uva Dnline Judge

10976 Fractions Again?!

It is easy to see that for every fraction in the form $\frac{1}{k}(k>0)$, we can always find two positive integers x and $y, x \geq y$, such that:

$$
\frac{1}{k}=\frac{1}{x}+\frac{1}{y}
$$

Now our question is: can you write a program that counts how many such pairs of x and y there are for any given k ?

Input

Input contains no more than 100 lines, each giving a value of $k(0<k \leq 10000)$.

Output

For each k, output the number of corresponding (x, y) pairs, followed by a sorted list of the values of x and y, as shown in the sample output.

Sample Input

2
12

Sample Output

2
$1 / 2=1 / 6+1 / 3$
$1 / 2=1 / 4+1 / 4$
8
$1 / 12=1 / 156+1 / 13$
$1 / 12=1 / 84+1 / 14$
$1 / 12=1 / 60+1 / 15$
$1 / 12=1 / 48+1 / 16$
$1 / 12=1 / 36+1 / 18$
$1 / 12=1 / 30+1 / 20$
$1 / 12=1 / 28+1 / 21$
$1 / 12=1 / 24+1 / 24$

