## 122 Trees on the level

Trees are fundamental in many branches of computer science (Pun definitely intended). Current state-of-the art parallel computers such as Thinking Machines' CM-5 are based on fat trees. Quad- and octal-trees are fundamental to many algorithms in computer graphics.

This problem involves building and traversing binary trees.
Given a sequence of binary trees, you are to write a program that prints a level-order traversal of each tree. In this problem each node of a binary tree contains a positive integer and all binary trees have have fewer than 256 nodes.

In a level-order traversal of a tree, the data in all nodes at a given level are printed in left-to-right order and all nodes at level $k$ are printed before all nodes at level $k+1$.

For example, a level order traversal of the tree on the right is: $5,4,8,11,13,4,7,2,1$.

In this problem a binary tree is specified by a sequence of
 pairs ' $(n, s)$ ' where $n$ is the value at the node whose path from the root is given by the string $s$. A path is given be a sequence of ' $L$ 's and ' $R$ 's where ' $L$ ' indicates a left branch and ' $R$ ' indicates a right branch. In the tree diagrammed above, the node containing 13 is specified by ( $13, \mathrm{RL}$ ), and the node containing 2 is specified by ( 2, LLR). The root node is specified by ( 5, ) where the empty string indicates the path from the root to itself. A binary tree is considered to be completely specified if every node on all root-to-node paths in the tree is given a value exactly once.

## Input

The input is a sequence of binary trees specified as described above. Each tree in a sequence consists of several pairs ' $(n, s)$ ' as described above separated by whitespace. The last entry in each tree is '()'. No whitespace appears between left and right parentheses.

All nodes contain a positive integer. Every tree in the input will consist of at least one node and no more than 256 nodes. Input is terminated by end-of-file.

## Output

For each completely specified binary tree in the input file, the level order traversal of that tree should be printed. If a tree is not completely specified, i.e., some node in the tree is NOT given a value or a node is given a value more than once, then the string 'not complete' should be printed.

## Sample Input

```
(11,LL) (7,LLL) (8,R)
(5,) (4,L) (13,RL) (2,LLR) (1,RRR) (4,RR) ()
(3,L) (4,R) ()
```


## Sample Output

$\begin{array}{llllllll}5 & 4 & 8 & 11 & 13 & 4 & 21\end{array}$
not complete

