2012 ACU Programming Contest Series

Problem 3: Recurse

The Amalagated Consortium Union (ACU) recently discovered an interesting recursive function, $\boldsymbol{f}_{\mathrm{k}}(\boldsymbol{i}, \boldsymbol{j})$, deserving more investigation. The function \boldsymbol{f} relies on the set generating function \boldsymbol{g} (see Problem 2).

$$
\begin{aligned}
& \boldsymbol{f}_{\mathrm{k}}(\boldsymbol{i}, \boldsymbol{j})=\max \left(\boldsymbol{f}_{\mathrm{k}}(\boldsymbol{i}, \boldsymbol{j} \mathbf{- 1}), \boldsymbol{f}_{\mathrm{k}}(\boldsymbol{e}, \boldsymbol{j}), \boldsymbol{f}_{\mathrm{k}}(\boldsymbol{e}, \boldsymbol{j} \mathbf{- 1})\right) \text {, where } \boldsymbol{e} \in \boldsymbol{g}(\boldsymbol{i}, \boldsymbol{j}) \text {, if } \boldsymbol{j}>0 \\
& \boldsymbol{f}_{\mathrm{k}}(\mathbf{i}, \boldsymbol{j})=\text { number of } 1 \text { bits in the binary representation of } \boldsymbol{i}+\boldsymbol{k}, \text { if } \boldsymbol{j}=0 \\
& \boldsymbol{g}(\mathbf{i}, \boldsymbol{j})=\{\boldsymbol{n}+\boldsymbol{i} \bmod \boldsymbol{j}+1, \boldsymbol{n}+\boldsymbol{i} \bmod \boldsymbol{j}+2, \ldots, \boldsymbol{n} \boldsymbol{j}+\boldsymbol{j}-1 \mid \boldsymbol{n}=0,1, \ldots, \boldsymbol{i} / \boldsymbol{j}\}
\end{aligned}
$$

Write a program to evaluate $\boldsymbol{f}_{\mathrm{k}}(\mathbf{i}, \boldsymbol{j})$.

Input

The first line consists of a single integer, the number of data sets to process.
Each data set consists of a single line consisting of three non-negative integers, $\boldsymbol{i}, \boldsymbol{j}$, and \boldsymbol{k}, all less than 100 , separated by single spaces.

Sample input:

```
4
700
413
130
2 3 1
```

