
1156 Pixel Shuffle
Shuffling the pixels in a bitmap image sometimes yields ran-
dom looking images. However, by repeating the shuffling enough
times, one finally recovers the original images. This should be no
surprise, since “shuffling” means applying a one-to-one mapping
(or permutation) over the cells of the image, which come in finite
number.

Your program should read a number n, and a series of el-
ementary transformations that define a “shuffling” ϕ of n × n
images. Then, your program should compute the minimal num-
ber m (m > 0), such that m applications of ϕ always yield the
original n× n image.

For instance if ϕ is counter-clockwise 90o rotation then m = 4.

Input

The input begins with a single positive integer on a line by itself indicating the number of the cases
following, each of them as described below. This line is followed by a blank line, and there is also a
blank line between two consecutive inputs.

Input is made of two lines, the first line is number n (2 ≤ n ≤ 210, n even). The number n is the size
of images, one image is represented internally by a n× n pixel matrix (aji ), where i is the row number
and j is the column number. The pixel at the upper left corner is at row 0 and column 0.

The second line is a non-empty list of at most 32 words, separated by spaces. Valid words are the
keywords id, rot, sym, bhsym, bvsym, div and mix, or a keyword followed by “-”. Each keyword
key designates an elementary transform (as defined by Figure 1), and key- designates the inverse of
transform key. For instance, rot- is the inverse of counter-clockwise 90o rotation, that is clockwise 90o
rotation. Finally, the list k1, k2, . . . , kp designates the compound transform ϕ = k1 ◦ k2 ◦ · · · ◦ kp. For
instance, “bvsym rot-” is the transform that first performs clockwise 90o rotation and then vertical
symmetry on the lower half of the image.



Universidad de Valladolid OJ: 1156 – Pixel Shuffle 2/3

id , identity. Nothing changes : bji = aji .

rot , counter-clockwise 90o rotation

sym , horizontal symmetry : bji = an−1−j
i

bhsym , horizontal symmetry applied to the lower half of image : when
i ≥ n/2, then bji = an−1−j

i . Otherwise bji = aji .

bvsym , vertical symmetry applied to the lower half of image (i ≥ n/2)

div , division. Rows 0, 2, . . . , n − 2 become rows 0, 1, . . . n/2 − 1, while
rows 1, 3, . . . n− 1 become rows n/2, n/2 + 1, . . . n− 1.

mix , row mix. Rows 2k and 2k + 1 are interleaved. The pixels of row
2k in the new image are a02k, a

0
2k+1, a

1
2k, a

1
2k+1, · · · a

n/2−1
2k , a

n/2−1
2k+1 ,

while the pixels of row 2k + 1 in the new image are
a
n/2
2k , a

n/2
2k+1, a

n/2+1
2k , a

n/2+1
2k+1 , · · · , an−1

2k , an−1
2k+1.

Figure 1: Transformations of image (aji ) into image (bji )

Output

For each test case, your program should output a single line whose contents is the minimal number m
(m > 0) such that ϕm is the identity. You may assume that, for all test input, you have m < 231.

The outputs of two consecutive cases will be separated by a blank line.

Sample Input

2

256
rot- div rot div

256
bvsym div mix



Universidad de Valladolid OJ: 1156 – Pixel Shuffle 3/3

Sample Output
8

63457


