10586 **Polynomial Remains**

Given the polynomial

Given the polynomial

$$x^3$$
 $x^3 - x^2$
 $x^3 - x^2 + x$
 $a(x) = a_n x^n + \ldots + a_1 x + a_0$,
 $x + 1 \overline{x^4 + x^3}$
 $x + 1 \overline{x^4 + x^3}$
 $x + 1 \overline{x^4 + x^3}$

 compute the remainder $r(x)$ when
 $\frac{x^4 + x^3}{-x^3 + x + 1}$
 $\frac{x^4 + x^3}{-x^3 + x + 1}$
 $\frac{x^4 + x^3}{-x^3 + x + 1}$
 $a(x)$ is divided by $x^k + 1$.
 $\frac{x^4 - x^3}{-x^3 + x + 1}$
 $\frac{x^4 - x^3}{-x^3 + x + 1}$
 $\frac{x^4 - x^3}{-x^3 - x^2 + x + 1}$

 Input
 $\frac{x^2 + x}{1}$
 $\frac{x^2 + x}{1}$

_

The input consists of a number of

cases. The first line of each case specifies the two integers n and k ($0 \le n, k \le 10000$). The next n + 1integers give the coefficients of a(x), starting from a_0 and ending with a_n . The input is terminated if n = k = -1.

Output

For each case, output the coefficients of the remainder on one line, starting from the constant coefficient r_0 . If the remainder is 0, print only the constant coefficient. Otherwise, print only the first d + 1coefficients for a remainder of degree d. Separate the coefficients by a single space.

You may assume that the coefficients of the remainder can be represented by 32-bit integers.

Sample Input

```
52
633201
52
0 0 3 2 0 1
4 1
1 4 1 1 1
63
2 3 -3 4 1 0 1
1 0
51
0 0
7
35
1 2 3 4
-1 -1
```

Sample Output