIRED -REQUIRES 2 CASSETTE RECORDERS
* T.D.Q. Application caselbook
-COMPLETE DIRECTIONS TO MICRO-COMPUTERIZE:
- Inventory control - customer directory
- accounts receivable - appointment scheduling
- aCCOUNTS PAYABLE - VENDOR MASTER FILE
- ORDER PROCESSING - PAYROLL JOURNAL
- label printing - Checkbook journal
- CHECK PRINTING - TELEPHONE BOOK
- invoice printing - rent collection
**SPECIAL YEAR-END SALE PRICE - \(\$ 100.00^{* *}\) INCLUDES:
CASEBOOK; 2 CASSETTES; 3 USER'S MANUALS \& REF. CARDS
orders must be rtceived by IAn 31. 1980 SEND CHICK OR MONEY-ORDER TO:

\section*{H. GELLER COMPUTER SYSTEMS}
P.O. BOX 350

NEW YORK, N.Y. 10040
(N.Y. RESIDENTS ADD SALLS TAX)

POWER TRANSFORMERS (with mOUnting brackets)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \[
\begin{gathered}
\text { ITEM } \\
\text { NO. }
\end{gathered}
\] & USED IN KITNO. & \[
\begin{aligned}
& \text { PRI. WINDING } \\
& \text { TAPS } \\
& \hline
\end{aligned}
\] & \multicolumn{3}{|l|}{SECONDARY WINDING OUTPUTS

\(2 \times 8 \mathrm{Vac}\)} & \[
\begin{gathered}
\text { SIZE } \\
\mathrm{W} \times \mathrm{D} \times \mathrm{H} \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
\text { UNIT } \\
\text { PRICE }
\end{gathered}
\] \\
\hline T1 & 1 & OV, \(110 \mathrm{~V}, 120 \mathrm{~V}\) & \(2 \times 7.5 \mathrm{~A}\) & \(2 \times 2.5 \mathrm{~A}\) & & \(33 / 4{ }^{\prime \prime} \times 35 / 8^{\prime \prime} \times 31 / 8^{\prime \prime}\) & 19.95 \\
\hline T2 & 2 & 0V, \(110 \mathrm{~V}, 120 \mathrm{~V}\) & \(2 \times 12.5 \mathrm{~A}\) & \(2 \times 3.5 \mathrm{~A}\) & & \(33 / 4 \times 43 /{ }^{\prime \prime} \times 31 / 8{ }^{\prime \prime}\) & 25.95 \\
\hline T3 & 3 & \(0 \mathrm{~V}, 110 \mathrm{~V}, 120 \mathrm{~V}\) & \(2 \times 9 \mathrm{~A}\) & \(2 \times 2.5 \mathrm{~A}\) & \(2 \times 2.5 \mathrm{~A}\) & \(33 / 44^{\prime \prime} \times 43 / 8^{\prime \prime} \times 31 / 8^{\prime \prime}\) & 27.95 \\
\hline T4 & 4 & 0V, 110V, 120 V & \(2 \times 4.5 \mathrm{~A}\) & & \(2 \times 4.5 \mathrm{~A}\) & \(33 / 4 \times 3 / 8 /{ }^{\prime \prime} \times 3 / 8{ }^{\prime \prime}\) & 19.95 \\
\hline
\end{tabular}

POWER SUPPLY KITS (OPEN FRAME WITH base plate, 3 hrs. assy. time)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline ITEM & USED FOR & @+8 Vdc & @-8Vdc & @ + 16 Vdc & @-16 Vdc & @+28 Vdc & SIZE \(W \times D \times H\) & UNIT PRICE \\
\hline KIT 1 & 18 CARDS SOURCE & 15A & & 2.5A & 2.5A & & \(12^{\prime \prime} \times 6{ }^{\prime \prime} \times 478^{\prime \prime}\) & 46.95 \\
\hline KIT 2 & SYSTEM SOURCE & 25A & & 3A & 3A & & \(12^{\prime \prime} \times 6^{\prime \prime} \times 47 / 6^{\prime \prime}\) & 54.95 \\
\hline KIT 3 & DISC SYSTEM & 18A & 1A & 2A & 2A & 4A & \(14^{\prime \prime} \times 6^{\prime \prime} \times 47 / \mathrm{B}^{\prime \prime}\) & 62.95 \\
\hline KIT 4 & DISC SOURCE & 8A & 1 A & & & 8A & \(10^{\prime \prime} \times 6^{\prime \prime} \times 47 / 3^{\prime \prime}\) & 44.95 \\
\hline
\end{tabular}

EACH KIT INCLUDES: TRANSFORMER, CAPACITORS, RESIS., BRIDGE RECTIFIERS, FUSE \& HOLDER, TERMINAL BLOCK, BASE
PLATE, MOUNTING PARTS AND INSTRUCTIONS.
REGULATED POWER SUPPLY "R2"' ASSY. \& TESTED, OPEN FRAME, SIZE: 9 " (W) \(\times 5\) " (D) \(\times 5^{\prime \prime}\) (H) \(\qquad\) \(\$ 69.95\)
SPECS: \(+5 \mathrm{~V}+1 \%\), @ \(5 \mathrm{~A}_{\mathrm{t}}+24 \mathrm{~V}, \pm 1 \%\), @ 5 A. OVERCURRENT PROTECTION AND \(+5 \%\) ADJ. FOR BOTH VOLTAGES. REMARK: IDEAL FOR ROCKWELL AIM-65 MICROCOMPUTER. ALSO -5V, @ 1 A OPTIONAL, 55.00 ADDITIONAL.
SHIPPING FOR EACH TRANSFORMER: \(\$ 4.75\). FOREACH POWER SUPPLY: \(\$ 5.00\) IN CALIF. \(\$ 7.00\) IN OTHER STATES. CALIF. RESIDENTS ADD \(6 \%\) SALES TAX. OEM WELCOME.

SUNNY INTERNATIONAL
(TRANSFORMERS MANUFACTURER)
Telephone: (213) 633-8327

STORE:
7245 E. ALONDRA BLVD.
PARAMOUNT, CA 90723 STORE HOURS: 9 AM-6 PM TORRANCE, CA 90510

16K EPROM CARD-S 100 BUSS

OUR BEST SELLING KIT!

\section*{USES 2708's!}

Thousands of personal and business systems around the world use this board with complete satisfaction Puts 16K of software on line at ALL TIMES! Kit features a top quality soldermasked and silk-screened PC board and first run parts and sockets. All parts (except 2708's) are included. Any number of EPROM locations may be disabled to avoid any memory conflicts. Fully buffered and has WAIT STATE capabilities.
\begin{tabular}{|c|}
\hline OUR 450NS 2708'S \\
ARE \$8.95 EA. WITH \\
PURCHASE OF KIT \\
\hline
\end{tabular}
ASSEMBLED
AND FULLY TESTED ADD \$25

16K STATIC RAM KIT-S 100 BUSS

PRICE CUT!
\begin{tabular}{c}
\(\$ 279 \mathrm{KIT}\) \\
\(\begin{array}{c}\text { FOR 250NS } \\
\text { ADD } \$ 10\end{array}\) \\
\hline
\end{tabular}

FULLY STATIC, AT
DYNAMIC PRICES
WHY THE 2114 RAM CHIP?
We feel the 2114 will be the next industry standard RAM chip (Itike the 2102 was). This means price, availability, and quality will all be good! Next, the
2114 is FULLY STATIC! We teei this is the ONLY way to go on the S-100 Buss! We've all heard the way to go on the S-100 Buss! We've all heard the
HORROR stories about some Dynamic Ram Boards having trouble with DMA and FLOPPY DISC DRIVES. Who needs these kinds of problems? And tinally, even among other 4 K Static RAM's the 2114 stands out! Not all 4 K static Rams are created equal! Some of the other 4 K 's have clocked chip enable lines and various timing windows just as criticel as Dynamic RAM's. Some of our competitor's 16 K boards use these "tricky" devices. But not us! The 2114 is the ONLY logical

KIT FEATURES
1. Addressable as four separate AK Blocks. 2. ON BOARD BANK SELECT circuitry (Cromemco Standard!). Allows up to 512 K on line!
3. Uses
3. Uses 2114 (450NS) 4K Static Rams
4. ON BOARD SELECTABLE WAIT STATES. 5. Double sided PC Board. with solder mask and silk screened layout. Gold plated contact fingers. 6. All address and data lines fully buffered 8. PHANTOM is jumpered to PIN 67 . 9. LOW POWER: under 2 amps TYPICAL from the 4 Voll Buss. 10. Blank PC Board can be populated as any

\section*{multiple of 4 K .}

> BLANK PC BOARD W/DATA-\$33

LOW PROFILE SOCKET SET- \(\$ 12\) ASSEMBLED \& TESTED-ADD \(\$ 30\) SUPPORT IC'S \& CAPS-\$19.95

\section*{S-100 Z80 CPU CARD}

ASSEMBLED AND TESTED! READY TO USE! Over 3 years of design efforts were required to produce a TRUE S-100 Z80 CPU at a genuinely bargain price! \(\mathbf{4} \mathbf{~ M H Z ! ~} \mathbf{\$ 1 5 9 9 5}\)
FEATURES: FEATURES:
* 2 or 4 MHZ Operation.
* Generates MWRITE, so no front panel required. Periect For * Jump on reset capability
for S-100 compatability.
* 8080 Signals emulated for S-100 compatability.
* Top Quality PCB, Silk Screened. Solder Masked, Gold Plated Contact Fingers.

\section*{LOW POWER - 250NS \\ 2114 RAM SALE!}

4K STATIC RAM'S MAJOR BRAND, NEW PARTS. These are the most sought after 2114's, LOW POWER and 250NS FAST. \(\$ 750\) ea. or 8 For \(\$ 55\)
SPECIAL SALE:
(We reserve the right to limit quantities.)

\section*{8K LOW POWER RAM KIT-S 100 BUSS SALE}

(450 NS RAMS!)

Thousands of computer systems rely on this rugged, work horse, RAM board. Designed for error-free, NO HASSLE, systems use.
KIT FEATURES:
1. Doubled sided PC Board with solder mask and silk screen layout.Gold plated contact fingers.
All sockets included.
3. Fully buffered on all address and data lines.
4. Phantom is jumper selectable to pin 67.
5. FOUR 7805 regulators are provided

Blank PC Board w/Documentation \(\$ 29.95\)
Low Profile Socket Set... 13.50
Support IC's (TTL \& Regulators)
\(\$ 9.75\)
Bypass CAP's (Disc \& Tantalums)
\(\$ 4.50\)
ASSEMBLED AND FULLY BURNED IN ADD \$30

\section*{16K STATIC RAM SS-50 BUSS}

PRICE CUT!
\begin{tabular}{|l|l|}
\hline\(\$ 2\) & \\
\hline
\end{tabular}

FULLY STATIC
AT DYNAMIC PRICES

KIT FEATURES:

\section*{FOR SWTPC 6800 BUSS!}

ASSEMBLED AND
TESTED - \$30

1. Addressable on 16K Boundaries
2. Uses 2114 Static Ram
3. Runs at Full Speed
4. Double sided PC Board. Solder mask and silk screened layout. Gold fingers.
5. All Parts and Sockets included
6. Low Power: Under 2 Amps Typical
BLANK PC BOARD-\$33
COMPLETE SOCKET SET-\$12
COMPLETE
APS-\$19.95
SUPPORT IC'S AND CAPS-\$19.95

PROC. TECH. QUITS THE MICROPROCESSOR BUSINESS!
FACTORY CLOSE OUT - SPECIAL PURCHASE! \#16KRA

\section*{16K S-100 Dynamic Ram Board - \$149.95 \\ ORIGINALLY PRICED AT \$429 each!}

We purchased the remaining inventory of PT's popular 16K Ram Board when they recently closed their plant. Don't miss the boat! These are brand new, fully tested, ASSEMBLED and ready to go. All are sold with our standard 90 day limited warranty!!

72 Page Full Manual, Included Free!
NOT ASSOCIATED WITH DIGITAL RESEARCH OF CALIFORNIA, THE SUPPLIERS OF CPM SOFTWARE.

\section*{Digital Research: Computers}
P.O. Box 401565 - GARLAND, TEXAS 75040 - (214) 494-1505

TERMS: Add \(\$ 1.00\) postage. we pay balance. Orders under \(\$ 15\) add 75 c handling. No C.O.D We accept Visa, MasterCharge. and American Express caids Tex Res add \(5 \%\) Tax Foreig̣n orders except Canada add 20\% P\& H. 90 Day Money Back Guaranter on all items

\section*{STATISTICAL DATA \&}

SOFTWARE FOR TRS80
DATABANK programs contain 10 years of monthly statistical data on ten related subjects. Includes graphs, tables, trends, internal/external comparison, and capacity for data file expansion/update.
Six DATABANK programs now available for TRS-80 1GK Level Il Cassette.
* General Economy
* Manufacturing \& Trade
* Industrial Production
* Money \& Credit
* Money Rates \& Yields

Commadity Spot Prices
\(\$ 29.95\) each
3 for \(\$ 84.95\) Free cassette storage alburn with order for all six programs. Money orders speed delivery.

DATABANK
POB 9283, F† Lauderdale, FL 33310

Circle 90 on inquiry card

Premium tape and cassettes acclaimed by thousands of repeat order microcomputer users. Price includes labels, cassette box and shipping in U.S.A. VISA and M/C orders accepted. California residents add sales tax. Phone (408) 735-8832.

MICROSETTE CO.
777 Palomar Avenue
Sunnyvale, CA 94086

Circle 228 on inquiry card.

\section*{a TRS-80 basic renumbering program that does more}

Renumber a program in any desired manner in one pass - renumbers even the tongest programs in seconds - changes all line number relerences rearranges program order * easily repeated use because commands are BASIC remarks - returns orignal BASIC program on errors - called from BASIC relurns to BASIC • specily 4 or 16 K Levelll or 32 or 48 K DOS

Tested casselle/program both sides \(\$ 20\)
TRS-80 acting up? © check your RAM whth our versatile RAM check - runs until interrupted - Incis permanent and intermittent bad memory • memory saze independent

Tested casselte/program both sides \(\$ 10\)
MICROBIOTIC COMPUTING, INC.
[4] 6515 ROSS AVENUE S.E. ALBUQUERQUE, NEW MEXICO 87108

The best choice in mainframes !
- swo card frame
- axial blower
- 22 MHz \(12^{\prime \prime}\) CRT monitor - assembled \& tested
- \(\because\) amppowersupply - ready for your cards
upper \& LOINER CASE - sg95.0n

ASCH KEY BoARDS

\section*{VEAY ATTAACTINE OEAK AND}

EALE Gtiscounts al'allatil
Een INFINITE INCDRPDRATED
319 E STRAWBRIDEE, MELBOURNE, FL 32901 - \((305) 724\)-1588

Circle 170 on inquiry card.

SURPLUS ELECTRONICS
 BASED I/O TERMINAL WITH ASCII CONVERSION INSTALLED \$645.00
- Tape Drives • Cable
- Cassette Drives - Wire
- Power Supplies 12V15A, 12V25A,

5V35A Others, - Displays
- Cabinets - XFMRS - Heat
- Cabinets - XFMRS - Heat

Many other items, SEND \(\$ 1.00\) FOR CATALOG
REFUNDABLE FIRST ORDER
WORLDWIDE ELECT, INC
130 Northeastern Blvd.
Nashua, NH 03060
Phone orders accepted using
VISA or MC
Call 603-889-7661

\section*{APPLE}
- APPLE II or APPLE II PLUS \(\$ 995.00\)
- DC HAYES MODEMS 339.95
- FLOPPY DISK W/CONT. 529.95
- APPLE SOFT CARD 159.95
- PASCAL CARD 459.95
- ALF MUSIC

SYNTHESIZER
249.95
- 10 MEGA-BYTE DISK DRIVE (for APPLE)
4695.00

UCATAN
COMPUTER STORE
across Irom Ramada Inn
PO Box 1000
Destin, Florida 32541
(904) 837-2022 or (904) 243-8565

Circle 309 on inquiry card.

\section*{TRS-80, PET, APPLE SORCERER Hardware/Software Systems}

A vailable now: - HAM INTERFACE-.including the most sophisticated RTTY systems money can buy.
- Baudot and ASCII printer interfaces.
- Electra Sketch \({ }^{\text {- }}\), ANIMATION GRAPHICS Compiler

H'rite or call for free catalog MACROTRONICS, inc. .
P.O. Box518(A)Keyes, CA 95328 (209) 634-8888/667-2888 (R) (S) We are experiencing telephone difficulties, please keep trying.

Circle 203 on inquiry card.

\section*{PET ACCESSORIES}

Commodore Dual Floppy Disk Drive Commodore Printer (tractor feed) Commodore Printer (friction feed) Second Cassette - from Commodore Commodore PET Service Kit
Beeper - Tells when tape is loaded Petunia - Play music trom PET Video Buffer - Attach another CRT Combo - Petunia and Video Buffer New Serial Printer Interface for PET
Call for Avallability \(\qquad\) -
PET - Compatible Selectric in Desk

\section*{S15ACB \begin{tabular}{l}
\$15ALI \\
\(\$ 995.00\) \\
\hline
\end{tabular}} \(\$ 995.00\)
\(\mathbf{\$ 9 9 5 . 0 0}\) \(\$ 995.00\)
\(\mathbf{\$ 9 5 . 0 0}\) . \(\$ \mathbf{\$ 9 5 . 0 0}\) .\(\quad \$ 30.00\)
\(\$ 24.95\) \begin{tabular}{l}
. \(\mathbf{\$ 2 4 . 9 5}\) \\
\(\mathbf{\$ 2 9}\) \\
\hline
\end{tabular} . . \(\$ 29.95\) . \(\$ 29.95\)
. \(\$ 49.95\) \(\$ 49.95\)
. . \(\$ 895.00\)

\section*{COMMODORE DISK DRIVES}

\author{
Reg. \$1,295 Sale \$1,100
}

\section*{opple II}

\section*{\$200 fREE RCCESSORIES}

The new Apple il with Applesoft BASIC built-in! Eliminates the need for a \(\$ 200\) Firmware Card and includes new Autostar ROM for easy operation. This combined with the FREE accessories from NCE could save you up to \(\$ 400\) on a 48 K Apple Il system.
16K Apple II Plus - \(\$ 1195\) (take \(\$ 100\) in free accessories) 32K Apple II Plus- \(\$ 1345\) (take \(\$ 150\) in free accessories 48K Apple II Plus - \(\$ 1495\) (take \(\$ 200\) in free accessories)

Apple II Accessories
Centronics Printer Interface
.ial to.............. \(\$ 225\)
Disk and Controller

Second Disk Drive
Parallel Printer Carc
Communications Card
Hi-Speed Serial Card.
Firmware Card.
Call for
Hobby/Proto Card
Microverter RF Mod.
Sanyo M2544 Recorder

\section*{IN STOCK NOWH}

EVEAY ITEM IN THIS ADVEATISEMENT IS IN STOCK AND REAOY TO SHIP, EXCEPT WHERE NOTED.

\section*{Graphics printer for Apple II \(\$ \mathbf{1 , 0 9 8}\)}

Now you can print high resolution graphics from your Apple using the IP-225 printer and graphics option from IDS. The IP-225 is a tractor feed printer with 96 possible characters, Line length is \(80 / 132 \mathrm{col}\) with a speed of characters
\(50 / 80 \mathrm{cps}\).

\section*{PEI OWNERS}

\section*{RFMOTE}

TERMINAL
for
only \$69
A self-contained module and program
cassctte enables you PET to function as a 300 baud terminal. Supports Upper/Lowe
case, Rubout, Escape case, Rubout, Escape
\& all control functions \& all control function
Outputis tiTh

PURCHASE

\section*{NEWI 80OH DISK \& MEMORY} EXPANSION
You can instantly turn your PET into a speedy and efficient professional computer. Its easy with the new 400K Disk Drive and Memory Expansion from Computhink Add up to 32 K internally then load 20 K program in only 3 seconds! 800K Disk
Drive......... \(\$ 1,2\)
. \(\mathbf{\$ 1 , 2 9 5 . 0 0}\) Memory Expansion
.\(\$ 425.00\)

from Heath Data Systems

\section*{The All-In-One Computer}

Dual Z-80 Processors - Buiti-In 102K Floppy Dlak • 16K to 48K RAM- \(25 \times 80\) Character Dleplay : Upper/Lower Case and Line Graphics * 80 Character Keyboard with Keypad - 8 User-definable Keya - Two BASIC's and Auto-Scribe Word Processing avaliabie • Can aupport CP/M

Heath's third generation of computers is a compact. hi-style desktop unit which includes a complete terminal, a computer and a disk All-In-One! System inciudes Bootstrap in ROM, other programs available separately. HDOS operating system includes Heath's BASIC, an assembler and text editor along with important disk utilities. Microsoft language requires HDOS

WH89 with 16K RAM
Wh89 with 32K RAM
WH89 with 48K RAM
WH17 Second Disk Drive
Dual-port Serial Intertace
HDOS Operating System
Microsoft BASIC
Word Processing

SINCE 1971
Department BYC9

\section*{270 THIRD ST.. CAMBRIDGE, MA 02142}

To Order: 1(800)343-5504
In Mass: 1(617)491-2700
in Mich: . 1(313)994-3200

Member:
Computer Dealers
Association

IMPORTANT ORDERING INFORMATION
All orders must include 4\% shipping and handling. Massachusetts residents add 5\% for state sales tax. All foreign orders (except Canada) need an additional \(10 \%\) for shipping and handling.

Phones open from 8:30 a.m. to \(5: 30\) p.m. EST Monday-Friday, P P.O.'s accepted from D \& Brate companies - shipment contingent upon receipt of signed purchase order d All prices subject to change without notice Most items in stock for immediate shipment - call for delivery quotation Sorry, no C.O.D.s.
In the Ann Arbor area? Retail store open 11:00 a.m. to 7:00 p.m. TuesdayFriday, 10:00 a.m. to \(5: 00\) p.m. Saturdays (Closed Sunday and Monday) If not satisfied, return your purchase with-in 10 days for full refund of purchase price!

Circle 25 on inquiry card.

FLOPPY DISK REPAIR

- PerSci and Shugart
- Quick turnaround
- Eight inch and minis

National Computer Service
1023 N. LaBrea
Hollywood, CA. 90038
213-851-2226

Circle 68 on inquiry card.

OPTICAL PAPER TAPE READER

Simply connect the OP-80A Paper Tape Reader to any 8 -bit parallel port and pull the tape thru (\(0-5,000 \mathrm{cps}\)). A custom optical sensor array eliminates read errors found in lower cost units. (This is the one that works!) Complete with manual and interface cable. \(\$ 84.50\) Kit and \(\$ 99.95\) A \& T.

Oliver Advanced Engineering, Inc. 676 W. Wilson Ave
Glendale, CA 91203
(213) 240-0080
iexas instrument comi:
TI \(99-4\) COAFUIFK
TI BIO BASIC PKIATEK
81995
II B20 hasic friniek
\(\$ 19 \% 0\)
ti SOFTUARE

\section*{s save}
centmonics feinters
779-2 TKAC. FL
1949.

フフ9-1 FRIC.Fu
890.

230-1 NEU PRNTR
799.
1849.

HIC50 F 1830
HICRO PI B90. MICKIS SI
commodolie business machimes
CET 2001-8K
FET 2001-16N.
PET 2001-32N,
PET 2040 [ULL flapey
PET 2022 TKAC.FD FEINIEF
PET 2023 FFIC.Fb FRINTEK
1675.
1859.
\begin{tabular}{l}
\(\$ 1090\) \\
\(\$ 1090\) \\
\hline
\end{tabular}
1849.
749.

NORIH STAR COMPUTERS
\(81 G\) SAVINGS
INTERTEC SUPEKGIKAIN
THE HONDR GRADUATE COMFIUEK disflay tekhinals
intertuge II

\section*{1400 \\ 1400
140
1500}

1500
1510
hulti-business computer gystems 28 MARLGORDUGH STREET Portlani, conn. ob480 (203) 342-274)

\section*{Memorex Floppy Discs}

Lowest prices. WE WILL NOT BE UNDERSOLD!! Buy any quantity 1-1000. Visa, Mastercharge accepted. Call free (800)235-4137 for prices and information. All orders sent postage paid.

Circle 294 on inquiry card.

Learn the Psychological secrets of how to beat most people and computers at chess

\section*{SECRETS OF A GRANDPATZER}
by
Kenneth Mark Colby Professor of Psychiatry and Computer Science, UCLA
Price \(\$ 20.00\)
MALIBU CHESS PRESS DEPT BY
25307 Malibu Road Malibu, CA 90265
checks, money orders, or C.O.D. Colifornia residents add \(6 \%\) sales tox

SOLOS/CUTER + CP/M USERS
Processor Technology Extended Cassette

\section*{BASIC on CP/M}
- Easy to install - no knowledge of assembly language needed
- All tape functions have been converted to use disk.
- All tape-d
included.
- Program will relocate to any 32 K or larger CPIM system
- Supplied on a 1200 Baud CUTS cassette
- User must supply a copy of Basic (Rev.A)
- Cassette plus users manual \(\$ 49.95\).

Manual only - \$5.00.
- Dealer inquires invited.

This program will modify basic to run under CP/M as a disk basic with all tape file commands converted to use disk files. Program overlavs CCP portion of CP/M. "For Maximum Mernory Utilization.
Send check or money order to: (11. residents add 5\% tax)

TAD ENTERPRISES PO Box 257 Hazelcrest, IL 60429
SOLOS/CUTER are registered trademarks of Processor Technology Corp. CP/M is a registered tradmark of Digital Research

Circle 366 on inquiry card.

CDMPUTER CASE
CGMPANY

ATTACHE STYLE CASE FOR CARRYING AND PRO. TEGTING THE APPLE COMPUTER. CONSTRUCTED OF the highest quality luggage material. will ACCOMMODATE COMPUTER, TAPE RECORDER, OR DISC DRIVES PLUS TAPES, OR DISCS AND ALl. MAN. UALS. NEVER A NEED TO REMOVE COMPUTER FROM CASE, SIMPLY REMOVE LID, CONNECT POWER AND MONITOR CABLES, AND OPERATE. LID CAN BE REPLACED AND LOCKED FOR SECURITY AND PROTECTION WITHOUT DISCONNECTING CABLES.

DELUXE CASE 599.00
DELUXE CASE/2 DISC DRIVES 108.00
STANDARD CASE

CBMPUTEA CASE COMPAMY
5650 INDIAN MOUND CT., COLUMEUS. OHIO 43213 (614) 868-9454

Circle 51 on inquiry card.

\section*{CROMEMCO SYSTEMS DISCOUNTED}

System 2 with 64k RAM-\$3195
System 3 with 32k RAM-\$4795 with 64k RAM-add \$ 595

Discounts up to 20\% on most Cromemco hardware. We carry the full Cromemcoline.

\section*{TORREY PINES BUSINESS SYSTEMS}

14260 Garden Rd., Suite 8A Poway, California 92064 (714) 486-3460

California residents add 6\% sales tax

\section*{The \\ TO ORDER CALL (212) 687-5001}
 SUPERBRAIN \({ }^{\text {"m }}\) INTERTEC DNTA SYSTEMS

\section*{32K}

\section*{ONLY}
\(\$ 2995\)
64K \$3245
More than an intelligent terminal, the SuperBrain outpertorms many other systems costing three to tive times as much. Endowed with a helty amount of available soltware (BASIC. FORTRAN, COBOL), the SuperBrain is ready to take on Your toughest assignment. You name it General Ledger. Accounts
Receivable. Payroll, Inventory or Word Processing. . the SuperBrain handles all of them with ease.

\section*{Features Include:}
- two dual-density minitloppies with 320 K bytes of disk storage - 32Kot RAM to handle even the most sophisticated programs - a CP/M Disk Operating Systern with a high-powered text editor,
assembler, and debugger.

SPECIAL
COMBINATION
Superbrain \& Centronics 704 only \(\$ 4595\)

Available Software
Accounts Receivable/Payable \$ 125 General Ledger \$ 125
Payroll with cost accounting \$ 125

\section*{Capple \\ NEW! \\ APPLE II PLUS ONLY\$1195}

A complete self-contained computer system with APPLESOFT iloating point
BASIC in ROM, full ASC | | keyboard in a light weight molded carrying case.

\section*{Features Include:}
- auto-start ROM - Hi-Res graphics and 15 calor video output
- Expandable to 48 K

- 16-bit microprocessor - 15K RAM
- 13" color monitor
(24 lines of 32 chrs.) - 26K ROM operating system (includes 14K BASIC) - Sound - 3 tones, 5 octaves - 16 colors: \(192 \times 256\) res. Large TI library of ROM
programs availabse
programs availabie.
only
FINALLY
TEXAS
INSTRUMENTS TI-99/4
Home Computer
Many Peripherals. Coming soon!
Over1000 software tapes, books, disks on display. Come in and brouse.
\(\$ 1150\)
Includes \(13^{\prime \prime}\) Color Monitor! PRTNTERS PRTNERS PRTNEES The COMPUTER FACTORY'S extensIve CENTRONICS 779 \(\$ 945\) Inventory and wide selection of computer TRENDCOM 100.
printers assures you of finding the printer TRENDCOM 200. printers assures you of finding the printer TRENDCOM \(200 .\). best suited for your needs and specifications. The following printers work (New) Remington Selectric

TO ORDER CALL (212) 687-5001
The COMPUTER FACTORY
485 Lexington Avenue 750 Third Avenue New York, N.Y. 10017 Foreign order desk - Telex 640055

and

CP/M* Source Code -- FREE! when you purchase "OS-1" Electrolabs' new operating system for the \(\mathbf{Z - 8 0}\) designed to have exactly the appearance of UNIX**, including virtual I/O, "set TTY", a tree and a shell, filters and pipes PLUS total compatability with CP/M software!

VIRTUAL I/O - copy with a single command between floppy and hard disk, or from TTY to printer to tape to disk... etc., etc. No messy \(1 / O\) routines to write, \& no awkward transfers. SECURITY - 9 modes of file protection, user and login protection. MULTI-USER - up to 256 passwords. (non-simultaneous users) 16MBy FILE SIZE - but no limit to no. of directories per device, thus allowing EASY implementation of gigantic storage devices.
"SET TTY" - for printer or crt: tabs, page width, buffer, cursor, UC/LC, fonts, formfeed, arbitrary control characters etc., etc.
"LOGIN" - automatically executes user selected programs and "set TTY" OCCUPIES 12 KBy - only \(50 \%\) larger than CP/M, but \(500 \%\) more features. CP/M \& CDOS COMPATABLE - your library is guaranteed to run!
> * (Naturally, we are not giving away the version of CP/M written by Digital Research, Please pardon our pun, but they might object. What we ARE giving you is a greatly enhanced version of CP/M which resides on OS-1, and allows the user of OS-1 to run any and all of his programs, packages or system utilities which are already running on \(\mathrm{CP} / \mathrm{M}\). We give you the source code at no charge so that you may modify any part of the CP/M to suit your own system requirements. At no charge, you also receive the enhancement allowing 4 MBy files instead of 256 K .)

OS-1 (with debugger, linker and screen oriented editor \$199.00
Update service, per year .
29.00

Symbolic Debugger . 150.00

MACRO-Assembler (Creates relocatable code)
"C" Compiler 150.00

FORTRAN Compiler 660.00

BASIC Compiler (very fast)
100.00
fast) 150.00

\section*{A NEW System concept!}

BRAND NEW POWER!! BRAND NEW OPERATING SYSTEM!! UN-INTERRUPTABLE POWER CAPABILITY!! DON'T LOSE YOUR DATA!!

FEATURING: Expandability - hardware and OS expand - up to 16 users. Double density - (it works!!!) UNIX like operating system (OS-1). Supports all CP/M utilities and programs. Time sharing capability. Turnkey software included.

\section*{BUSINESS DATA WORK SAVER®!!!}

Standard features: Enclosure, 10 slot backplane, Z-80 CPU, 32K RAM, I/O and controllers, Bantam terminal, Paper Tiger Printer, OS-1, Two floppies (\(8^{\prime \prime}\) or \(5^{1 / 9^{\prime \prime}}\)). Basic compiler with application programs for accounts payable, accounts receivable, general ledger and payroll
\(\$ 6495.00\)
WORD SAVER©!!!
MULTI-USER
UP TO EIGHT STATION WORD PROCESSING
Standard features: Enclosure, 10 slot backplane, Z-80 CPU, 48K RAM, Daisy Wheel Printer, ESAT Terminal with two fonts (Arabic, Hebrew, Cyrillic, Greek, Catakana, any custom font for \(\$ 50.00\)) Three floppies: (\(8^{\prime \prime}\) or \(514^{\prime \prime}\)) OS-1. Word processor package with additional memory which is expandable up to eight users leach extra terminal \$900.00) \(\$ 8695.00\)

\section*{ELECTROLABS}

POB 6721 Stanford, CA 94305 415-321-5601 800-227-8266 Telex: 345567 (Electrolab Pla)

OPTIONS: 10 MBy hard disk (available now!!!) Extra memory, graphics, etc. Call or write for further details. This is the most advanced microcomputer system available at this time.

\section*{HARTMANN LANG}

TRS- \(80{ }^{\text {trm }}\) HARDWAREISOFTWARE DUMP-IN BASIC LEV2 \(\$ 5.00\)
MONITOR-IN BASIC LEV2 \(\$ 10.00\)
HEX TO DECIDEC TO HEX
CONVERSION-IN BASIC LEV2
\(\$ 5.00\)
HEX DUMP ASSEMBLY LANG
OBJECT
\(\$ 5.00\)
SOURCE \(\$ 10.00\)
SOME LEV2 BUGS. ISSUE \(1 \quad \$ 3.00\)
WRITE FOR COMPLETE LIST

\title{
AUTHORS: \\ WE BUY SOFTWARE WRITE FOR INFO \\ CHECK OR MONEY ORDER TO: \\ HARTMANN LANG BOX 693 \\ CHATHAM,NJ 07928
}

Circle 152 on inquiry card.

SPRINT 68 MICROCOMPUTER CONTROL COMPUTER DEVELOPMENT SYSTEM 6800 MPU, serial I/0, 48K RAM, dual \(8^{\prime \prime}\) drives, WIZRD multitasking DOS, Editor, Assembler, 12K BASIC all for \(\$ 3995\).

SOFTWARE OPTIONS
C compiler, PL/W compiler, PASCAL HARDWARE OPTIONS
EROM Programmer, analog I/0, parallel I/0, 488 GPIB

\section*{7 WINTELK Corp}

1801 South Street
Lafayetle, IN 47904
Phone: (317) 742-8428

Circle 389 on inquiry card.

\section*{8048 Family}

A one board microcomputer utilizing the 8035 geared toward stand alone applica tions with
- one 日-bit input port
- one B-bit output port
- one 8-bit bidirectional port
- fully programmable hand shake lines on each port
- crystal based timer
- 64 bytes RAM, expandable to 1 k bytes
- provisions for program memory to 4 k bytes
- single supply capability [+5V]
- low cost [64.95 - singles]

Money order, Check, or C.D.D. Send orders to:

Adroit Electronics, Inc. 5 East Long Street Suite 1012
Columbus, Ohio 43215 614-221-3060

\section*{save more than 20\%}

NDRTH STAR-INTERTUBE THINKER TOYS.-MICROTEK
The smartest computers at the smartest price वULAD \& OOUBLE DENSIT
\begin{tabular}{|c|c|c|}
\hline & LIST & ONLY \\
\hline HORIZON. \(\cdot 32 \mathrm{~K} .0 \mathrm{Mit}\) & \$1999 & \$1585 \\
\hline HORIZON 2.32K.D kit & 2399 & 1905 \\
\hline Assembled \& tested & 2765 & 2195 \\
\hline HORIZON.2.32K kit OUAD & 2799 & 2225 \\
\hline Assembled \& lested & 3215 & 2555 \\
\hline PASCAL for NOfTH STAA on Dis & & 49 \\
\hline Powerful NORTH STAR BASIC & & FREE \\
\hline TEE PT 212 COMPUTER 5 mHz & 8000 & 6250 \\
\hline THINKER TOYS OISCUSL20 A\&T & 1149 & 949 \\
\hline OISCUS/2+2 1.2 megabyles A\&T & 1549 & 1299 \\
\hline \multicolumn{3}{|l|}{MEASUREMENT SYSTEM MEMORY A 8 T 4 mHz 69 K} \\
\hline Intertuee II Smart terminal & 995 & 75 \\
\hline MAfYellen word pracessor your bes & Best Buy & 38 \\
\hline michotek printer & 750 & 675 \\
\hline anadex printer & 995 & 975 \\
\hline FLORIOA DATA PRINTER 600 cps & 4300 & 340 \\
\hline PDS for NORTH STAR Beller than CPiM & & 95 \\
\hline COMPILER for HORIZON Sectret Superfas & st Code & 95 \\
\hline VEREATIM the best disketies box of & & 29 \\
\hline Which Computers are best? 日ROCHURE & & FREE \\
\hline \multicolumn{3}{|l|}{AMERICAN SQUARE COMPUTERS} \\
\hline \multicolumn{3}{|l|}{KIVETT DR * JAMESTOWN NC} \\
\hline (919) 883-1105 & & \\
\hline
\end{tabular}

Circle 13 on inquiry card.
teachers!

\section*{THE ELECTRONIC ROLLBOOK \({ }^{\text {© }}\)}
is a plush, disk-based program that maintains your class rolls in a disk file; allows you to enter grades, add, delete or edit, compute class averages, alphabetize, line-print, assign grades, display a histogram, and much more.
You can enter new grades without having to alphabetize your papers or enter the student's names or look up anything in a directory!

For TRS-80* with one disk and 32K: \(\$ 39.95\).

Order from:

\author{
Report Card Box 15 \\ Narberth, PA 19072
}

\section*{APPLE \({ }^{\text {TM }}\) REFERENCE CARD}

SAVE TIME: Access the calls, keystrokes, and JSR's to those APPLE subroutines that you know are there.
PLUS: Screen memory layout, Op-code Table, Character Table, Schematic of transfer operations, and MUCH MORE.
To Order: Send check for \(\$ 1.95\) and stamped, selfaddressed envelope to: R\&D PRESS
885 N San Antonio Road Los Altos, Ca 94022

Circle 314 on inquiry card.

16 K RAMS \& RAM CONTROLLERS
\(6 \mathrm{~K} \times 1\) DYNAMIC RAMS MK4116P3
- 200 NSEC ACCESS 1375 NSEC CYCLE TMMES

16 PIN/TTL COMPATIBLE
- ALL CHIPS BUANED IN AND FULLY TESTED

S6800 IN OTY OF 8
6800/6502 64K BY TE RAM \& CONTROLLER SET
MAKE G4K BYTE MEMORY FOR YOUR 6800 OR 6502 HIS SET INCLUDES:
32 M5K \(4116.3 .16 \mathrm{~K} \times 1.200\) NSEC RAMS
1 MC3 380 MEMOAY CONTROLLER
and COUNTER
OATA \& APPLIGATION SHEETS. PARTS TESTED ANO GUARANTEEO.

DYNAMIC MEMORY CONTROLLER NC3seal gemeraits rasicas \& aEFRESH TMMING FOR 16K TO 64K BYTE MEMORIES
PRICE WITH OATE SHEET S 13.95 EACH
MEMORY ADDRESS MUXICOUNTER MC3242AP MEMORY ADDRESS MUXICOUNTER MC3242AP MUX ADOAESS \& REFRESH CDUNTER FOR I6K TO
GAK BYTE MEMORIES - PRICE WITH DATA SHEEI: \$12.50 EAGH
duaniot discluunts avaliable

 MEASUREMENT SYSTEMS \& CONTROLS, WIC.

3 E7 NLRYH MAN ST DRANCE CA 22

Circle 323 on inquiry card

\section*{... add the \\ sound dimension to your system nolsemales!}

Soundboard uses two GI AY 3-8910 I.C's to generate sound effects under software control. PCB onlu \$34.75.
Send for additional informa-
tion, check or money order to:

\section*{Ackerman}

Digital Systems, Inc.
110 North York Road - Suite 208
Elmhurst, Illinois 60126
Tel. 312-530-8992
(Illimois residents add \(5 \%\) state sales tax,) ;

\section*{tinyFORTH}

AnyFORTH is a powerful interactive progromming system for the TRS-80, tinyFORTH combines the structured high-level language, text editor, and assembler of FORTH with the grophics and cassette \(1 / \mathrm{O}\) of the TRS-80.
HnyFORTH programs are quickly developed by defining new modules in terms of previously defined modules. Each new module is compiled for fast execution and compact memory space.
finyFORTH is easy to leam. The user's manual contains hundreds of examples to teach you tinyFORTH in a hands-on style Special chapters explain graphics, applications, the text ediror, and the ossembler
tinyFORTH cassette for \(10 k\) level II TRS-80 and full documentation.... 529.95 Documentation only,...9.95 All orders are fully guaranteed. Add \(\$ 1.50\) for postoge and handling. Order with check. money order, Visa. or Mastercharge.
The Software Farm
Box 2304 Dept. A9 Resion, VA 22090

\section*{COMPARE PRICE, QUALITY, DELIVERY, SERVICE, and} you'll know why you don't have to look anywhere else!

\section*{ADVANCED}

APPLE II PLUS**
(limited offer)
16 K only \(\mathbf{\$ 9 9 0 . 0 0}\)
175.00
22.00
.29 .95

Disk 1
Disk 1........................
kil w/Controller 575.00 Firmware Ca pascal Card.475.00 M \& R Modulator arallel Printer Card ... 165.00 Sanyo Cassette. Communications Card... 210.00 16K Upgrade Kit \(\begin{array}{ll}\text { Business SoftwarePkg...625.00 Apple Radio Car ... } \\ \text { 10 Megabyte HardDisk.... } 695.00 & \text { Q }^{n} \text { Floppy Contralle }\end{array}\) O.C. Hayes Modem.....349.95 Heuristics Speechlab

\section*{280 Starter} Kit \$249

\section*{A Complete}

\section*{Microcomputer} on a Board
\(\star 280\) Central Processing Unit with 158 Instructions.
\(\star\) On-Board Keyboard and Display. \(\star\) Kansas City Standard Cassette Interface. \(\star\) PROM Programmer Built on-board.
Expansion provision for two S-100
Connectors.
\(\star\) Wire Wrap area for custom circuilty.

\section*{TRS-80/APPLE}

MEMORY EXPANSION KITS 4116's 16K (200/250 ns.) a pcs. for \$74.95 w/instructions \& jumpers.

Range DVM, \(5 / 1 /{ }^{\prime \prime} 1\), \(31 / 2\) digit 19 runs 200 hrs on 1 battery. 10 Meg Ohm Input. 1 yr. guarantee, made in U.S.A., test leads included.

\section*{Available Accessories}

RC-3115V AC Adapter
...............
CC-3 Deluxe PaddedVinyICarrying Case
. \(\$ 7.50\)
VP- \(10 \times 10\) DCV Probe Adapter/
Protector \(10 \mathrm{Kv} \ldots\)
. 14.50
VP-40 40 Kv DC Probe....
CS-1 10 Amp Current Shun

We are proud to offer the SOL-20 with a dual floppy subsystem all operating under CP/M Nowyoucan use the SOL-20 and take advantage of the unlimited CP/M based software that is available.
A. MINI-DISK SYSTEM
NCLUDES:
- SOL-20 w/32K
- VISTA V-200 controlleders
- CP/Mw/documentation

Assembled 8 tested
\(\mathbf{\$ 2 9 9 5 . 0 0}\)
SOL חKRA (expandable to 65K) RAM boards. Assembled and socketed w/o boards. Assembled and sockems
memory, data delay and prom
memory, data delay and proms.
Only........................ \(\$ 139.95\)
B. STANDARD FLOPPY SYSTEM includes:
- SOL-20 w/24K
- (2) \(8^{1 \prime}\) disk dives
- CP/Mw/documentation
- Assembled \& lested
\(\$ 3295.00\)

Sol-20 Keyboards.
Oniy \(\$ 139.95\)

EXIDY SORCERER oNLY \$799.00

\$799 w/8K
\(\$ 1099\) w/16K
\$1249 w/32K
\(\$ 1449\) w/48K
User programmable or use cartridges. Combines the desirable leatures of the PET, APPLE and TRS-BO into a com-
plete expandable computer system. \(\star \star\) VO expansion kit....... \(\$ 149.00\) \(\star\) * Vista \(V\)-200 add on mini-
loppy for Exidy (requires exp.
module) W/CPM...... \(\$ 699.00\)
** New Word Processing Pac 99.00
\& INCLUDES:
Keyboard \& enclosur
MICROSOFT BASIC
Video \& Cassette Cable
Complete Documentation
** S100 Expansion
* \& Cassette reco....... Add \(\$ 299.00\)
* \(\star\) Sanyo 9 Monitor

Add \(\$ 44.95\)
Add S169.95
. . . and it's COLOR SALE \(\$ 100.00\) OFF
"The Compucolor II"
. a personal coforgraphics system for the modern computer man
* Cotor Graphics \(13^{n}\) Color CR
* Proven 8080A CPU System
* Up to 117* Key Keyboard
* Up to 117* Key K
* Minidisk Drive 51.2K Bytes/Side

Model 3 w/8K, 72 Key Keyboard, RS232 . SALE
Model 4 w/16K, 72 Key Keyboard, RS232 \(\$ 100.00\).. \(\$ 1495.00\) Model 5 w/32K, 72 Key Keyboard, RS232 \(\$ 100.00\).. \(\$ 1695.00\) Options 101 Key Key Keyboard, RS232 OFF … \(\$ 2295.00\) Options: 101 Key Keyboard . Add \(\$ 150.00\) Formatted Diskettes.............. Frogrammed Diskettes...
\(\qquad\) Programmed Diskettes
 Blackjack, CubicTic TacToe, Finance Vol. It Finance Vol. II, Bonds and Securities, Assembler, Text Editor, Personal Data Base.

Finally! We've heard so much about it and we are proud to offer:
- Color Up to 72 K - 16 Color Graphics • Music Sound - Solid State Software
Limteo ar: \(\mathbf{\$ 1 1 5 0 . 0 0}\)

Z-80 based singleboard computer by SD Systems
* 1 K RAM
* RS232 port
* 4 channel counter/timer

Kit \(\$ 239.00\)
Assembled.......... \(\$ 369.00\)

RCA
COSMAC VIP

Newlowprice \(\mathbf{\$ 2 4 9 . 0 0}\) Assembled. Regular price w/Sanyo 9" Monitor \(\$ 169.95\)

\section*{ADVANCED COMPUTER PRODUCTS}

\section*{TARBELL FLOPPY TNTERFACE}
 Assembled Other Drives
Bare Board Notea For CPM Add \(\$ 70.00\). Documentation. Add \(\$ 10.00\))
E Vista Double Density \(51 / 4\) Controller Assem. 5299.00 SD Versa Floppy Kit. Tarber Cassetpy Assembled. Sale \(\star 1771 \cdot 01\) Floppy Chip....................... \(\$ 157.95\)
VISTA FIOPY Controfer B" NEW CENTRONICS 730 PRINTER

Z-80/Z-80A/8080 CPU BOARD \(\star\) On board \(2708 \star 2708\) included (450 ns .) - Z-80 Assembled and Tested. - Z-80 Kit.
- Z-80 Bare PC Board

8080A Kit
8080A Assembled.

\section*{S-100 MOTHERBOARD SPECIAL \\ 8 slot expandable w/9 con
reg \(\$ 69.95\).}

\section*{SIEMEN'S FLOPPY SALE}
- Special buy whi
- 8"Drive with Double-

Density
-90 Day Warranty \(\$ 350.00\left[\begin{array}{r}6 \\ \hline\end{array}\right.\)
ACOUSTIC MODEM NOVATION
\(0-300\) Baud
Bell 103

ACOUSTIC COUPLER SPECIAL: APECIAL PURCHASE
OF SURPLUS UNITS
AVAILABILITY LIMITED

MOTOROLA EXORCISER COMPATIBLE
9600 MPU Module w/6802 CPU
9602 Cand Cage (19" Retma
9603 Stot Mother Board.
9604 Switchmoder System Pow
960 wifity Priotyping Board
616 But
962016 Channel Paralled IfO M 9622 Serial/Parallel \(1 / 0 \mathrm{Comb}\)
962716 K Static 450 ns
9630 Card Extender
9640 Mulliple Programmable Timer 96508 Channeel Duplex Serial \(1 / 0\) 9670232 Point Reed Relay Module 6800 BARE BOARDS

\(9601 \cdot\)
P. O. BOX 17329 Irvine, California 92713
"
21L01-4(450ns.). . . 99 MM 2114N....... 4.49 21 LOT 2 (250 ns .). . 1.15 MK 3870 (programmed) TMS 4060 (pullouts) \(\quad\) AM................................... 1.50 MC 14411 9.90 AM 3.95 P8251 Intel...... 4.95 27508 (\(32 \times 8) \ldots . .95\) MM5311 Clock... 450 . 5492 MM5314 Clock . . . 3.95 2513-001 (U........... 7.35 8085

NOTICE: WE DO CUSTOM PROM PROGRAMMING

\section*{COMPUTER SPECIALS}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{IST SAE} \\
\hline Apple II Plus w/16K & 195. & 990. & IPS 19620 Diable RO & 3295. & 2695. \\
\hline PE 2001-16N & 995. & \({ }^{895}\). & \({ }^{\text {Anadex }}\) Certion \({ }^{\text {coics }}\) Micro P- 1 & 595. & 895. \\
\hline Exidy Sorcerer w/8k & 8995. & 795. & Centronics Micro P-1 & 595. & 395. \\
\hline Cromemco Sys III & 5990. & 4995 & Soroc 10,120 & 995. & \({ }_{855} 52\). \\
\hline Horizon \(\mathrm{w} / 15 \mathrm{~K}\) & 1599. & 1349. & Telelype Model 43 & 1349. & 1150. \\
\hline TE1P1208w/32K & & & Hiplot Plotter & 1085. & 899. \\
\hline dual tloppy \& CRT & & & HiP |ol Digititer & 795. & 735. \\
\hline (1 aval.) & 4995. & 2995. & Istert & 895. & 784. \\
\hline Pastal Microengine & 2995. & 2395. & SOL 20 & & 1095. \\
\hline
\end{tabular}

UARTS/USRTS

BAUD RATE GEN
MC144 11
A702
WDI941
KEYBOARD ENCODERS
\begin{tabular}{l}
KEYBOARD ENCODERS \\
AY5.2376 \\
AY5:3600 \\
13.75 \\
\hline 13.75
\end{tabular}

\(\frac{520012}{\text { pROMS }}\)

A/D CONVERTERS

Phone (714) 558-8813
TWX: 910.595-1565

Retail Store Open Mon. - Sat. Loceted at 1310 "B" E. Edinger, Santa Ana, CA 92705

\section*{Widen the ability of your TiS- 80}

\title{
The Vista V80:\$395
}

The Vista V80 Mini Disk System is the perfect way to widen the capabilities of your TRS-80* Microcomputer. Quickly and inexpensively. Our \(\$ 395\) price tag is about \(\$ 100\) less than the Radio Shack equivalent. Our delivery time is immediate (24 hour turnaround from our Santa Ana, Ca. factory). And our system is fully interchangeable. That's just the start.

It will give you 23\% more storage capacity by increasing useable storage from 55,000 to 65,000 bytes per drive with our new software patch.

It can work 8 times faster than the TRS-80 MiniDisk system, because track-to-track access is 5 ms versus 40 ms for the TRS-80. You can realize this added speed
once the new double disk expansion interface is available without expensive modification of the existing unit.

\section*{It has a better}
warranty than any comparable unit warranty available - a full 120 days on all parts and service. When you consider how much more goes into the Vista V80, that shows a lot of faith in our product.

\section*{A full 3 amp power}
supply means you have \(2^{1 / 2}\) times the power necessary to operate the V80, and full ventilation insures that there will be no problems due to overheating.

The Vista V80 Mini
Disk System requires Level II
Basic with 16K RAM Expansion interface (it operates from the Radio Shack interface system. It
comes complete with a dependable MPI Minifloppy disk drive, power supply, regulator board and vented case. It's shipped to you ready to run - simply take it out of the box and plug it in. You're in business. From the company that means business-Vista Computer Company.

The Vista Computer Company. Manufacturers of Quality Computer Systems and Software.
714/953-0523 1401 Borchard Santa Ana, Ca. 92705

\section*{HOLIDAY SPECIALS For Orders Received BEFORE December 31, 1979}

\title{
㖨Radio Hut \\ 1 LOCHWOOD MALL DALLAS, TEX ORDER BY PHONE-214-324-5509
}

PLEASE WRITE FOR CATALOG OR WHILE IN DALLAS, VISIT OUR RETAIL STORE AT 201 LOCHWOOD MALL, DALLAS, TEXAS 75218
(GARLANDROAD AT JUPITER).

ORDERING INFORMATION \& TERMS: Orders Under \(\$ 15.00\) add 754 handling. No C.O.D. We accept Visa, MasterCharge, and American Express cards. Tex. Res. add 5\% tax. Foreign orders (except Canada) add 20\% P\&H. 90 Day Money Back Guarantee on all items. Add 5\% P\&H, maximum \(\$ 5.00\). ORDER BY PHONE- (214) 324-5509
- Complete kit includes all Sockets for 64 K
- Memory access time: 375 ns , Cycle time: 500ns.
- No wait states required
- 16K boundaries and Protection, via Dip Switches
- Designed to work with Z-80, 8080, 8085 CPU's

EXPANDORAM 64K Kit (16K Ram)
WITHOUT MEMORY
16 K
\(\$ 139.00\)
32K
...-.-.............................. 340.00
64K

\section*{S-100 CONNECTORS High-Quality Gold Pins \(\$ 2.99\) EACH FLOPPY DISK SPECIAL \\ 5.25" SOFT, 10 OR 16 SECTOR 10 FOR \$29.95 \\ 8 " SOFT SECTORED IBM COMPATIBLE 10 FOR \$34.95}
- IBM 3740 Compatible Soft Sectored Format for Single Density Drives - Operates with Single and Dual Sided Drives. Single or Double Density Drives and 5" \& 8" Drives - in any combination of four simultaneously - Drive Select and Side Select Circuitry - S 100 Bus Compatible - Vectored Interrupt Operation Optional - Phase Locked Loop Data Recovery Circuit - Operates with 280 CPU's - Uses FD1791-1 Controlier Chip " Ther Versafloppy II incorporates all the possible teatures of a flexible disk drive controller into one board. Capable of handling four drives simultaneously, combinations of any variety are possible, such as \(5^{\prime \prime}\) single sided, \(8^{\prime \prime}\) dual density dual sided, \(5^{\prime \prime}\) dual density single sided. Most popular drives are controlled directly with the Versafloppy II. The operating system for the Versatloppy II is the extremely powerful SDOS available for SD Systems. Diagnostic and control software available to complete your disk system
\(\$ 290 \mathrm{KIT}, \$ 385.00\) ASSEMBLED \& TESTED

SD'S SBC-100
SINGLE BOARD COMPUTER
The SBC-100 provides a complete micro-computer on a single board! The 280 microprocessor isused as inents of a of the SBC-100. The SBC-100 meets all the requirements or a Z80 CPU board with the added features of I/O ports, counter/ timer channels, on board RAM, provisions for PROM/ROM and a software programmable baud rate generator. S -100 Bus PROM. 1024 bytes on-board RAM, Serial I/O with both synchronous and asynchronous operation. Parallel I/O ports, Operational Vectored Interrupts, and Four Counter/Timer Channels. SD Monitor available for RS-232 and Video Terminals. Disk based system software also available.
SBC-100 KIT \(\$ 209.00\)

IC SOCKETS

SD'S EXPANDORAM II
The Randem Access Memory

SD Systems' ExpandoRAM II is a dynamic RAM board with capacities from 16K bytes (4116) to 256 K bytes (4164). It operates on the industry \(\mathrm{S}-100\) Bus. The design allows 8 boards to op erate from the same \(\mathrm{S}-100\) Bus. The ExpandoRAM II is compatible with most S-100 CPU's based on the Z80 microprocessor.

EXPANDORAM II KIT
\begin{tabular}{|c|c|}
\hline W/O & \$195.00 \\
\hline 16K & 285.00 \\
\hline 32K & 375.00 \\
\hline 48K & 465.00 \\
\hline 64K & 555.00 \\
\hline
\end{tabular}

\section*{SD'S APBB-100 Z 80 CPU BOARD KIT}

The MPB-100 provides, Z 80 microprocessor

\section*{SD'S VDB-8024 VIDEO DISPLAY BOARD}

The VDE-8024 features microproce ware (included in ROM) to control functions and enhancements without interference with the computer's CPU. Included in the special features: 80 characters by 24 lines display, keyboard power and interface, composite and separate video output, 2K on-board RAM, a total of 256 available characters, full cursor control, forward and reverse scrolling, underlining, field reverse, field protect enhancements, programmable characters.

VDB-8024 KIT \$289.0

\section*{TARBELL FLOPPY DISK INTERFACE} Compatible with Z80 \& 8080. S-100 Bus. Uses CPM operating system. Plugs directly into your IMSAI or ALTAIR - Fastest transfer rate KIT \(\$ 190.00\) Assembled \& Tested \(\$ 260.00\)

TARBELL CASSETTE INTERFACE Plugs directly into your IMSAI or ALTAIR Fastest transfer rate - Extremely reliable Phase encoded \(\bullet 4\) extra status \& control lines KIT \$99.95

\section*{Z80 STARTER KIT}

Kit: \$219.95 Assembled \& Tested \$369.95 SD System's Z80 Starter Kit enables the novice to bulld a
complete microcomputer on a single board. Featuring the powerful Z 80 microprocessor, the Z80 Starter Kit features - Keyboard and Display - Audio Interface PROM Programmer - Expansion and Wire Wrap
Area - On Board RAM • 4 Channel Counter/Timer • Z-BUG Monitor in PROM • I/O Ports.
- S-100 Bus Compatible
- Up to 4Mhz Operation
- Expandable Memory from 16 K to 256 K
- DIP Switch Selectable Boundaries
- Uses 16K (4116) or 64K (4164) Memory Devices
- Page Mode Operation Allows up to 8 Memory Boards on Bus
- Operates with Z80 CPU's
- Phantom Output Disable
- Invisible Refresh (Synchronized with Wait States)

S. 100 Buc Compatible
-

\begin{tabular}{|c|c|c|c|c|}
\hline & & & & \\
\hline & & & \multicolumn{2}{|l|}{} \\
\hline & & & & \\
\hline \begin{tabular}{l}
\(8^{\prime \prime}\) DISKETTES - HARD SECTOR \\
\$1.75, 10/\$16.00
\end{tabular} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} & \multirow[t]{2}{*}{} & \\
\hline & & & & \\
\hline & & & & \\
\hline & & \% & & \\
\hline & & No & & \\
\hline & & & & \\
\hline & & \begin{tabular}{l}
SALES \\
EL. (617)
\end{tabular} & & \\
\hline
\end{tabular}

\section*{Three great new products for .
TRS-80* Owners}

\section*{MS-80 MINI DISK SYSTEM}

Each add-on drive includes one minifloppy disk drive, case, power supply and regulator board.
- More Storage Capacity
- Fastest Access
- Does Not Void TRS-80 Warranty
- Shipped To You Ready To Run

\section*{2-DRIVE INTERFACE CABLE \\ \(\$ 24.50\) \\ 4-DRIVE INTERFACE CABLE \\ \(\$ 34.50\)}

INTRODUCTORY PRICE: \(\mathbf{\$ 3 9 5}\) PER DRIVE
SUGGESTED RETAIL PRICE \$445

\section*{MATCHLESS FEATURED PRINTERS}

\section*{Features:}
- Documentation Included
- 80 Columns, 63 Lines Per Minute, Bi-Directional, Nominal Thruput
- High Reliability - Heavy Duty Cycle, 100 Million Characters Print Head Life
- Sprocket Feed
- \(5 \times 7\) Dot Matrix Character Font

CABLE- \(\$ 34.50\)
INTRODUCTORY PRICE: \$749 SUGGESTED RETAIL PRICE \(\$ 777\)

\section*{APPARAT NEW DOS \(+\quad \$ 99\)}

\section*{Features:}
- Modified Editor Assembler with Disk I/O and new cross reference feature. User Information is obtained from Radio Shack's Editor Assembler documentation.
- Super-fast machine language Disassembler program, with cross reference feature.
- Apparat's own Superzap, a Hex dump utility to examine or modify disk or memory locations.
- Transfer machine language tapes directly to disk.
- Enhancements including built-in key-debounce (eliminating double entry); option under DOS or BASIC to print the screen to your MATCHLESS featured line printer; execution of a BASIC program.

NOBODY CAN BEAT OUR MS-80 WARRANTY: 90 days on labor, One Year on parts.
Dealer Inquiries Welcome
*TRS-80 is a Radio Shack product.
Prices subject to change without notice.

\section*{micro squared DOUBLE HEADED DUAL DISC DRIVES}

\author{
\$800.00!!
}

On line capacity of 140 tracks transfer rate of \(\mathbf{1 2 5 K}\) bytes \(/ \mathrm{sec}\).
Up to 358.4 K byte capacity
Offers TRS-80 users the capacity of 4 drives costing nearly \(\$ \mathbf{2 0 0 0 . 0 0}\)

\section*{\(\$ 1195.00\)}

Shipped ready-to-run. Price includes everything-chassis, power supply, cable and 2 drives. Just unpack and plug in. Does not require any modification to TRS-80 or TRS-80 DOS. Also available for S-100 systems. Single or double density. 140 tracks. Up to 875 K byte capacity. transfer rate of up to 250 K bytes \(/ \mathrm{sec}\).

\section*{IMMEDIATE DELIVERY}

B
MICRO BUSINESS WORLD
Immediate response to your orders (verbal or written). Phone (213) 371-1660

AppleII personal computer.
\(16 \mathrm{~K} \$ 920\). Regular or Plus
Disk II with controller \$495. Disk II without controller \$425. PASCAL Language Card \$399.

ALL Apple made boards \(25 \%\) off list price European Apple models available

Electronic Language Translator \(\$ 179.95\) French Spanish Italian Germian Japanese

Language Modules \$22.95

\section*{DYSAN DISKETTES}

THE CADILLAC OF THE FLOPPY DISKS
at LOW LOW PRICES 8" (BOX OF 10)
3740/1 sgl side/ sgl density \(\$ 4.00\) ea 3740/1D sgl side/ dbl density \(\$ 6.50\) ea 5" (BOX OF 5) 104/1 soft sector \(\$ 4.00\) ea 107/1 10 sectors \(\$ 4.00\) ea 105/1 16 sectors \(\$ 4.00\) ea For each 2 boxes of \(8^{\prime \prime}\) or 4 boxes of \(5^{\prime \prime}\) you get one plastic storage case, but hurry supply is limited.

1TAR 811 Personal Computer System Packed with: Computer Console, Basic Language Card, Education System Master Cartridge, Cassette Recorder, TVMModulator, 8K Memory (expandable to 48 K), Power Supply \& all Books and Manuals \$849.99
171 1 410 Personal Computer System for less Packed with: Computer Console, Basic Language artridge, Power Supply, TV Modulator, and all

Books and Manuals \(\$ 469.99\)
ATARI Program Recorder \(\quad \$ 69.99\) ATARI Sotware, Roms. Cassettes
\(25 \%\) off list price ATARI Expansion Memory:

8K Module \$99.99 16K Module \(\$ 199.99\)

\section*{Comn 0 ot}

A truly professional computer system 16K \$849. 32K \$1095. Dual Floppy Disk Model 2040 \$1095. Single Disk Drive \(\$ 795\). Tractor Feed Printer Model 2022* \(\$ 849\).
Friction Feed Printer Model 2023* \$749. * need a IEEE to PET cable - 45.00 or an IEEE to IEEE cable - 35.00

\section*{Plastic Floppy Disk Holder}
(up to 10) 8" \(\$ 3.95\)

\section*{Plastic Floppy} Disk Holder
(up to 10) 5" \(\$ 3.25\)
16K RAM set of 84116 's 200 ns or better \(\$ 65.00\)

EPSON (A SEIKO COMPANY) TX-80 Printer with Graphics Capabilities. \(7 \times 6\) dotmatrix, Parallel (Centronics) standard 80 cols, Tractor Feed Model \(\$ 695\). Friction Feed Model \$595. Popular Computer Interfaces available for only \(\$ 79\). (including cables)

\section*{APPLESTICK MORE FUN AND GAMES!}

2 in 1: a Joystick and Game Paddles all in one box \(\$ 49.50\)

\footnotetext{
Prices subject to change without notice. VISA and MASTER CHARGE WELCOME.
Allow 2 weeks for cashiers check to clear, 4 weeks for personal checks. Add \(2 \%\) for shipping and handling. Calif. residents add \(6 \%\) sales tax. U.S. and International dealer inquiries invited.
}
 DATA SYSTEMS Smart Video Terminal WH-19 Has a Z80 micro processor numeric keypad
\(\$ 795.00\)

\section*{WORLD FAMOUS SONY"тдinitron"}

Sharpest picture color television-15" Diag. now comes with direct input video. Get your "COLOR MONITOR" for the Apple II or Atari for only \(\$ 495.00\)

CALIFORNIA COMPUTER SYSTEMS
16K RAM BOARD. Fully buffered addressable in 4 K blocks. IEEE standard tor bank addressing 2114's PCBD \(\begin{array}{r}\text {. } \$ 26.95 \\ \hline\end{array}\) \$259.95
 lators. All S-100 buss functions labeled, gold fingers. lators. All S-100 buss functions labeled, gold lingers.
PCBD PT-2 PROTO BOARD. Similar to PT-1 except setup to handle solder tail sockets.
\(\$ 25.95\) PCBD

formerly cybercom/solio state music. PB-1 \(2708 \& 2716\) Programming Board with provisions lor 4 K or 8 K EPROM. No external supplies require textool sockets. Kit
\(\$ 124.95\)
CB-1A 8080 Processor Board. 2K of PROM 256 BYTE RAM power on/rest Vector Jump Paralle! port with status. KitTBD PCBD...... \(\$ 30.95\) MB-6B Basic 8KX8 ram uses 2102 type rams. S-100 buss. Kit 450 NSEC \(\$ 139.95\) PCBD. \(\$ 26.95\) MB-7 \(16 \mathrm{~K} \times 8\). Static RAM uses \(\mu \mathrm{P} 410\) Protection fully buffered. Kit \(\$ 299.95\) MB-8A 2708 EROM Board. S-100. 8 KBX or \(16 \mathrm{Kx8}\) kit without PROMS \(\$ 75.00\) PCBD
VB-3 \(80 \times 55\) VIDEO BOARD
Graphic included \(\qquad\) \(\$ 28.95\)TBD \(10-2\) S-100 8 bit parallel /to port, \({ }^{2}\) pol boards is tor kludging. Kit \(\$ 46.00\) PCBD......... \(\$ 26.95\) 10-4 Two serial \(1 / 0\) ports with full handshaking 20/60 ma current loop: Two parallel 1/O ports. Kit \(\$ 130.00\) PCBD............... \(\$ 26.95\) VB-18 \(64 \times 16\) video board. upper lower case Greek, composite and paraflel video with software, S-100' Kit \(\$ 125.00\) PCBD............... \(\$ 26.95\) Altair Compatible Mother Board, \(11 \times 111 / 2 \times 1 /{ }^{\prime \prime}\). Board only \(\$ 39.95\). With 15 connectors...... \(\$ 94.95\) Extended Board full size. Board only \(\$ 9.49\) With connector \(\mathbf{S} 9.49\)
\(\$ 13.45\) SP-1 Synthesizer Board S-100 PCBD............... \(\$ 42.95\) KIT................ \(\mathbf{\$ 1 3 5 . 9 5}\)

\section*{WmCinc. WAMECO INC.}

FDC-1 FLOPPY CONTROLLER BOARD will drive shugart. pertek. remic \(5^{\prime \prime} \&^{\prime \prime} 8^{\prime \prime}\) drives up to 8 drives. on board PROM with power boot up. will operate with CPM \({ }^{* \prime}\) (not included).
PCBD
\(\$ 42.95\)
FPB-1 Front Panel. IMSAI size, hex displays. Byte. or instruction single step
PCBD \(\$ 47.50\)
MEM-1A BKX8 fully buflered, S-100, uses 2102 type rams. PCBD ... \(\$ 25.95\) QM-12 MOTHER BOARD, 13 slot, terminated, S- 100 board only \$34.95 CPU-1 8080A Processor board S-100 with 8 level vector interrupt PCBD \$26.95 RTC-1 Realtime clock board. Two independent interrupts. Software programmable. PCBD \(\$ 23.95\) EPM-1 1702A 4K Eprom card PCBD \(\$ 25.95\)
EPM-2 2708/2716 16K/32K \(\qquad\) EPROM CARD PCBD \(\qquad\) \(\$ 25.95\)
 9 Slots PCBD
…...................
MEM-2 \(16 \mathrm{~K} \times 8\) Fully
2114 Board PCBD
Bulfered
2114 Board PCBD

\begin{abstract}
\(\qquad\)
\end{abstract} PTB-1 POWER SUPPLY AND TERMINATO................................ 26 PCBD .. \(\$ 25.95\) 8080 A …......... \(\$ 9.95 \quad 2708\)......................... \(\$ 9.49\)
 8224 … 3.49 2102A.4L 1.20

(415) 592-1800
P. O. Box 424 - San Carios, Callfornia 94070 Please send for IC, Xistor and Computer parts list

\section*{DEC. SPECIAL SALE ON PREPAID ORDERS \\ (Charge cards not inctuded on this ofter)}

\section*{5\% XMAS SALE}
\(5 \%\) off on prepaid orders on SSM, WALMECO and CCS boards and kits. Mikos parts assortments included.

\section*{MIKOS PARTS ASSORTMENT}

WITH WAMECO AND CYBERCOM PCBDS

\section*{MEM-2 with MIKOS \(=716 \mathrm{~K}\) ram
with L. 2114 450 NSEC
MEM 249.95}

MEM-2 with MIKOS \(=1316 \mathrm{~K}\) ram
with L21 250 NSEC
with L2114 250 NSEC
MEM-1 with MIKOS *1 450 NSEC \(8 K\)
MEM
RAM
fam -......
..\(\$ 119.95\)
CPU-1 with MIKOS \(\# 2\) 8080A CPU 594.95
MEM-1 with MIKOS \#3 250 NSEC 8K RAM
.... \(\$ 144.95\)
QM-12 with MIKOS \#4 13 slot mother
board \(\$ 89.95\)
RTC-1 with MIKOS \#5 real time clock**... \(\$ 54.95\)
EMP-1 with MIKOS \#10 4K 1702 less
EPROMS
. \(\$ 49.95\)
EPM-2 with MIKOS \#11 16-32K EPROMS
less EPROMS
\(\$ 59.95\)
QM-9 with MIKOS \#12 9 slot mother
FPB-1 with MIKOS \(=14\) all parts
\(\$ 79.95\) FPB-1 with MIK
for front panel
\(\$ 134.95\)
MIKOS PARTS ASSORTMENTS ARE ALL FACTORY PRIME PARTS. KITS INCLUDE ALL PARTS LISTED AS REOUIREO
FOR THE COMPLETE KIT LESS PARTS LISTED. ALL SOCKETS included.

VISA or MASTERCHARGE. Send account number, interbank number. expiration date and sign your order. Approx. postage will be added. Check or money ordler will be sent post paid in U.S. It you are not a regular customer. please use charge, cashier's check of postal money order. Otherwise there will be a two-week delay for checks 10 clear. Calli. residents add \(6 \%\) tax. Money back 30 day guarantee. We cannot accept ro-
furned ic's that have been soldered fo. Prices sublect to furned IC's that have been soldered io. Prices sublect to
change without notice. \(\$ 10\) minimum order. \(\$ 1.50\) service charge on orders less than \(\$ 10.00\).

\section*{WAMECO}

\section*{THE COMPLETE PC BOARD HOUSE EVERYTHING FOR THE S-100 BUSS}
* FPB-1 FRONT PANEL BOARD. Hex Displays,
IMSAI Replaceable. PCBD \(\$ 54.95\)
* FDC-1 FLOPPY DISC CONTROLLER BOARD

Controls up to 8 Discs. PCBD \(\$ 45.00\)
* MEM-1A 8K BYTE 2102 RAM BOARD

PCBD
. \(\$ 31.95\)
KIT 450 NSEC \(\$ 141.95\)
* MEM-2 16K BYTE 2114 RAM BOARD

PCBD
. \(\$ 31.95\)
KIT 450 NSEC . \(\$ 299.95\)
* CPU-1 8080A CPU BOARD with Vector Interrupt.

PCBD . \(\$ 31.95\)
KIT
\(\$ 124.95\)
* EPM-1 4K BYTE 1702A EPROM

PCBD
\(\$ 29.95\)
KIT LESS PROMS
* EPM-2 16K or 32K BYTE EPROM 2708 or 2176 Interchangeable.
PCBD .\(\$ 30.00\)
KIT LESS PROMS . \(\$ 74.95\)
* QMB-9 9 SLOT MOTHER BOARD

Terminated. PCBD
\(\$ 35.00\)
KIT . \(\$ 89.95\)
* QMB-12 12 SLOT MOTHER BOARD

Terminated. PCBD
. \(\$ 45.00\)
KIT . \(\$ 115.95\)
* RTC-1 REALTIME CLOCK

Programmable Interrups \(\$ 27.95\)
KIT . \(\$ 79.95\)
* PTB-1 POWER SUPPLY BOARD PCBD
\(\$ 30.95\)
KIT LESS REGULATORS \(\$ 55.95\)

\title{
Takethemystery out of programming
}

\section*{with the latest from BYTE Books \({ }^{\text {tm }}\)}

\section*{You Just Bought a Personal What?}
by Thomas Dwyer and Margot Critchficla Whether you are a novice programmer or an experienced computer user, this book is filled with practical ideas for using a personal computer at home or work. It will take you through the steps necessary to write your own computer programs, and then show you how to use structured design techniques to tackle a variety of larger projects. The book contains over 60 ready-touse programs written in Radio Shack TRS-80 Level II BASIC in the areas of educational games, financial record keeping, business transactions, disk-based data file and word processing. \(\$ 11.95 \mathrm{pp} .184\) 1SBN 0-07-018492-5

\section*{Beginners Manual for the UCSD Pascal System}
by Kenneth Bowles
Written by the originator of the UCSD Pascal System, this highly informative book is designed as an orientation guide for learning to use the UCSD Pascal System. Once familiar with the system, you will find the guide an invaluable reference tool for creating advanced applications. This book features tutorial examples of programming tasks in the form of self-study quiz programs. \$11.95 pp. 256 ISBN 0-07-006745-7

\section*{The BYTE}

Book of Pascal
Edited by Blaise W. Liffick
Based on the growing popularity of Pascal as a programming language, numerous articles, language forums and letters from past issues of BYTE magazine have been compiled to provide this general introduction to Pascal. In addition, this book contains several important pieces of software including two versions of a Pascal compiler - one written in BASIC and the other in 8080 assembly language; a p-code interpreter written in both Pascal and 8080 assembly languages; a chess playing program; and an APL interpreter written in Pascal. \$25.00 Hardcover Pp. 342
ISBN 0-07-037823-1
Circle 36 on inquiry card.

\section*{70 Main Street, Peterborough, NH 03458}

\section*{Panscean!}

\section*{DISCOUNT PRICES}

NORTH STAR APPLE II
POLYMORPHIC INTERACT HAZELTINE SOROC CENTRONICS MICROTEK INTERTUBE \& Others

Call for Prices
(301) 694-8884

FREDERICK COMPUTER PRODUCTS
Municipal Airport
Frederick, MD. 21701
Circle 140 on inquiry card.
\$ MINI FLOPPY AT \$
\$ STORE DISCOUNT \(\$\)
SINGLE SIDED-\$225.00
DOUBLE SIDED-\$345.00
CABINETS-CABLES AND POWER SUPPLIES ARE ALSO AVAILABLE

INTERFACE, INC
20932 CANTARA ST
CANOGA PARK,CA 91304
(213) 341-7914

Circle 179 on inquify card.

\section*{Come Help Us}

Celebrate The Child
St. Jude Children's Research Hospitol continues its search for life-saving knowledge about carastrophic childhood disease And this search continues because people core. There's no charge to patients or their families , once admitted to its research studies by physicion referral. The cost of drugs, equipment, and research programs is met primarily by public contributions. Help us celebrare the child by sending your tax-deductible check or request for further information to St. Jude Children's tion to St. Jude Children's 539 Lane Ave., Memphis, TN 38105.

\section*{COMPUTER SUPPLIES AND ACCESSORIES DYSAN \\ THE CADILLAC OF THE FLOPPY DISKS AT LOW LOW PRICES}
\(8^{\prime \prime}\) (BOX OF 10)
\(3740 / 1 \mathrm{sgl}\) side/sgl density 4.00 ea. \(3740 / 1 \mathrm{D}\) sgl side/dbl density 6.50 ea . 5" (BOX OF 5)
104/l soft sector
107/1 10 sectors
4.00 ea.

105/1 16 sectors
For each 2 boxes of \(8^{n}\) or 4 boxes of \(5^{n}\) you get one plastic storage case, but hurry-supply is limited.

\section*{MICRO BUSINESS WORLD 15818 Hawthorne Blvd. Dept. B12}

Lawndale, CA 90260
(213) 371-1660
dealerimquities invited temms avallable

IR \(S^{\text {SALE }}\)
ALL BRAND NEW 16K LEVEL 2 FULL WARRANTY
\$699. ALSO:
16 K MEMORY UPGRADE \(\$ 59\).
TRS80 3SPEED KIT UPGRADES TRS8O TO FAST, SLOW AND
NORMAL SPEED'S
S19.
5V-EPROM 2716 S35. 2708 EPROMS \(\$ 7\). MICROTEK PRINTERS \(\$ 725\) SOFTWARE AND INTEGRATED C IRCUITS(TTL'S MOS CMOS)
SEND FOR FREE' CATALOG
Des-mar electronics
POST OFFICE BOX 4482
AGNEW STATION
SANTA CLARA,CA. 95054
©CALIF. ADD 6.5\% TAX

Circle 129 on inquiry card.

LOWECO DECEMBER DISCOUNTS ON TRS-80 PROGRAMS
(1) TELEPHONE/ADDRESS/MAILING - Name \& zip sort. Even retrieves name from phone \#. Very quick access of over 140 listings per 16 K RAM. 2) CHECKBOOK - Keep up with, or ahead of, the bank. With 45 account catagories. vendor names, \& easy access. Holds about 170 checks per 16K RAM.
3) TAX AUDIT - Offers 40 dedicated tax deduc tion column expenses with room for 5 more of your own Keeps track of vendors and saves pencils. 200 listings per 16 K RAM.
(4) MANDALAS FOR THE CYBERNETIC AGE WARNINC hishly hypnotic graphics 2 sets of 4 interweaving designs. \(\$ 15\)

All level II 16 K cassettes, for December. \(\$ 20\) or as noted
Loweco also carries Microsoit, TSE and TBS for the Tandy trademark TRS-80. Our 12/31/79 "(Welcome to the 80's)" mailing will be full of TRS tips, peeks and pokes. If you circle reader service number 207 or are already on our list, then you'll receive it, else you won't.

Loweco Computor 1803 Rodney
Los Angeles CA 90027 213-660-7530
Money order, cashier check speeds delivery \(6 \%\) sales tax for Californians

Circle 207 on inquiry card.

\section*{MICROLEASE!}

A unique nationwide leasing program designed to facilitate the purchase and sale of computers and peripherals.

Whether you are buying or selling, MICROLEASE is your best leasing choice.

Excellent Rates. Fast Service by Computer Professionals.

\section*{EVERGREEN}

22 Concord Avenue Cambridge, MA 02138 (617) 868-3425

APPLE II \({ }^{\ominus}\) DISK SOFTWARE DATA BASE MANAGER IFO PROGRAM
The IFO (Information File Organizer) can be used for many applications such os sales activity, inventory, check registers, balance sheets, clientipatient records, biling and much more. This can be accomplished easily and quickly without prior programming knowledge

Up to 1000 records with a maximum of 20 headers and 10 report formats can be stored on a diskette. Information can be sorted and searched formed to manipulate the information. Subtotals hand totals can be calculated on any numeric and totals can be calculated on any numeric held.
Requires 48 K and Applesoit \(I I\) on \(R \mathrm{OM}\) (or Apple II Plus). Accommodates serial/parallel printers. Error protection devices provided, Pro Gram diskette and instruction manual - \(\$ 100\). searched by 6 fields. On-screen editing. Line up routine. \(\$ 34.99\)
INVENTORY, TAX PROGRAM AND
PAYROLL DUE FOR RELEASE IN DECEMBER.
Send check/money order to:
SOFTWARE TECRNOLOGY for
COMPUTERS (STC)
P.O. Box 428

Belmont MA 02178

\section*{page}

\section*{Precut Wire Wrap Wire}

\section*{PRECUT WIRE SAVES TIME AND COSTS LESS THAN WIRE ON SPOOLS}

Kynar precut wire. All lengths are overall, including \(1^{\prime \prime}\) strip on each end. Colors and lengths cannot be mixed for quantity pricing. All sizes listed are in stock for immediate shipment. Other lengths available. Choose from colors: Red, Blue, Yellow, Orange, Black, White, Green and Violet. One inch tubes are available at 50c. State second choice on colors when possible.
\begin{tabular}{|lrrr|lrrr|}
\hline Length & \(\mathbf{1 0 0}\) & \(\mathbf{5 0 0}\) & \(\mathbf{1 , 0 0 0}\) & Length & \(\mathbf{1 0 0}\) & \(\mathbf{5 0 0}\) & \(\mathbf{1 , 0 0 0}\) \\
\hline 2.5 inches & 1.04 & 2.98 & 5.16 & 6.5 inches & 1.60 & 5.37 & 9.84 \\
3 & 1.08 & 3.22 & 5.65 & 7 & 1.66 & 5.63 & 10.37 \\
3.5 & 1.13 & 3.46 & 6.14 & 7.5 & 1.73 & 5.89 & 10.91 \\
4 & 1.18 & 3.70 & 6.62 & 8 & 1.78 & 6.15 & 11.44 \\
4.5 & 1.23 & 3.95 & 7.12 & 8.5 & 1.82 & 6.41 & 11.97 \\
5 & 1.28 & 4.20 & 7.61 & 9 & 1.87 & 6.76 & 12.51 \\
5.5 & 1.32 & 4.48 & 8.10 & 9.5 & 1.92 & 6.93 & 13.04 \\
6 & 1.37 & 4.72 & 8.59 & 10 & 1.99 & 7.26 & 13.57 \\
\hline
\end{tabular}
\begin{tabular}{|c|}
\hline \multicolumn{4}{|l|}{\multirow[t]{2}{*}{Kit \#1
Less than \(2.7 ¢ / \mathrm{ft}\). (\#30)}} & \multicolumn{2}{|l|}{Kit \#2} & \multicolumn{2}{|l|}{\$19.95} & \multicolumn{4}{|l|}{\multirow[t]{2}{*}{KIT \#3 \begin{tabular}{l}
\(\$ 24.95\) \\
Less than \(1.7 ¢ / f t .(\# 30)\)
\end{tabular},\(~\)}} & \multicolumn{4}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{lr}
Kit \#4 \\
Less than \(1.6 \$ / \mathrm{ft}\). \\
\hline (\#30)
\end{tabular}}} & \multicolumn{4}{|l|}{\#30 Spools} \\
\hline & & & & Less & than & 2¢/ft. & (\#30) & & & & & & & & & & 1-4 & 5-9 & 10+ \\
\hline 250 & \(3^{\prime \prime}\) & 100 & 4" & 250 & 21/2" & 250 & 5" & 500 & \(21 / 2^{\prime \prime}\) & 500 & \(41 / 2^{\prime \prime}\) & 1000 & 21/2" & 1000 & \(41 / 2^{\prime \prime}\) & 50 ft . & 1.75 & 1.60 & 1.40 \\
\hline 250 & 3" & 100 & \(5{ }^{\prime \prime}\) & 500 & 3 " & 100 & 51/2" & 500 & \(3^{\prime \prime}\) & 500 & 5" & 1000 & 3' & 1000 & 5" & 100 ft . & 3.00 & 2.75 & 2.50 \\
\hline 100 & \(4 "\) & 100 & 6 ' & 500 & \(31 / 2\) " & 250 & 6" & 500 & \(312^{\prime \prime}\) & 500 & 51/2" & 1000 & \(31 / 2{ }^{\prime \prime}\) & 1000 & 5" & 250 ft . & 4.75 & 4.50 & 4.25 \\
\hline & & & & 500 & 4" & 100 & 61/2" & 500 & 4" & 500 & 6" & 1000 & 4" & 1000 & \(6{ }^{\prime \prime}\) & 500 ft . & 8.50 & 8.00 & 7.50 \\
\hline & & & & 250 & & & 7" & & & & & & & & & 1000 ft . & 14.50 & 12.50 & 10.50 \\
\hline
\end{tabular}

\section*{Wire Wrap Tool}
\begin{tabular}{|c|c|}
\hline BW2630 & Tool \$19.85 \\
\hline BT30 & \#30 Bit 3.95 \\
\hline BT2628 & \#26 Bit. 7.95 \\
\hline BC1 & Batteries \& Charger... 11.00 \\
\hline
\end{tabular}

\section*{DECEMBER SALES!}

\section*{Solderless Breadboarding}

SK10 2/\$25.00 \$16.50 The SK10's unique matrix configuration is embedded in a high temperature plastic molding. It gives you 64 pairs of 5 common spring contacts for principle circuit construction and a series of common buss strips (8) of 25 connections each.
Dimensions: \(.33^{\prime \prime h} \times 2.2^{\prime \prime} \mathrm{w} \times 6.5^{\prime \prime} \mathrm{l}\)

\section*{TI Edge Card Connectors}

44 pin ST (.156" centers) Gold 1.95 100 pin ST (.125" centers) Gold 2.50 100 pin WW (.125" centers) Gold 2.95

All are Gold 100 pin, IMSAI spacing.

RN HIGH RELIABILITY eliminates trouble. "Side-wipe" contacts make trouble. greater surface contact with the wide, flat sides of your IC leads for positive electricat connections.

\begin{tabular}{|llccc|}
\hline WIRE WRAP & Size & Quant./Tube & Price Ea. & Price/Tube \\
SOCKETS & 08 pin WW & 52 & .31 & \(\$ 16.12\) \\
3-level Gold & 14 pin & 60 & .32 & \(\$ 19.20\) \\
Closed Entry Design & 16 pin & 52 & .34 & \(\$ 17.68\) \\
All prices include Gold & 18 pin & 23 & .50 & \(\$ 11.50\) \\
& 20 pin & 21 & .65 & \(\$ 13.65\) \\
& 22 pin & 19 & .70 & \(\$ 13.30\) \\
& 24 pin & 10 & .70 & \(\$ 7.00\) \\
Sockets sold at these & 28 pin & 10 & .95 & \(\$ 9.50\) \\
prices by the tube only. & 40 pin & 7 & \(\mathbf{1 . 2 0}\) & \(\$ 8.40\) \\
\hline
\end{tabular}
- Auto Indexing
- Anti-Overwrapping
- Modified Wrap
- Orders under \(\$ 25\), add \(\$ 2\) handling
- Blue Label or First Class, add \(\$ 1\) (up to 3 lbs .)
- CODs, VISA \& MC orders will be charged shipping
- Most orders shipped next day

Axiom EX-801 PET Printer (with graphics) Axiom EX-820 PET Plotter
Anderson Jacobson 841 Selectric RS232
Parallel
Leedex Video 100 12" Monitor
Heath WH 19 Terminal (factory asm.) Heath WH 14 Printer (factory asm.) IEEE - RS 232 Printer Adaptor for PET BETSI PET to S-100 Interface \& Motherboard PET Connectors-Parallel or IEEE Cassette Port Hands on Basic with a PET Programming the 6502 (Zaks) 6502 Applications Book (Zaks) 6500 Manuals (MOS Technology) Programming a Microcomputer: 6502
6502 Assembly Language
(Osborne) NEW!
\(\$ 8.10\)
\begin{tabular}{ll}
\(3 M\) "Scotch" 8 " disks & \(10 / \$ 31.00\) \\
\(3 M\) "Scotch" 5 " diskettes & \(10 / \$ 31.50\) \\
Verbatim 5 " diskettes & \(10 / \$ 26.50\) \\
Diskette Storage Pages & \(10 / \$ 3.95\)
\end{tabular}
\(\$ 475.00\)
\$ 749.00
\(\$ 1095.00\)
\(\$ 1015.00\)
\$ 119.00
\$ 770.00
\(\$ 735.00\)
\(\$ 79.50\)
\$ 119.00
\(\begin{array}{ll}\$ & 1.95 \\ \$ & 1.45\end{array}\)
\(\begin{array}{llll}\text { PET 16N 16K full size graphics keyboard } & \$ 995 & \$ 130 \\ \text { PET 16B 16K full size business keyboard } & \$ 995 & \$ 130 \\ \text { PET 32N 32K full size graphics keyboard } & \$ 1295 & \$ 170 \\ \text { PET 32B 32K full size business keyboard } & \$ 1295 & \$ 170 \\ \text { PET 8K 8K full size graphics keyboard } & \$ 795 & \$ 100 \\ \text { PET 2040 Dual Disk Drive - } 343,000 \text { bytes } \$ 1295 & \$ 110 \\ \text { PET 2022 Tractor Feed Printer } & \$ 995 & \$ 130 \\ \text { PET 2023 Pressure Feed Printer } & \$ 849 & \$ 110 \\ \text { PET C2N External Cassette Deck } & \$ 95 & \$ 12\end{array}\) \(\begin{array}{llll}\text { PET 16N 16K full size graphics keyboard } & \$ 995 & \$ 130 \\ \text { PET 16B 16K full size business keyboard } & \$ 995 & \$ 130 \\ \text { PET 32N 32K full size graphics keyboard } & \$ 1295 & \$ 170 \\ \text { PET 32B 32K full size business keyboard } & \$ 1295 & \$ 170 \\ \text { PET 8K 8K full size graphics keyboard } & \$ 795 & \$ 100 \\ \text { PET 2040 Dual Disk Drive - } 343,000 \text { bytes } \$ 1295 & \$ 110 \\ \text { PET 2022 Tractor Feed Printer } & \$ 995 & \$ 130 \\ \text { PET 2023 Pressure Feed Printer } & \$ 849 & \$ 110 \\ \text { PET C2N External Cassette Deck } & \$ 95 & \$ 12\end{array}\) \(\begin{array}{llll}\text { PET 16N 16K full size graphics keyboard } & \$ 995 & \$ 130 \\ \text { PET 16B 16K full size business keyboard } & \$ 995 & \$ 130 \\ \text { PET 32N 32K full size graphics keyboard } & \$ 1295 & \$ 170 \\ \text { PET 32B 32K full size business keyboard } & \$ 1295 & \$ 170 \\ \text { PET 8K 8K full size graphics keyboard } & \$ 795 & \$ 100 \\ \text { PET 2040 Dual Disk Drive - } 343,000 \text { bytes } \$ 1295 & \$ 110 \\ \text { PET 2022 Tractor Feed Printer } & \$ 995 & \$ 130 \\ \text { PET 2023 Pressure Feed Printer } & \$ 849 & \$ 110 \\ \text { PET C2N External Cassette Deck } & \$ 95 & \$ 12\end{array}\) \(\begin{array}{llll}\text { PET 16N 16K full size graphics keyboard } & \$ 995 & \$ 130 \\ \text { PET 16B 16K full size business keyboard } & \$ 995 & \$ 130 \\ \text { PET 32N 32K full size graphics keyboard } & \$ 1295 & \$ 170 \\ \text { PET 32B 32K full size business keyboard } & \$ 1295 & \$ 170 \\ \text { PET 8K 8K full size graphics keyboard } & \$ 795 & \$ 100 \\ \text { PET 2040 Dual Disk Drive - } 343,000 \text { bytes } \$ 1295 & \$ 110 \\ \text { PET 2022 Tractor Feed Printer } & \$ 995 & \$ 130 \\ \text { PET 2023 Pressure Feed Printer } & \$ 849 & \$ 110 \\ \text { PET C2N External Cassette Deck } & \$ 95 & \$ 12\end{array}\) \(\begin{array}{llll}\text { PET 16N 16K full size graphics keyboard } & \$ 995 & \$ 130 \\ \text { PET 16B 16K full size business keyboard } & \$ 995 & \$ 130 \\ \text { PET 32N 32K full size graphics keyboard } & \$ 1295 & \$ 170 \\ \text { PET 32B 32K full size business keyboard } & \$ 1295 & \$ 170 \\ \text { PET 8K 8K full size graphics keyboard } & \$ 795 & \$ 100 \\ \text { PET 2040 Dual Disk Drive - } 343,000 \text { bytes } \$ 1295 & \$ 110 \\ \text { PET 2022 Tractor Feed Printer } & \$ 995 & \$ 130 \\ \text { PET 2023 Pressure Feed Printer } & \$ 849 & \$ 110 \\ \text { PET C2N External Cassette Deck } & \$ 95 & \$ 12\end{array}\) \(\begin{array}{llll}\text { PET 16N 16K full size graphics keyboard } & \$ 995 & \$ 130 \\ \text { PET 16B 16K full size business keyboard } & \$ 995 & \$ 130 \\ \text { PET 32N 32K full size graphics keyboard } & \$ 1295 & \$ 170 \\ \text { PET 32B 32K full size business keyboard } & \$ 1295 & \$ 170 \\ \text { PET 8K 8K full size graphics keyboard } & \$ 795 & \$ 100 \\ \text { PET 2040 Dual Disk Drive - } 343,000 \text { bytes } \$ 1295 & \$ 110 \\ \text { PET 2022 Tractor Feed Printer } & \$ 995 & \$ 130 \\ \text { PET 2023 Pressure Feed Printer } & \$ 849 & \$ 110 \\ \text { PET C2N External Cassette Deck } & \$ 95 & \$ 12\end{array}\) \(\begin{array}{llll}\text { PET 16N 16K full size graphics keyboard } & \$ 995 & \$ 130 \\ \text { PET 16B 16K full size business keyboard } & \$ 995 & \$ 130 \\ \text { PET 32N 32K full size graphics keyboard } & \$ 1295 & \$ 170 \\ \text { PET 32B 32K full size business keyboard } & \$ 1295 & \$ 170 \\ \text { PET 8K 8K full size graphics keyboard } & \$ 795 & \$ 100 \\ \text { PET 2040 Dual Disk Drive - } 343,000 \text { bytes } \$ 1295 & \$ 110 \\ \text { PET 2022 Tractor Feed Printer } & \$ 995 & \$ 130 \\ \text { PET 2023 Pressure Feed Printer } & \$ 849 & \$ 110 \\ \text { PET C2N External Cassette Deck } & \$ 95 & \$ 12\end{array}\) \(\begin{array}{llll}\text { PET 16N 16K full size graphics keyboard } & \$ 995 & \$ 130 \\ \text { PET 16B 16K full size business keyboard } & \$ 995 & \$ 130 \\ \text { PET 32N 32K full size graphics keyboard } & \$ 1295 & \$ 170 \\ \text { PET 32B 32K full size business keyboard } & \$ 1295 & \$ 170 \\ \text { PET 8K 8K full size graphics keyboard } & \$ 795 & \$ 100 \\ \text { PET 2040 Dual Disk Drive - } 343,000 \text { bytes } \$ 1295 & \$ 110 \\ \text { PET 2022 Tractor Feed Printer } & \$ 995 & \$ 130 \\ \text { PET 2023 Pressure Feed Printer } & \$ 849 & \$ 110 \\ \text { PET C2N External Cassette Deck } & \$ 95 & \$ 12\end{array}\) \(\begin{array}{llll}\text { PET 16N 16K full size graphics keyboard } & \$ 995 & \$ 130 \\ \text { PET 16B 16K full size business keyboard } & \$ 995 & \$ 130 \\ \text { PET 32N 32K full size graphics keyboard } & \$ 1295 & \$ 170 \\ \text { PET 32B 32K full size business keyboard } & \$ 1295 & \$ 170 \\ \text { PET 8K 8K full size graphics keyboard } & \$ 795 & \$ 100 \\ \text { PET 2040 Dual Disk Drive - } 343,000 \text { bytes } \$ 1295 & \$ 170 \\ \text { PET 2022 Tractor Feed Printer } & \$ 995 & \$ 130 \\ \text { PET 2023 Pressure Feed Printer } & \$ 849 & \$ 110 \\ \text { PET C2N External Cassette Deck } & \$ 95 & \$ 12\end{array}\)
*FREE \$ 495
\$ 495 PET C2N External Cassette Deck Used 8K PETs (limited quantities
*Amount of Free Merchandise with Purchase of PET-CBM Item.

115 E. Stump Road Montgomeryville, PA 18936 (215) 699-8386

\section*{WRITE FOR COMPLETE CATALOG}

Add \(\$ 1.00\) per order for shipping.
KIM-1 \$159 (Add \$30 for Power \$209 Supplyl SYM-1
BAS-1 Microsoft ROM Basic for SYM\$ 85 Memory Plus \$195 SYM Assembler in ROM \$85 SEA-16 New 16K Static RAM \(\$ 325\) Seawell Motherboard-4K RAM \$139 KTM-2 Synertek Video Board S-100 16K Static RAM kit SALE 2716 EPROM \(\$ 290\) 6550 RAM (for BK PET) (8 K PET) \(\$ 12.70\) 6502 \$9.75
\(6522 \$ 9.25\) 6520 \$5.50

TIS PET Workboaks 6/21.50
Protect-A-Pet dust cover \$ 9.50 Programmers Toolkit-PET ROM Utilities \(\$ 45.00\) Sargon II NEW! (TRS-80 or Apple) PET 4 Voice Music Board
4 Voice Music Monitor for PET
CmC Word Processor program for PET
Adventures by Scott Adams45.00
24.90

\section*{Microchess for PET ((Peter Jennings)}

FREE!
Uprossom mencumest

7 Adventures for TRS-80-2 Adventures for PET
Tunnel Vision/Kat \& Mouse-maze - PET (great) \$ 7.95
(Write for quantity prices)

Personal Software programs \(15 \%\) off Hayden Books and Software \(15 \%\) off Osborne Books and Software 15\% off Word Processor for PET - Machine Language version. Auto scroll, insert, delete, form letter append, etc. 8 K Version \(\$ 24.00 \quad 16 \mathrm{~K}\) or 32 K with.disk \(\$ 89.00\)

\section*{Cassettes (all tapes guaranteed) AGFA PE611}

Premium quality, high out put lownoise in 5 screw housing with labels.
\(\begin{array}{llll}\text { C-10 } & 10 / 5.95 & 50 / 25.00 & 100 / 48.00\end{array}\)
\(\begin{array}{llll}\text { C-30 } & 10 / 7.00 & 50 / 30.00 & 100 / 57.00\end{array}\)

We pay balance of UPS surface charges on all prepaid orders.

"Precise, humanized, well documented an excellent value" are the applauds now being given to United Software's line of software. These are sophisticated programs designed to meet the most stringent needs of individuals and business professionals. Every package is fully documented and includes easy to understand operator instructions.

DATABASE MANAGEMENT SYSTEM - A comprehensive, interactive system like those run on mainframes! Six modules comprising 42 K of programming allow you to; create, edit, delete, display, print, sort, merge, etc., etc. - databases of up to 10,000 records. Printer routines automatically generate reports and labels on demand. 60 pages of concise documentation are included. Requirements-16-32K PET and 2040 Dual Disk (printer optional). . . .Cost \(\$ 125\)

ACCOUNTS RECEIVABLE/PAYABLE - A complete, yet simple to use accounting system designed with the small businessman in mind. The United Software system generates and tracks purchase orders and invoices all the way through posting "controlled" accounts payable and accounts receivable subsystems.
Keyed Random Access file methods makes data access almost
instantaneous. The low-cost solution for the first time computer user with up to 500 active accounts. Requirements - 32K PET, Dual Disk, any 80-column printer. . . .Cost \(\$ 175\)
CASH RECEIPTS \& DISBURSEMENTS - Makes it a breeze to track all outgoing payments made by any type of business operation. Checks are tracked by number and categorized by type of expense. Sorting, summary, and audit trails make it easy to post to general ledger. This system also categorizes incoming receipts. Uses KRAM file access method. Requirements - 32K PET, Dual Disk (printer optional). ...Cosi
\(\$ 99.95\)
KRAM - Keyed Random Access Method - The new, ultra-fast access method for the PET Disk, provides keyed retrieval/storage of data, in either direct or sequential mode, by either full or partial key values. Written by United Software in 6502 machine code, and designed with the PET in mind, it exploits all the benefits of the PET Disk, allowing full optimization of your system. Eliminates the need for "Sort" routines! KRAM provides flexibility never seen on a micro before. KRAM is modeled after a very powerful access method used on large-scale IBM Virtual Storage mainframes. So "KRAM" all you can into your PET - it will love you for it. . . .Cost \(\$ 79.95\)
(Sublicenses available to software houses.)
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{PROGRAMS FOR ENTERTAINMENT} \\
\hline \multicolumn{2}{|l|}{Space Intruders} \\
\hline ("Best Game of 1979") & \$19.95 \\
\hline Jury/Hostage & 12.50 \\
\hline Kentucky Derby/Roulette & 9.95 \\
\hline Alien I.Q./Tank & 9.95 \\
\hline Tunnelvision/Maze Chase & 14.95 \\
\hline Submarine Attack & 9.95 \\
\hline Battle of Midway & 7.95 \\
\hline Laser Tank Battle & 9.95 \\
\hline Swarm & 14 \\
\hline
\end{tabular}

Super Startrek
14.95 ENTERTAINMENT
Space intruders
Best Game of 1979) ...
Jury/Hostage.............. 12.50
Alien I.Q./Tank 9.95
Tunnelvision/Maze Chase 14.95
Submarine Attack 9.95
Laser Tank Battle......... 9.95
Swarm 14.95

PET Music Box........... . 29.95

\section*{UNITED SOFTWARE}

PROGRAMS FOR BUSINESS
Checkbook................. \(\$ 15.95\)
Mortgage 15.95
Finance 12.95
Bonds 12.95
Stock Analyzer 22.95
Stock Options 24.95
6502 Macro Assembler . . . 49.95

Look for the RED-WHITE-BLUE United Software Display at your local computer dealer, or send check or moneyorder, plus \(\$ 1.00\) shipping to:

\section*{UNITED SOFTWARE OF AMERICA}

750 Third Ave.
New York, N.Y. 10017 Dealer inquiries invited

\section*{HARD DISK.... Back-Up}

Winchester disk technology brings a new generation of lo-cost, hi-capacity multi-megabyte fixed storage to mini and micro-computer systems. And a new set of problems...how to back up valuable data. Saving a 10 Mbyte hard disk on floppy disks can require 10-20 floppies and can take an hour or more.

Our Back-Up software solves the problem...with Alloy Engineerings DEI cartridge tape system. Compared to floppy disks, the cartridge tape system typically saves \(75 \%\) of the time and saves \(75 \%\) of the media cost. And without the confusion of filing 10-20 disks.

Cartridge tapes excell even with fixed/removable disks and cartridge disks. Media costs for cartridge tapes are typically only one-quarter the cost of removable disk modules. And cartridge tapes require only about \(10 \%\) of the space of removable disk packs/cartridges.

Put your valuable data on-line with a hard disk...save it off-line with an Aloy/DEl cartridge tape system. And save time, money, space, confusion and aggravation.

The hardware is s-100, and Back-Up is compatible with CP/M, CDOS, IMDOS, \& PDOS. Contact us for details. DEALER INQUIRES INVITED

CP/M is a TM of Digital Research CDOS is a TM of Cromemco Inc IMDOS is a TM of IMSA Mfg

PDOS is a product of Pheonix Software
Associates Ltd.
Back-Up is a product of CSSN

\section*{CSSN}

\section*{COMPUTER SERVICE SYSTEMS NETWORK}

120 BOYLSTON STREET• FOURTH FLOOR•BOSTON, MASSACHUSETTS 02116•(617) 482-2343

\section*{SORCERER}

Serial and Parallel Port, Upper and Lower Case, Graphics Character Set, Programmable Characters. Numeric Keypad. 16K memory. \(\$ 849.95\)

\section*{OHIO SCIENTIFIC}

C1P-6502-chip based micro with 4K memory . . 349.00 8 K Socketed memory expansion board, plugs into the C1P. With \(4 K\) of memory installed 110.00
Same 8K board, with 8K of memory installed. 160.00

\section*{PRINTERS}

Centronics 730
COMprint 200
NEC Spinwriter 5510T 899.98 NEC Spinwrit 5510T. . . . 2599.95 NEC Spinwriter 5520T 2799.95 Paper Tiger IDS 440 1099.95 Paper Tiger w/o Graphics 899.95
\begin{tabular}{|c|c|}
\hline & ATARI \\
\hline Atari 800. & . 949.95 \\
\hline Atari 400. & 499.95 \\
\hline
\end{tabular}

\section*{HEATH}

H89 Computer, with single \(5^{\prime \prime}\) disc drive, numeric keypad 1999.95 HDOS 69.95
Device Drivers (Manual) 19.95
CP/M (H89) 149.95
CBasic (for H89) 99.95
MicroSoft Basic (for H89) 99.95

Heath 11A System and Software call or write for prices

OTHER COMPUTER STUFF
Scotch 5" Disks 45.00/10 And write aboutCAT Coupler \(\quad 195.00\) JimPak Electronics Parts 16K Dynamic RAM 79.95 OK Wire Wrap Parts \(\star \star \star \quad\) All prices plus shipping. Call or write \(\star\) about big stuff or special deals

AIM 65
AIM 65 is fully assembled, tested and warranted. With the addition of a low cost, readily available power supply, it's ready to start working for you. It has an addressing capability up to 65 K bytes, and comes with a user-dedicated 1 K or 4 K RAM.
- Thermal Printer
- Built•In Expansion Capability
- Full-Size Alphanumeric Keyboard
- True Alphanumeric Display
- TTY and Audio Cassette Interfaces
- ROM Resident Advanced Interactive Monitor
- Proven R6500 Microcomputer System Devices
- Advanced Interactive Monitor Commands

PRICE: \(\mathbf{\$ 3 7 5 . 0 0}_{\text {(IK Ram) }}\)
Plus \(\$ 4.00\) UPS (shipped in U.S. must give street address), \(\$ 10\) parcel post to APO's, FPO's, Alaska, Hawaii,Canada, \(\$ 25\) air mail to all other countries
We manufacture a complete line of high quality expansion boards. Use reader service card to be added to our mailing list, or U.S. residents send \(\$ 1.00\) (International send \(\$ 3.00\) U.S.) for airmail delivery of our complete catalog.

\section*{VAK-4 16K STATIC RAM BOARD}
- Designed specifically for use with the AIM-65, SYM-1, and KIM-1 microcomputers
- Two separately addressable 8 K -blocks with write protect.
- Designed for use with the VAK-1 or KIM-4* motherboards
- Has provisions for mounting regulators for use with an unregulated power supply
- Made with 1 st quality 2114 static ram chips
- All IC's are socketed
- Completely assembled, burned-in, and tested

We manufacture a complete line of high quality expansion boards. Use reader service card to be added to our mailing list, or U.S. residents send \(\$ 1.00\) (International send \(\$ 3.00\) U.S.) for airmail delivery of our complete catalog.
*Product of MOS Technology

2967 W. Fairmount Avenue • Phoenix, AZ 85017 • (602) 265-7564

\title{
WE WILL NOT BE UNDERSOLD
}

\section*{16K MEMORY UPGRADE KITS}

\author{
-300 NS for TRS-80* \\ \(\$ 69.00\)
}
- 250 NS for TRS-80*, Apple II, Sorcerer (specify) \(\$ 75.00\)
-200 NS for TRS-80*, Apple II, Sorcerer (specify) \(\$ 99.00\) All kits complete with jumpers and instructions.
90 DAY WARRANTY

\section*{LETTER QUALITY HIGH SPEED PRINTER}

NEC Spinwriter \$2679.00

Includes TRS-80* interface software, quick change print fonts, 55 cps , bidirectional, high resolution plotting, graphing, proportional spacing. 90 DAY WARRANTY.

\section*{Complete inventory:}

TRS-80* Apple PET TI
Most Radio Shack software available at discount. Call for special Christmas Prices.

\section*{DISK OPERATING SYSTEMS}
\(\begin{array}{ll}\text { Radio Shack DOS } 2.2-\text { No key bounce } & \$ 14.95 \\ \text { NEWDOS by Apparat+-No key bounce } & \$ 49.95 \\ \text { NEWDOS "PLUS" by Apparat }{ }^{\dagger} & \$ 99.95\end{array}\) NEWDOS plus the following functions: enhanced DIRCHECK command, improved EDITOR, ASSEMBLER, DISASSEMBLER. SUPERZAP. Machine language RELOCATOR, LEVEL I on disk. Numerous enhancements to TRSDOS 2.1
DOS 3.0 by the original author of 2.1
\(\$ 49.95\)
MICRODOS by Percom Data
\$29.95
User-modifiable, comprehensive operating system written in BASIC.
PATCH PAK \#1 by Percom Data
\(\$ 9.95\)
Patches and enhances TRSDOS for 40 and 77 -track drives.

\section*{TRS-80*COMPATIBLE HARDWARE}

\section*{DISK DRIVES}

More capacity than Radio Shack 35 track (80 K Bytes) drives. Fully assembled and tested. Ready to plug-in and run the moment you receive it. Can be intermixed with each other and Radio Shack drive on same cable. TRS-80* compatible silver enclosure. 90 DAY WARRANTY.
CCI-100 40 Track (102K Bytes) \(\$ 324.00\)
CCI-200 77 Track(197K Bytes) \(\$ 594.00\)
2 Drive Cable \(\$ 25.00\)
4 Drive Cable
\(\$ 35.00\)

\section*{PRINTERS}

779 CENTRONICS TRACTOR FEED PRINTER \(\$ 995.00\)
Same as Radio Shack line printer
701 CENTRONICS TRACTOR FEED PRINTER \(\$ 1499.00\)
\(21 / 2\) times faster than line printer, full 132 characters,
carriage bell tone.
PICENTRONICS PRINTER
\(\$ 349.00\)
Same as Radio Shack quick printer.
CENTRONICS CABLE for TRS-80*
\(\$ 39.00\)
For use with above printers.
PAPERTIGER (IP440) Up to 198 cps
\(\$ 994.00\)
\(\$ 1189.00\)
HIPLOT DIGITAL PLOTTER by Houston Instrument \$ 995.00 X-Y Plotter, RS-232-C or Parallel Interface.
\(7^{\prime \prime} \times 10^{\prime \prime}\) plot size. Multi-colored pens included.

\section*{TRS-80* COMPLETE SYSTEMSM, \\ TRS-80* LEVEL II-4K \\ reg. \$540.00 \$494.00 TRS.80* LEVEL II-16K with 10 key keypad reg. \(\$ 779.00 \$ 679.00\) TRS.80* Expansion Interface \(\$ 254.00\) TRS-80* RS-232.C Interface \(\$ 84.00\)}

\section*{MISCELLANEOUS}

TRS. 232 by SMALL SYSTEMS SOFTWARE RS-232-C or
Teletype Current Loop output from cassette port. \(\$ 49.00\)
CAT MODEM \(\$ 169.00\)

Originate and answer same as Radio Shack Telephone Interface II.

\section*{DISKETTE TRS-80* BUSINESS SOFTWARE BY SBSG}

Free enhancements and upgrades to registered owners for the cost of media and mailing. 30 day free telephone support from vendor. User references supplied upon request.
Fully Interactive Accounting Package: Requires 2,3, or 4 drives. Includes General Ledger, Accounts Payable, Accounts Receivable, and Payroll. Report generating. Well documented and fully tested by accountants.

Complete package(Requires 3 or 4 drives) \(\$ 389.00\)
Individual Modules (Require 2 or 3 drives) \(\$ 99.00\)
Inventory II: Requires 2 or 3 drives. Handles up to 1000 items per disk drive. Reports include complete activity, inventory, listing, and minimum quantity search.
\(\$ 95.00\)
Mailing List Name \& Address II System: Requires 2 drives. Use with Electric Pencil files for automatic insertion of name, address and greetings in letters. Has ability to print envelopes. Menu driven. Includes enter, delete, update, search, extract, merge and print. Up to 1250 names per diskette. Will sort up to 600 names in 7 minutes. 40 page manual. Zip code sort is excellent for bulk mail applications. \(\$ 129.00\)
Intelligent Terminal System ST-80 III: Enables a TRS-80* to act as a dial-up terminal on any standard time sharing network. Provides a TRS-80* with control key, ESC Key, Repeat Key, Rub Out Key, Break Key, full upper and lower case support, selectable printer output and program selectable transmission rates.
\(\$ 150.00\)
Note: SBSG maintains a time-sharing computer where you can dial-up and leave your problems, 24 hours, 7 days a week.
Word Processing System: The Electric Pencil from Michael Shrayer.

Cassette \(\$ 99.00\) Diskette \(\$ 150.00\)
File Management System: For specialized storage needs. Sorts files in ascending or descending order on 3 separate fields. Scanable. Some applications have been fixed assets, phone numbers, names, slides, albums. Selectively totals numeric and dollar fields. Display and print capability. \$49.00 Budget Control Program II by CSA
\(\$ 49.95\)
Monthly and annual budget versus actual by department.
Cash Register System II by CSA
\(\$ 99.00\)
Tracks sales for direct entry into inventory control system and generates sales slips.

\section*{The CPU SHOP}

TO ORDER CALL TOLL FREE 1-800-343-6522
Massachusetts residents call 617/242-3350
For detailed technical information, call 617/242-3350
Hours: 10 AM - 6 PM (EST) Monday - Saturday
TRS-80 is a Tandy Corporation Trademark +Requires Radio Shack TRSDOS

39 Pleasant Street, Dept. B-12 Charlestown, Massachusetts 0212 !
Freight collect, F.O.B.
Charlestown
Massachusetts residents add
\(5 \%\) sales tax
Dealer Inquiries Invited

\section*{Memory War Shop and Compare}

\section*{HICKOK LX303Y}

\(.5 \%, 31 / 2\) digit 19 Range DVM. \(1 / 2^{\prime \prime}\) LCD displays runs 200 hrs on 1 battery. 10 Meg Ohm input. 1 yr. guarantee, made in U.S.A., test leads included. RC. 3115 V AC Adable Accessories \(\mathrm{RC}-315 \mathrm{FAC}\) Adapter
CC.3 Deluxe Padded Vinyi
Carying Case

VP-10 10 DCV Probe Ädapteri VP. 40 40KV DC Probe CS. 110 Amp Current Shunt
*FREE
Just for Asking.
FREE BATTERY with your meter.

\section*{. \(\$ 7.50\) \\ \(\$ 7.50\)
\(\$ 14.95\) \\ \(\$ 14.95\)
\(\$ 35.00\) \(\$ 14.95\)}

\section*{}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & - & 1.9 & 10.24 & 25.99 & -249 & -999 \\
\hline & 8 pin & . 40 & . 36 & . 34 & . 31 & . 27 \\
\hline & 14 pin & . 44 & . 43 & . 41 & . 39 & . 37 \\
\hline & 16 pin & . 55 & . 47 & . 45 & . 41 & . 39 \\
\hline , & 18 pin & . 70 & . 60 & . 55 & . 50 & . 45 \\
\hline N & 20 pin & . 90 & . 80 & . 75 & . 65 & . 62 \\
\hline & 22 pin & . 95 & . 85 & . 80 & . 70 & . 65 \\
\hline & 24 pin & . 95 & . 85 & . 80 & . 70 & . 65 \\
\hline & 28 pin & 1.25 & 1.15 & 1.00 & . 95 & . 90 \\
\hline & 40 pin & 1.65 & 1.45 & 1.35 & 1.20 & 1.10 \\
\hline
\end{tabular} All sockets are GOLD 3 level closed entry, 2 level Tall Low
Vector 4609 Peripheral Interface Plugboard for construction of custom circuits
Plug compatible with Apple 1 , Commodore PET and Super Kim microcomputersPlug compatible with Apple 11, Commodore PET and Super Kum microcomputers
Three connectors, in addition to the standard \(25 / 50\) system bus, are available forboard, mates with a \(3-M\) type ribbon connector Abternatively, a right-angle
solder-lail header may be positioned in this same location. The Model
di609 alsoaccomodates the miniature SIP-type connectors which may be placed on theperiphery or in mit-board
\[
\begin{array}{lll}
\$ 21.50 & \$ 19.36 & \$ 17.26
\end{array}
\]

7520 APPLE EXTENDER CARD \(\$ 24.95\)

\(3682-26.5^{\prime \prime} \times 4.5\) Miversaid, Microcomputer/processo prese with heat sink \& hatdware \(53^{1 \prime}\)
\(\begin{array}{lll}\mathbf{\$ 1 9 . 9 5} & 517.95 & 10-24 \\ & \$ 15.96\end{array}\) 8801-1
Same as 8800 V excepl plan; less power \(\begin{array}{ll}\text { buses \& heat sink } & \text { with Power \& Grd. Bus } \\ \text { Epoxy Glass } 1 / 16{ }^{\prime \prime}{ }_{44}\end{array}\) \(\begin{array}{llrl} & \$ 15.22 & \$ 13.79 & \mathbf{1 0 - 2 4} \\ \mathbf{\$ 1 2 . 1 8} & \text { pincon. spaced. } 156\end{array}\)

CARD EXTENDER
Card Extender has 100 con tacts 50 per side on .125 centers-Attached conneccenters compatible with
tor-is
\(S-100\) Bus Systems. \(\$ 25.83\) 3690 6.5" 22/44 pin . 156 \begin{tabular}{llll}
ctrs. Extenders & Pin \\
\hline 13.156 \\
\hline
\end{tabular}
\(116 \sqrt{\mathscr{C} O R}\) BOARD
. 042 dia holes on
0.1 spacing for IC's

Phenolic
\(\begin{array}{lll}\text { PART NO. SIZE } & 1.9 \quad 10.19\end{array}\) \begin{tabular}{llll}
64P44XXXP & \(4.5 \times 6.5^{\prime \prime}\) & \(\$ 1.56\) \\
\(169 P 41.40\) \\
\hline
\end{tabular} 169P44XXXP \(4.5 \times 17^{\prime \prime} \quad \$ 3.69 \$ 3.32\)

Epoxy Glass
\begin{tabular}{llll}
Coxy Glass & & & \\
64 P 44 & \(4.5 \times 6.5^{\prime \prime}\) & \(\$ 1.79\) & \(\$ 1.61\) \\
\(84 \mathrm{P44}\) & \(4.5 \times 8.5^{\prime \prime}\) & \(\$ 2.21\) & \(\$ 1.99\) \\
\(169 P 44\) & \(4.5 \times 17^{\prime \prime}\) & \(\$ 4.52\) & \(\$ 4.07\) \\
\(169 P 84\) & \(8.5 \times 17^{\prime \prime}\) & \(\$ 8.83\) & \(\$ 7.95\)
\end{tabular}

\section*{TRS-80/APPLE MEMORY EXPANSION KITS} 4116's RAMS \(0_{5}^{0} 0^{0}\) (16K×1 200/250ns)
8 for \(\$ 75.00\) Add \(\$ 3.00\) for programming Jumpers for TAS:80 Keyboard

\(\qquad\)

The Vista V80: widen the ability of your TRS-80
\(\$ 395.00\)

The Vista V80 Mini Disk System is the perfect way to widen the capabilities of your TAS-80. Micro-computer Quickly and inexpensively. Our \(\$ 395\) price tag is
about \(\$ 100\) less 1 han the Radio Shack equivalent. Our delivery time is immediate. And our system is fully interchangeable. That's just the start.
If will give you 23\% moro storage capacity by increasing useable storage from 55.000 to 65.000 bytes per drive with our new soltware patch.

11 can work 8 times fastior than the TRS-80 Mini-Disk systam, because track-fo. track access is 5 ms versus 40 ms for the TRS-B0 You can realize this added speed
once the new double disk expansion interlace is available without expensive modification of the existing unit.
It has a better warranly than any comparable unit warranty available a a full 120 days on all parts and service. When you consider how much more goes into the Vista V 80 , that shows a lot of taith in our product. operate the vo0, and full ventilation insures that there will be power necessary to operate \(\begin{aligned} & \text { overheating }\end{aligned}\)
The Vista vbo Mini Disk Systern requires Level II Basic with 16 K RAM Expansion interlace fit operates from the Radio Shack interface system. It comes complete with a dependable MPI Mininiloppy disk drive, power supply, regulator board and vented case. It's shipped to you ready to run-simply take it out of the box and plug it in. You're i
DATA CABLES, VC80-2 (2 drive)
. 29.95
DATA CABLES, VC80-4 (4 drive)
.3995
SPECIAL: Box of 10 diskettes - \(\mathbf{5 2 0 . 0 0}\) with Purchase of vISTA 80

SAVE \(\$ 120.00\)

SALE PRICED M32 KSS.L (2 MHz) List \(\$ 650\)
SALE \(\$ 530.00\)
M32 KSS. \(\mathbf{~ (~} \mathbf{4} \mathbf{~ M H z) ~}\) List \(\$ 680\)
SALE \(\$ 560.00\)
- Fully S100 Bus Compatible, IMSAI, SOL, ALTAIR, ALPHA MICRO. - Uses National's Low Power 5257 4K \(\times 1\) Static Rams. - 2 MHz or 4 MHz operation. \(\bullet\) Gold contacts for higher reliability. - On board single 5 amp regulator. - On board single 5 amp regulator. - Thermally designed heat sink (board operating temperature \(0^{\circ}\) \(70^{\circ} \mathrm{C}\)). Commercially designed power bus, 7 ground bus bars, 0.1 uf decoupling capacitors. - Fully tri-state buffered. - Inputs fully low power Shottky Schmitt. Trigger buffered on all address and data lines. - Phantom is jumper selectable to pin 67. - Each 4 K hardware or software selectable. - One on board 8-bit output port enables or disables the 32 K in 4 K blocks. - Selectable port address. - 4 K banks can be selected or disabled on power on clear or reset. - Will operate with or without front panel. - Compatible with ALPHA MICRO, with extended memory management for selection beyond 64K. - No DMA restriction. Low power consumption 2.3-2.5 amps. - Fully warranted for 120 days from date of shipment.

\section*{X-MAS SPECIAL} NOVATION CAT ACOUSTIC MODEM

Regular \({ }^{\$ 198.00}\)
- 0.300 Baud
- Bell 103

PRIORITY ONE ELECTRONICS. 16723 K Roscoe Blva. Sepulveda, CA 91343
Terms: Visa, MC, BAC. Check, Money Order, C.O.D. U.S. Funds Onty, CA residents add \(8 \%\) sales tax. Th
Minimum order 510.00 Prepaid U.S. orders less than 575.00 inclute \(5 \%\) shipping and handing. MINIMUM 52 so Excess , please include your phone no

SAVE \({ }^{\text {s }} 100^{00}\) DM2700S DISK \& CABINET with POWER SUPPLY
 - Single or Double Density *Hard or Solt Sector
- Coor intiorlock
-Write Protec
-Hard Sectol Detection
- \(500 \mathrm{~KB} / \mathrm{ST}\) Transfes
- 800 KB unformated
- Shugart 800 Series Compatable

Cabing incluces:
-110 V 10 125 V 60 Hz power supply - Data Cable

Acc"epts per SCl. Shugar
Siemans 8" Drives

SHOP AND COMPARE
DM2700S Disk Drive \& Cabine

FDD120-8 \$449.00
DM2700 Cabinet, less Drive
Reg. \(\$ 249\) Sale Priced \(\$ 225.00\)

ORDER TOLL FREE 1-800-423-5633

\section*{4 MHZ EXPANDORAM II KIT}

The S-100 Memory Board for the 80's
SD SYSTEMS' ExpandoRAM II is a state-of-the-art - S-100 Bus Compatible dynamic RAM board with capacities from 16 K bytes . Up to 4 MMz Operation (4116) to 256 K bytes (4164). Ht operates on the industry S-100 Bus. The ExpandoRAM II's design allows eight boards to operate from the same S-100 Bus. Page mode operation provides the system with the capability of servicing multiple users without RAM in terference. Invisible refresh and synchronization with wait states provide greater reliability, and processing speeds up to 4 Mhz
The ExpandorAM II is compatible with most S. 100 CPU's based on the 280 microprocessor. When other SD SYSTEMS 200 series boards are combined with the

Expandable Mernory from 16 K to 256 K
DIP Switch Selectable Boundaries
Uses 16 K (4115) or 64 K (4164) Memory Devices Page Mode Operation Allows up to 8 Memory loards on Bus
Operates with 280 CPU's Phantom Output Disable Invisible Reiresh (Synchronized with Wait States)

\section*{\(\mathrm{s}^{2} \mathrm{~N}\)} Price
 SDS • EXPANDORAM II KIT (4116) \(\$ 280.00\) 48K
\(\$ 450.00\) \(\$ 535.00\)
\(\$ 365.00\) 64K

ExpandoRAM II, they create a microcomputer with exceptional capabilities and features.

\section*{SD EXPANDORAM The Ulitimate \(\mathbf{S} \mathbf{- 1 0 0}\) Memory}

\section*{EXPANDO 64 KIT (4116)} SBC-100, and others.
Bank Selectable

Reg. Sale Price Price \$249 \$219 \$324 \$285 \(\$ 399\) \$355 \(\$ 474\) \$415
- Interfaces with Altair, IMSAI, SOL-8, Cromenco,
- Power 8 VDC, \(\pm 16\) VDC, 5 Watts

Lowest Cost Per Bit
Uses Popular 4116 RAMS
PC Board is doubled solder masked and has silk-screen parts layout.
- Extensive documentation clearly written
- Complete Kit includes all Sockets for 64 K
- Memory access time: 375 ns, Cycle time: 500ns.
- No wait states required.
- 16K boundries and Protection via Dip Switches - Designed to work with Z-80, 8080, 8050 CPU's

\section*{EXPANDOPROM}

The ExpandoPROM can be populated with either the 2708 (1K) or the 2716 (2K) EPROMS, and may be located on either 16 K or 32 K boundaries.
- S. 100 Bus Compatible
- Expandable Read Only Memory from 1 K to 32 K
- Each EPROM is Dip Switch Selectable
- Dip Switch for Addressing on \(16 \mathrm{~K} / 32 \mathrm{~K}\) Boundarier
- Dip Switch Selectable Wait States
- Interfaces with Imsai, Altair, Sol-20 Cromemco 0
and SD SYSTEMS' Z80 CPU'Cards
SDS-EXPANDOPROM KIT.
SDS-EXPANDOPROM KIT.........\$210.00

280 CENTRAL PROCESSING UNIT - S. 100 Bus Compatible
- 2 Mhz or 4 Mhz Operation
- Power-On Jump to any 4 K Boundary
- Front Panel Usage Optional - Optional Wait States The MPB-100 can upgrade an existing S-100 8080 System with little or no necessary modifications. The MPB-100 is additionally suited for some control applications, The PROM socket will accomodate a 1 K or 2K PROM plus the single voltage 4 K PROM. Sale
SDS-MPB-100 KIT
SDS.MPB- 100 A\&T
. \(\$ 199.00\)

VDB-8024 VIDEO DISPLAY BOARD With on-board Z80 Microprocessor
- \(\mathrm{s}-100\) bus Compatible

Full 80 Characters by 24 Lines Display
Characters Displayed by High Resolution \(7 \times 10\) Matrix
Composite or TTL Video Output
Keyboard Power and interface
Forward and Heverse Scrolling Capability
Binking, Underlining, Field Reverse,
Field Protect and Combinations
Full Cursor Control
- 96 Upper and Lower Case Characters
- 32 Special Character Set

128 Additional User Programmabie Characters (Optional)
On-Board 280 Microprocessor
2K Byetes Independent On-Board RAM Memory \(\mathrm{P}_{\mathrm{r} / \mathrm{c}}\)
Glitch-Free Display - Gilitch-Free Display

SDS-VDB-8024 A\&T.

PROM- 100
Programming Board for PROM Development
NEW
SD SYSTEMS' PROM-100 is a versatile PROM programming board offering complete EPROM programstandard S-100 Bus. Support software verifies the erasure of EPROM and verifies the loaded program. SD SYSTEMS' PROM-100 offers a support-software listing with its operations manual
- S-100 Bus Compatible

Programs the Following EPROM s: 2708, Intel 2758, 2716, 2732 and Texas Instruments 2516 Dip Switch Selection of EPROM iype On Board Maximum Programming time: 16,384 Bits in 100 Seconds
Power Requirement: +8 VDC at 300 ma.; +16 VDC atr \(100 \mathrm{ma} . ;-16\) VDC at 60 ma TTL compatible
Software Provides for Reading of Object File from SDOS, CP/M or PROM and Programming into EPROM
- Program Verification - Verification of Erasure \(\mathrm{O}_{\mathrm{Cl} / \mathrm{Ce}}\) SDS-PROM-100 KIT
\(\$ 469.00\) SDS-PROM-100 A\&T
S469.00 SDSTRONICS
PRIORITY ONE
Terms: Visa, MG, BAC. Check, Money Order, C.O.O. U.S Funds Only. GA residents add \(6 \%\) sales tax
Minimum order \(\$ 10.00\) Prepaid U.S. Orders less than \(\$ 75.00\) incluce \(5 \%\) shipping
MINIMUM \(\$ 2.50\). Excess refunded. Just in case . . please include your phone no. Prices subject to change without notice.
1 do our best to maintain prices thru Dec, phone orders welcome (213) 894-8171, (800) 423.56

\section*{\%2 \\ SINGLE BOARD COMPUTER}

\section*{With On-Board RAM, PROM, CTC} S. 100 Bus Compatible
- 280 Central Processing Unit
- 1024 Bytes of Random Access Memory - 8K Bytes of PROM using 2716
- Parallel Input and Output Port
- Four Channel CounteriTimer (Z80-CTC)
- Software Programmable Baud Rate Gen
No Fron Panel Required for Operation

SDS-SBC-100 2 M HZ KIT \(\$ 219.00^{\circ}\)
SDS-SBC-100 2MHZ A\&T \(\$ 349.00\)
SDS.SBC-200 4MHZ KIT.
SDS-SBC-200 4MHZ A\&T \$259.00

Z80 STARTER KIT
A Complete Microcomputer On A Board - Z80 CPU with 158 instructions
- Zon-Board Keyboard and Display
- On-Board PROM Programmer for Single

Kansas City Standard Cassette Intertace
- Simple Key Controlled Audio Cassette Load
and Dump
S-100 Connectors (Sockets Not Included) Wire Wrap Area for Custom Circuitry Single Step through RAM or PROM
- Memory Examine and Change
- Z80 GPU Register and Change
- 2K Byte ZBUG Monitor in RÓM
- 1 K Bytes of RAM (Expandable to 2 K Bytes) - A 4 Channel Hardware Counter/Timer (Z80-CTC) - Two Bi-Directional 8-Bit I/O Ports (Z80-P10)

Up to 5 Programmable Breakpoints
- Switch Selectable PROM or Monitor Restart

FOR SALE: Programmatic Flexowriter, paper-tape reader punch, upper/lower case, input/output (I/O) connectors. Some schematics. \(\$ 370\). Bill Fujitsubo, 1506 Sandcastle Dr, Corona del Mar CA 92625.

WANTED: Assembled and working SwTPC PR-40 printer to use with my PET computer. Peter Oakes, 2235 Lakeshore Dr, Muskegon MI 49441.

FOR SALE: Shugart SA3900 dual diskette subsystem. Includes two SA900 drives, SA910 controller electronics, and large enclosure with fan and power supply. 256 K bytes/8 inch drive. Full documentation. Can be used as is, or replace the transistor-transistor logic (TTL) controller with an 8271 chip and your own microcomputer. Cabinet will hold six 8 by 10 inch boards. Original cost \(\$ 2400\), will sell for \(\$ 750\). Roger Cox, 1050 Westmoreland Rd Apt B, Colorado Springs CO 80907, (303) 599-9274.

FOR SALE: New Processor Technology 16 K pro-grammable-memory board with battery backup capability. Never been used. Factory assembled and tested. \(\$ 250\) or best offer. Cromemco Tu-Art, assembled and tested. \$200 or best offer. Cromemco Bytesaver, assembled with or without read-only memories (2708), not tested. \(\$ 175\) without read-only memories, \(\$ 275\) with read-only memories including Bytemover Z80 monitor read-only memory. David Brown, 2219 Teresa Dr, Savannah GA 31406.

FOR SALE: Solid State Music MB3 4 K erasable readonly memory board with sixteen clean 1702A read-only memories. Perfect condition, with documentation. \$110. George Saum, 4371 W 82 Av, Westminster CO 80030, (303) 429-6646.

FOR SALE: A 2201 Flexowriter made by Friden. The automatic typewriter can be programmed. It has a 5610 Computy data processor mounted in table unit. Has tape punch and reader. Has 18 inch carriage. In good condition. It is a real buy for \(\$ 800\) FOB Newton. Weight 350 to 400 lbs. Jack Harrison, 810 Ridge, Newton NC 28658, (704) 464-0145.

FOR SALE: Alpha-Micro computer system, AM-100, 64 K programmable memory, 10 MB CDC Hawk disk drive, AMOS operating system, Accounts Receivable, General Ledger, Payroll Software. Chester Hayes, 62 S Franklin St, Wilkes-Barre PA 18773, (717) 823-3101.

FOR SALE: Litton ABS/1252 accounting computer. System includes 80 K programmable memory, papertape reader and punch, keyboard, printer, buffer, rewind stand, and forms stand. Ideal for needs of a small to moderate-size business. David M Martin, 501 Webster, Mishawaka \(\mathbb{N}\) 46544, (219) 259-8578 (office) or (219) 259-1123 (home).

FOR SALE: BYTE magazine \#1 to current, inclusive. Mint condition. Best offer. K J Dabb, 2045 Robins Av, Ogden UT 84401.

FOR SALE: SOL with 5 -slot S-100 cage, 16 K Dynabyte dynamic, 4 K MITS dynamic, 8 K Bytesaver, iCOM minifloppy with controller, cassette recorder, monitor Datel 30 Selectric-based terminal, USART for parallel port, PT Extended Cassette BASIC, iCOM FDOS and DEBBIE, ALS8, Editor, Disassembler, TRK80, and more. Asking minimum \(\$ 2500\). Albert Boulanger, 820 NE \(2 \mathrm{PI}_{\text {, }}\) Hialeah FL 33010, (305) 888-6220.

FOR SALE: Parallel ASCII to serial ASCII converter with 20 mA current loop drive, \(\$ 20 ; 5 \mathrm{~V}\) at 3 A power supply with \(45 \mathrm{~K} \mu \mathrm{~F}\) filtering, \(\$ 30\); miscellaneous power supply components (capacitors, transformers, etc) Robert Watson, 2853 Pebble Beach, Flagstaff AZ 86001, (602) 526-2312.

FOR SALE: Micromation Megabox System, dual drive, 8 inch, double density, with controller card, \(\$ 1600\). Thinker Toys, 16 K static programmable memory, \(4 \mathrm{MHz}, \$ 275\). Both items brand new. Full documentation. James R Fatz, 293 Indiana AV, Ft Wood MO 65473, (314) 368-5880.

WANTED: I have eight 1702A erasable read-only memories which I bought used on a printed circuit board. I would like to er ase them, verify the erasure, program every bit, verity the programming, then erase the read-only memories, verifying the erasure. Finally, I need to have one read-only memory programmed for a keyboard encoder. Robert Heller, POB 51A Star Rt, Wendell MA 01379.

FOR SALE OR TRADE: For LSI-11, Heath H11, 11A owners. 4 K core (MMV11) used as small disk, keep loader, or BASIC in nonvolatile residence. \(\$ 450\), or trade for on board refreshed 16 K programmable memory module. C Chi, (617) \(369-4000\) ext 340 work; (617) 842-6326 home.

FOR TRADE: Have BYTE issues \#1 and \#4 in mint condition. Will trade for January, February, and May 1976 issues of BYTE in comparable condition. Will Hobbs, 1917 NE 8th \(\begin{gathered}3 \\ 3\end{gathered}\), Portland OR 97212, (503) 284-5150.

WANTED: Ran out of space in my H 11 system. I would like to trade my one each or wo each H11.1, \(4 \mathrm{~K} \times 16\) memory board plus reasonable cash for a single board \(16 \mathrm{~K} \times 16\) memory board for H11. Must be in working condition. P Reyes, 86-115 Puhawai Rd, Waianae HI 96792, (808) 696-9329.

FOR SALE: Four Heath 4 K by 16 static-memory modules. Assembled and guaranteed working. Specify bank number and I will program before shipping. \$200 each or \(\$ 700\) for all four. Harold Bula, 111 NW 8th Av *B4, Hallandale FL 33009.

FOR SALE: Heathkit ET-3400 microprocessor trainer in excellent condition with all manuals and programmed learning notebooks. Many additional chips and accessories. Nathan Coates, Rt 1 POB 44, Abilene TX 79601.

FOR SALE: 16 K , Level II TRS-80. Also, Tekironix type RM35A oscilloscope with type CA dual-trace plug-in unit and type D differential-input plug-in unit. TRS-80, \$645 Oscilloscope with both plug-in units, \$295. Richard J Aspey, 234 Beachwood Dr, Burbank CA 91506, (213) 842-7947,

ZILOG USERS: Zilog user seeks an exchange of ideas. Frank Light, 64 Errwood Rd, Manchester M19 2QM, ENGLAND.

FOR SALE: S\&D Sales 4 K programmable memory, \(\$ 50\). Shugart SA-400 with power supply and cabinet, \(\$ 290\). Micromation PerSci double density, \(\$ 2200\). MITS serial input/output (//O) board, \(\$ 100\). Vector Graphics read-only memory/programmable memory, \$75. Ten 1702A readonly memories, \$35. S\&D cassette interface, \$14.3P + S I/O board, \(\$ 130\). Flexowriter with \(S-100\) interface, punch, and reader, \$375. Fred Manthey, POB 619, Mullan ID 83846, (208) 744-1143.

FOR SALE: S-100 boards: IA, Z80, Jade input/output (//O), \(\$ 100\) each. SD 4 K programmable memory, \$50. Digital cassette drive with control electronics, \$50. PAIA 400 synthesizer, \$300. Anthony Lassiter, 6305 Hermitage *402, Chicago IL 60612, (312) 942-4837.

WANTED: New or used dumb terminal and acoustic coupler, or a microcomputer with RS-232 interface and terminal capability. Lee Hayden, 5018 San Jose Blvd, Jacksonville FL 32207.

\section*{Unclassified Policy}

Readers who are soliciting or giving advice, or who have equipment to buy, sell or swap should send in a clearly typed notice to that effect. To be considered for publicatior, an advertisement must be clearly noncommercial, typed double spaced on plain white paper, contain 75 words or less, and include complete name and address information.
These notices are free of charge and will be printed one time only on a space available basis. Notices can be accepted from individuals or bona fide computer users clubs only. We can engage in no correspondence on these and your confirmation of placement is appearance in an issue of BYTE.

Please note that it may take three or four montr for an ad to appear in the maga: te.

FOR SALE: Heath \(\mathrm{H} 8, \mathrm{H} 9,24 \mathrm{~K}\), dual cassettes, fully assembled and operational. Includes all assembly manuals, reference manuals, software (plus Extended BH BASIC with files), Space Wars game, HUG library manual and tape, and back issues of REMark Magazine. \$1450/offer. J Scheip, 6487 Silver Ridge Cir, Alexandria VA 22310, (703) 971-9619.

FOR SALE: Micropolis 1043 Mad II, 315 K bytes formatted meta floppy disk. Complete with manual, newsletters, and S-100 bus-controller board. Moving up to larger system. First check for \$950 takes all. Paul E Feick, 1105 Mala Dr, Layton UT 84041, (801) 376-9515 home, 524-4140 work.

WANTED: Newly formed computer club wants free games and/or other programs to run on a Level II TRS-80 system. Any consideration will be greatly appreciated. Bruce Caldwell, Draughon's Computer Club, Draughon's Junior College, 131 Bth Av, Nashville TN 37203.

FOR SALE: Two Godbout Econoram II boards (static 8 K, \(450 \mathrm{~ns}, 5-100\) bus) plus four spare 2102 memory integrated circuits. \(\$ 90\) each or nearest offer. I have switched to a 64 K Expendoram. Ron Subler, 25 First Parish Rd, Scituate MA 02066, (617) 545-6578.

FOR SALE: SwTPC CT-64, \$275 and AC-30, \$65. Professionally assembled, working, in as-new condition with documentation. R P Felton, 4803 Neblina Dr, Carisbad CA 92008, (714) 729-5519.

FOR SALE: Digital Development Corp Model 12750 fixed head disk. 196 K bytes, 8.5 ms high-speed access. High reliability helium pressurized system with sixteen external track protect switches. Full documentation. Ideal for computer graphics database, or timeshare swapping storage. 19 inch side, \(150 \mathrm{lbs}, 115\) VAC single phase; \(\$ 500\) plus shipping. J Zeglinski, 32 Aldgate Av, Toronto Ontario, CANADA MBY 3L6.

FOR SALE: IMSAI 8080 or Cromemco Z2. Both contain full sockets and are equipped with North Star disk drive, Processor Tech 3P + S, and 8 to 32 K of memory. ADM3 terminals avallable and all my software for free. Best reasonable offer. J Roehrig, 7 Wildwood Dr, Dix Hills NY 11746, (516) 643-1931.

FOR SALE: Digital Group Z80 system. 26 K 21 L02. MaxiBASIC, Assembler, four input/output (//O) ports, 64-character video board, power supply. Great systern for Assembly or BASIC. \$650. Preston Marshall, 8525 Monticello Av, Alexandria VA 22308, (703) 780-3768.

FOR SALE: Atari video computer system. Very good condition. Cartridges include Surround, Indy 500, Breakout, Outlaw, Air Sea Battle, Combat, Street Racer, Starship, Video Olympics, and Homerun. All handles for games come with system. Sysiem is worth \(\$ 400\), best offer takes it. Jody Wear, Rt 1 POB B3A, New Egypt NJ 08533. (609) 758-7193 after 3:30 PM.

\title{
Reader Seprice
}

To get further information on the products advertised in BYTE. fill out the reader service card with your mume and address. Then circle the appropriate numbers for the advertisers you select from the list. Add a 15-cent stamp to the card. then drop it in the mail. Not only do you gain information. but our advertisers are encoturaged to use the marketplace provided by BYTE. This helps us bring you a bigger BYTE. "Correspond directly with company.
\begin{tabular}{|c|c|}
\hline Inqul & Y No. Page No. \\
\hline 9 & Aardvark Software 211 AB Computers 295 \\
\hline 7 & Ackerman Digital Systems 280 \\
\hline 8 & Administrative Systems 177 \\
\hline 5 & Adroit Electronics 280 \\
\hline 2 & Advanced Access Group 114 \\
\hline 4 & Adv Computer Products 282, 283 \\
\hline 3 & Aladdin Automation 207 \\
\hline 6 & Altos 19 \\
\hline 13 & Amerlcan Square Computers 280 \\
\hline 12 & Anderson Jacobson 12 \\
\hline 16 & Apparat Inc 294 \\
\hline 17 & Apple Computer 15 \\
\hline 10 & Applied Computer Systems Inc 99 \\
\hline 11 & ASAP Computer Products 297 \\
\hline 23 & Atari Personal Computers 9 \\
\hline 19 & ATV Research 272 \\
\hline 18 & Automated Simulations 240 \\
\hline 21 & Avionic Enterprises (A.E.l.) 218 \\
\hline 22 & base 2 Inc 121 \\
\hline 24 & Becklan Enterprises 286 \\
\hline 25 & Beta Business Systems 274 \\
\hline & Beta Computer Devices 221 \\
\hline 21 & \begin{tabular}{l}
Bishop Graphics 78 \\
BITS Inc 214, 219, 225
\end{tabular} \\
\hline & BYTE Books 215, 291 \\
\hline & BYTE WATS Line 272 \\
\hline 33 & Byte Shop East 225 \\
\hline 34 & C \& S Electronics Mart 235 \\
\hline 35 & California Computer Systems 49 \\
\hline 39 & Callifornia Digital 267 \\
\hline 38 & Camelot Direct 109 \\
\hline 40 & CAP Electronics 201 \\
\hline 44 & Central Data 145 \\
\hline 47 & Chrisilin Industries 169 \\
\hline 49 & COMPCO 147 \\
\hline 52 & COMPRINT (Comp Printers Intl) 152, 153 \\
\hline 53 & Compucolor 33 \\
\hline 54 & CompuMart 273 \\
\hline 51 & Computer Case Co 274 \\
\hline 55 & Computer Components of South Bay 289 Computer Factory 275 \\
\hline 58 & Computer Furniture \& Accessorles 96 \\
\hline 75 & Computerland 83 \\
\hline 77 & Computer Mart of NJ 74 \\
\hline 88 & Computer Service Center 274 \\
\hline 66 & Computer Service Sys Ntwk (CSSN) 159 \\
\hline 306 & Computer Service Sys Ntwk (CSSN) 296 \\
\hline 56 & Computer Shopper 209 \\
\hline 67 & Computer Specialties 297 \\
\hline 71 & Computer Store International 90 \\
\hline 69 & Computer Works 296 \\
\hline 70 & Computer World 118 \\
\hline 73 & Computex 66 \\
\hline 76 & CT Micro Computer 110, 220, 237 \\
\hline 74 & Corporate Computer Systems (CCS) 212 \\
\hline 83 & Corvus Systems 55 \\
\hline 79 & Cover Craft 233 \\
\hline 78 & CP Products 2:1 \\
\hline 81 & The CPU Shop 299 \\
\hline 80 & Cromemco 1, 2 \\
\hline 85 & CTC 202 \\
\hline & Cybernetics Inc 234 \\
\hline 89 & Data Access Corp 236 \\
\hline 90 & DATABANK 272 \\
\hline 91 & Data Discount Center 233 \\
\hline 92 & Data Sales 220 \\
\hline 93 & Datasouth Computer Corp 60 \\
\hline 94 & Data Speed 123 \\
\hline 126 & Data-Trans 259 \\
\hline 128 & Delta Products 86 \\
\hline 129 & DES-MAR Electronics 292 \\
\hline
\end{tabular}

\section*{Inquiry No. Page No.}

96 DG Electronic Development 99
87 Dlgibyte Systems Corp 136
88 Digital Englneering 130
84 Digital Marketing 200
95 Dig ital Research Corp (CA) 236
97 Digitus Corp 111
100 Dontho Scientific 156
100 DRC (TX) 271
105 Dynacomp 162
120 Electronic Control Technology 132
125 Electronic Systems 259,260, 261
130 Electronics Warehouse 266
Ellis Computing 208
Escon 237
Euro-Micro 80203
Evergreen 292
EXO Electronics 165
Factory Direct Sales \(245^{\text {奖 }}\)
FAIRCOM 226
Farnsworth Computer 74
Fidelity Electronics 11
FMG Corp 230
Fordham Radio Supply 288
140 Frederick Computer Products 292
139 H Geller Computer Systems 270
Global Parameters 76
Godbout Electronics 171
153 George Goode \& Assoclates 102
6 H \& E Computronics
H \& E Computronics
Hartmann-Lang 280
Heath Company 17
Heath Company 17, 72,73
Heath Company
Heuristics 216
162 Hobby World 263
162 Hobby Wr 263
165 Houston Instrument 63
167 Housion 127 ument 63
166 Inco Inc 127
69 Industrial Micro Systems 141
170 Infinlte Inc 272
173 Infinity Micro 189, 223
173 Information Unlimited 195
175 Intecolor (Div Intelligent Sys) 41
177 Integrand 166
176 International Data Systems 115
180 Intertec Data Systems 57
* Ithaca Intersystems Inc 101, 232

196
200
200
2
208
206
206
207
203
211
212
21. Maxell Data Products 129

213 Micro Ap 95
218 Miero Applications Group 127
214 Micro Architect 240
Microbiotic Computing Inc 272
224 Micro Business Warld 292
238 Micro Computer Discount Co 281
Microcomputer Tech Inc (MTI) 294
Micro Control 43
220 Micro DaSys 13
221 Micro DaSys 47

\section*{Inquiry No}

Page No.
217 Micro DaSys 239
222 Micro Data Base Systems 59
Micro Diversions 5
Micromall 150
Micro Mike's 212
Micro Nusic 94
Microsette 218
Mlcroselte 272
Microsoft 69
Micro Soft (Consumer Prod Div) 179 Micro Squared 288
Mlcrotek 119
Mlcroware 214
The Micro Works 226
Micro World 82
Midwest Computer Peripherals 235
Mikos 290
MIni Computer Suppliers 240
Morrow/Thlnker Toys 24, 25
Mountain Hardware 58, 217
mpl 197
MT Micro Sys (formerly MetaTech) 243
Multi Bus Computer Systems 274
MVT Microcomputer Systems 218
NEECO 131
Netronics 173
Netronics 173
Netronics 173
Northern Technology Books 223
Novation 205
NRI Schools 193
299 Ohio Scientific Instrument CIV
291 OK Machine and Tool 137 80, 81
288 Ollver Adv Engineering 239, 274
Onver Adv Eng 65 239, 27 anComputing 65
Oregon Software 185 235
Oregon Software 185
Owens Assoclates Inc 128
Owens Assoclates inc 128
293 Page Dig Ital 293
297 PAlA Electronics 227
ParCom Data 37
PerCom Data 37
PerCom Data 38,
PerCom Data 51
301 Personal Software 183
Phase One Systems Inc 175
Power One Inc 61
Practical Applications 158
Priority I 300, 301, 302
Prodata Inc 105
Prodigy 125
PS Inc 218
The Q-Kit (Div JR Conwell Corp) 100 Quallty Software 220
Quantum Communications Sys 112
Quest Electronics 265
R \& D Press 280
RACET Computes 215
Radlo Hut 285
Radio Shack 107 Ramsey Electronics 206
Rascal Programs 212
RBE Software Products 142
RCA 42, 45
323 Report Card 280
325 RNB Enterprises 298
316 S-100 239
St Jude 292

Inquiry No.
Page No.
341 SC Digital 136
326 SCDP 237
329 Scelbi 186, 187
330 Scltronics 50
Shugart Associates 6, 7 Simulations Pub Inc (SPI) 139 '68 Micro Journal 229 Small Business Applications 228 Small Business Sys Group 196 Ken Smallwood \& Assoclates 270 Smoke Signal Broadcasting 21 Smoke Signal Broadcasting 223 Smoke Signal Broadcasting 225 Smoke Signal Broadcasting 227 Smoke Slignal Broadcasting 229 Smoke SIgnal Broadcasting 231 Smoke SIgnal Broadcasting 233 Smoke SIgnal Broadcasting 235 Smoke Signal Broadcasting 237 Smoke SIgnal Broadcasting 239 Softagon inc 18
Softape 199
358 SofTech Microsystems 122 Softronles 216
Software Dev \& Training 210 Software Dynamics 231
The Software Exchange 190, 191
The Software Farm 280
The Soft Warehouse 40
The sitware Works 212
SSM 29
SSM 30
Solid State Sales 286
Soroc 97
Sorrento Valley Associates 218 Southwest Technical Prod Corp Cll Software Tech for Comp (STC) 292
SubLOGIC 133 Sublogic 133
Summagraphics 161
Sunny International 270
Supersoft 35
Sybex 213
Sybex 216
Sybex 216
Synchro Sound 91
Synchro Sound 91
Synchro Sound 127
System Design Lab 227
TAD Enterprises 274
Tano Enterprises 274
Tarbell Electronics 113
Technical Systems Consultants 77
Tecmar Inc 8
Terak Corp 117
3/M Company 23
Robert Tinney Graphics 31
Torry Pines Business Systems 274
Total Informatlon Serv (TIS) 220
TransNet Corp 140
Ucatan Computer Store 272
United Software of America 295
US Robotics 126
Vector Electronics 204
VIsta Computer Company 284
V R Data 298
Wameco 290
WESCO Electronics 292
Whitesmith's Ltd 240
Wintek Corp 280
Worldwide Electronics 272
Xitex 151
\(Z_{S}\) Systems 229

\section*{BOMB - BYTE's Ongoing Monitor Box}

Article No.
ARTICLE
Ruckdeschel: Frequency Analysis of Data Using a Microcomputer 10
Clarcla: Add Nonvolatile Memory to Your Computer36
Dally: Faster Audlo Processing with a Microprocessor 54
Peterson: Text Compression106
Chancé: Analysis of Polynomial Functlons with the TI-59 Calculator 120
Bowker: Minimizing Curve-Plofting Calculation
Finlay: Nonlteratlve Digital Solution of Linear Transfer Functions 134
Kem: A User's Look at TIny-CLewis: Some Noles on Modular Assembly ProgrammingMaurer: Twenty-Four Ways to Write a LoopBernstein: Morse Code TrainerArmstrong: Thirty Days to Faster Input

\section*{September BOMB Homebrewing: Soft Touch for Software}

Congratulations to Mark Dahmke for his first place winning article "Introduction to Multiprogramming," September,page 20. An extremely close second place was taken by Steve Ciarcia's "Joystick Interfaces," page 10 with third place being awarded to William Powers, "The Nature of Robots," Part 4, page 96 .

For fastest service transfer mailer label from wrapper to coupon provided at the right. Requests cannot be honored unless zip code is given. This card valid for 90 days only.

NOTE- If label is missing or defaced fill out coupon carefully -PLEASE PRINT-this is only way to get requested material to you.

Name
(Title)
(Company)

\section*{Address}
\(\qquad\)
City \(\qquad\) State \(\qquad\) Zip \(\qquad\)
 22242628210212214216218220222242262282302322342362382402422442462482502522542562582602622642
 424446484104124144164184204224244264284304324344364384404424444464484504524544564584604624644 525456585105125145165185205225245265285305325345365385405425445465485505525545565585605625645 626466686106126146166186206226246266286306326346366386406426446466486506526546566586606626646 727476787107127147167187207227247267287307327347367387407427447467487507527547567587607627647 828486888108128148168188208228248268288308328348368388408428448468488508528548568588608628648 929496989109129149169189209229249269289309329349369389409429449469489509529549569589609629649 1030507090110130150170190210230250270290310330350370390410430450470490510530550570590610630650 1131517191111131151171191211231251271291311331351371391411431451471491511531551571591611631651 1232527292112132152172192212232252272292312332352372392412432452472492512532552572592612632652 1333537393113133153173193213233253273293313333353373393413433453473493513533553573593613633653 1434547494114134154174194214234254274294314334354374394414434454474494514534554574594614634654 1535557595115135155175195215235255275295315335355375395415435455475495515535555575595615635655 1636567696116136156176196216236256276296316336356376396416436456476496516536556576596616636656 1737577797117137157177197217237257277297317337357377397417437457477497517537557577597617637657 1838587898118138158178198218238258278298318338358378398418438458478498518538558578598618638658 1939597999119139159179199219239259279299319339359379399419439459479499519539559579599619639659 20406080100120140160180200220240260280300320340360380400420440460480500520540560580600620640660

\section*{MENTION 8لWTK WHEN WRITING TO ADVERTISERS}

For a subscription to BYTE, please complete this card.

Name
Address
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{7}{*}{State} & \multirow[t]{2}{*}{Zip} & Country & \\
\hline & & USA & Canada Mexico \\
\hline & \(\square 1\) year & \(\square \quad \$ 18\) & \(\square\) \$20 \\
\hline & \(\square 2\) years & \(\square \quad \$ 32\) & \(\square\) ¢ \(\square^{\text {b }}\) \\
\hline & 3 years & \(\square \quad \$ 46\) & \(\square\) - \({ }^{\text {5 }}\) \\
\hline & \multicolumn{3}{|l|}{\$32 Europe (air freight) payment enclosed
\$32 Elsewhere (surface mail) payment enclosed (Air mail rates available upon request)} \\
\hline & \multicolumn{3}{|l|}{Please remit in US funds drawn on a US bank. Thank you.} \\
\hline
\end{tabular}
\(\square\) Check enclosed (Bonus: one EXTRA issue
- receive 13 issues for the price of 12)
 Bill me (North America only)

Card No.
Expiration date
Four digits above name - Master Charge only

\title{
BUIE Retoris sence \\ PO Box 1911 GPO \\ New York NY 10001 \\ USA
}

\title{
The Personal Computer Line by OHIO SCIENTIIFIC
}
```

