## 10988 From G to H and back

> "All right, I'm stumped... and I think I'm supposed to be."

Dana Scully
There is a funny transformation that you can do with a graph. We start with an undirected graph, G, and build a new graph, H. G has $n$ vertices and $m$ edges. For each edge in G, we create a vertex in H . Two vertices in H are connected by an edge if and only if their corresponding edges in G share a vertex. H will have $m$ vertices and $p$ edges.

That's easy. But what about reconstructing G, given H?

## Input

The first line of input gives the number of cases, $N . N$ test cases follow. Each one starts with two lines containing $m$ (at most 320) and $p$. $p$ lines follow, each containing two different vertices (numbered from 1 to $m$ ) in H which are connected by an edge.

## Output

For each test case, output one line containing 'Case \#x: ' followed by either 'yes' or 'no', depending on whether there exists some graph G that produces the given graph H.

## Sample Input

2
3
3
12
23
31
4
3
12
13
14

## Sample Output

```
Case #1: yes
Case #2: no
```

