11273 Warping of N Dimensional Space

In this problem, we want to apply a linear transformation to warp an N dimensional volume. Let Volume (v) denote the volume of the N dimensional parallelepiped spanned by N, N dimensional vectors $\left\{v_{1}, v_{2}, \ldots, v_{N}\right\}$. An example of a 2 D volume spanned by 2,2 dimensional vectors is shown below. In a strange twist, we have decided to apply a "Linear GCD" transformation. That is, if we represent our linear transformation $f: R^{N} \rightarrow R^{N}$ by the matrix A, where R denotes the set of real numbers, then $\mathrm{A}(i, j)=\operatorname{gcd}(i, j)$ for $1 \leq i, j \leq N$, where $\operatorname{gcd}(i, j)$ stands for the greatest common divisor of i and j. Given, S, any set of N vectors of R^{N}, such that $\operatorname{Volume}(S)$ is positive, we ask you to compute the ratio of the volume after the transformation to the volume before the GCD Transformation. In other words, compute $r(S)=\operatorname{Volume}(F(S)) / \operatorname{Volume}(S)$, where $F(S)=\{f(v) \mid v$ in $S\}$. However, since
 $r(S)$ can be quite large, we only ask you to compute $T(S)=$ floor $(r(S)) \bmod 4000039$. In an even stranger twist, we will not give you S, but instead ask you to compute, the mean value of $T(S)$ over all N vectors S of R^{N}, such that $\operatorname{Volume}(S)$ is positive.

Input

The input of each test cases is simply the value $N(N<4000000)$ on its own line.

Output

For each input value, output the answer rounded to an integer, followed by a newline.

Sample Input

10000
10001

Sample Output

2747606
295638

