10753 Exponential Function

In the course of Linear Algebra, the following theorem is proved:

Theorem. Let A be a square matrix of size n with entries in C. There are square matrices T and J of size n such that

$$A = T^{-1}JT, \quad J = \begin{pmatrix} J_1 & 0 & 0 & 0 \\ 0 & J_2 & 0 & 0 \\ 0 & 0 & \ddots & 0 \\ 0 & 0 & 0 & J_k \end{pmatrix}$$

where J_i are Jordan cells:

Here λ_i is an eigenvalue of A.

The decomposition $A = T^{-1}JT$, where J is of the form described above, is called a *Jordan* decomposition of A. The Jordan decomposition of a matrix may fail to be unique.

Given a matrix A, we can define the matrix $\exp A$ in the following way: if $A = T^{-1}JT$ is a Jordan decomposition of A, then $\exp A = T^{-1}J'T$

$$J' = \begin{pmatrix} J'_1 & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \ddots & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & J'_k \end{pmatrix}, \quad J'_i = \begin{pmatrix} \frac{e^{\lambda_i}}{0!} & \dots & \dots & \frac{e^{\lambda_i}}{m_i!} \\ 0 & \frac{e^{y_i}}{0!} & \dots & \frac{e^{\lambda_i}}{(m_i-1)!} \\ \ddots & \ddots & \ddots & \ddots \\ 0 & \dots & 0 & \frac{e^{\lambda_i}}{0!} \end{pmatrix}$$

Here m_i is the size of J_i . If $k \leq l$, then the number in the k-th row and l-th column of J'_i is

$$j_{kl} = \frac{e^{\lambda i}}{(l-k)!},$$

otherwise it is 0.

It can be proved that $\exp A$ is independent of the Jordan decomposition of A used. It can also be proved that if A is real-valued, then $\exp A$ is also real-valued. Your task is: given a matrix A, compute $\exp A$.

For example, if

then

$$J = \begin{pmatrix} 3 & 1 \\ 0 & 3 \end{pmatrix}, T = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}, J' = \begin{pmatrix} e^3 & e^3 \\ 0 & e^3 \end{pmatrix}$$

 $A = \left(\begin{array}{cc} 3 & 0\\ 1 & 3 \end{array}\right),$

and

$$\exp A = \left(\begin{array}{cc} e^3 & 0\\ e^3 & e^3 \end{array}\right) \approx \left(\begin{array}{cc} 20.086 & 0\\ 20086 & 20086 \end{array}\right)$$

Input

The first line of the input contains the number of the test cases, which is at most 15. The descriptions of the test cases follow. The first line of a test case description contains one integer N ($1 \le N \le 8$), denoting the size of the matrix A. Each of the next N lines contains N integers separated by spaces, describing the matrix A. It is guaranteed that the entries of A are between 0 and 5. The test cases are separated by blank lines.

Output

For each test case in the input, output N lines, each containing N integers separated by spaces, describing the matrix exp A. The numbers must have at least three digits after the decimal point. Print a blank line between test cases.

Sample Input

2

0 1

Sample Output

20.086 0.000 20.086 20.086

2.718 13.591 0.000 2.718