10547 Hidden Truth in Recurrence

You are given a recursive function, which has the following form:

$$
\begin{aligned}
& f(0,0)=1 \\
& f(n, r)=\sum_{i=0}^{k-1} f(n-1, r-i) \quad \text { when }[(n>0) \text { and }(0 \leq r<n(k-1)+1)] \\
& f(n, r)=0 \quad \text { otherwise }
\end{aligned}
$$

Now, you have to find:

$$
x=\left(\sum_{i=0}^{n(k-1)} f(n, i)\right) \bmod m, \quad \text { where } m=10^{2}
$$

\boldsymbol{n}	-2	-1	0	1	2	3	4	5	6	7	8	9	10
0	0	0	1	0	0	0	0	0	0	0	0	0	0
1	0	0	1	1	1	0	0	0	0	0	0	0	0
2	0	0	1	2	3	2	1	0	0	0	0	0	0
3	0	0	1	3	6	7	6	3	1	0	0	0	0
4	0	0	1	4	10	16	19	16	10	4	1	0	0
5	0	0	1	5	15	30	45	51	45	30	15	5	1

A partially filled table for $k=3$

Input

There will be less than 1001 lines of inputs in the input file. Each line will contain three integers: k $\left(0<k<10^{19}\right)$, $n\left(0<n<10^{19}\right)$ and $t(0<t<10)$. Input will be terminated by three zeros for the value of k, n and t. You must not process this case.

Output

For each line of input, output the value of x. The output should be in the format shown in the sample output.

Sample Input

123412344
2323999999999998
4999999
8888888
000

Sample Output

Case \#1: 736
Case \#2: 39087387
Case \#3: 494777344
Case \#4: 91255296

