10586 Polynomial Remains

Given the polynomial

> compute the remainder $r(x)$ when $a(x)$ is divided by $x^{k}+1$.

The input consists of a number of cases. The first line of each case specifies the two integers n and $k(0 \leq n, k \leq 10000)$. The next $n+1$ integers give the coefficients of $a(x)$, starting from a_{0} and ending with a_{n}. The input is terminated if $n=k=-1$.

Output

For each case, output the coefficients of the remainder on one line, starting from the constant coefficient r_{0}. If the remainder is 0 , print only the constant coefficient. Otherwise, print only the first $d+1$ coefficients for a remainder of degree d. Separate the coefficients by a single space.

You may assume that the coefficients of the remainder can be represented by 32-bit integers.

Sample Input

```
52
63 2 0 1
5}
0 0 3 2 0 1
4
14111
6 3
2 3-3 4 1 0 1
10
51
0
7
3 5
1234
-1 -1
```


Sample Output

```
3 2
```

-3 -1
-2
$-12-3$
0
0
1234

