
11208 Airplane Scheduling
Most airports have a big flat land for airplanes to land and take
off. Here is an example, where the flat land is divided into 4
rows and 5 columns. Gray squares are places to land and take
off, black squares are obstacles, and squares with numbers are
parking spaces.

Each airplane is assigned to a parking space. It can choose an
arbitrary gray square to land on, then goes to its assigned parking
space by a sequence of horizontal and vertical movements (each
movement is moving one square north, south, east or west). It
cannot move diagonally, nor can it move into an obstacle square
or a parking space that is occupied by another airplane. Empty
squares without numbers are always free to move on. After reaching its assigned parking space, the
airplane waits until it’s time for it to take off. Then, it goes to an arbitrary gray square to take off (not
necessarily the one it landed on). Initially the flat land is empty. An assignment is feasible if every
landing and taking off can be accomplished. Note that different planes might be assigned to the same
parking space, as long as the schedule is feasible.

The event list is represented by a sequence of integers, where positive means landing, negative means
taking off. It is guaranteed that each plane lands and takes off exactly once (at the end, the flat land
is empty again).

For example, the event list +1, +2, +3, +4, +5, +6, -6, -5, -4, -3, -2, -1 has a feasible assignment
12, 09, 05, 06, 02, 10, which are the parking spaces assigned to airplane 1, 2, 3, 4, 5, 6, respectively.

Write a program to assign parking spaces to airplanes.

Input
The input consists of at most 20 test cases. Each case begins with a line containing n, r and c
(0 < n < 21, 2 < r, c < 11) where n is the number of airplanes, r and c are the number of rows and
columns of the flat land. The next r lines each contains c pairs of characters separated by a single
space. Each pair is either a landing space(==), an empty space(..), an obstacle square(##) or a parking
space(two digits). Different parking spaces have different numbers. The last case is followed by a single
zero, which should not be processed.

Output
For each test case, print the case number and whether there is a solution. If there is, the second line
should contain n two-digit integers (with leading zeros if any), the assigned parking space number of
the corresponding airplane. If more than one solution exists, any one is acceptable.

Sample Input
6 4 5
01 .. == .. 02
03 04 .. 05 06
07 08 .. ## 09
10 11 .. .. 12
+1 +2 +3 +4 +5 +6 -6 -5 -4 -3 -2 -1



Universidad de Valladolid OJ: 11208 – Airplane Scheduling 2/2

3 3 3
== .. 01
.. ## 02
.. ## 03
+1 +2 +3 -3 -1 -2
0

Sample Output
Case 1: Yes
12 09 05 06 02 10

Case 2: No


