11042 Complex, difficult and complicated

Complex numbers are not only complex, but also complicated. So you would better try to solve another problem...

We have a complex number, $a+b * i$, where i is the square root of -1 . We want to make it simple (I mean, real), by raising it to a natural power. For example, complex number $2+2 * i$, can be made simple by raising it to 4 :

$$
(2+2 * i)^{4}=-64
$$

You have to compute the smallest natural number, N, (zero is not included) such that $(a+b * i)^{N}$ is a real number. Besides, we require that the absolute value of $(a+b * i)^{N}$ is not bigger than 2^{30}.

Input

The first line of the input contains an integer M, indicating the number of test cases.
For each test case, there is a line with two integers a and $b . a$ is the real part of the complex number, and b is the imaginary part.

You can assume that $-10000 \leq a \leq 10000$, and $-10000 \leq b \leq 10000$.

Output

For each test case, the output should consist of a single positive natural number N in one line, indicating the power such that $(a+b * i)^{N}$ is real and its absolute value is not greater than 2^{30}. If there is no solution, you have to output 'TOO COMPLICATED'.

Sample Input

5
8170
22
0-1
1892
-77

Sample Output

1
4
2
TOO COMPLICATED
4

