11324 The Largest Clique

Given a directed graph G, consider the following transformation. First, create a new graph $T(G)$ to have the same vertex set as G. Create a directed edge between two vertices u and v in $T(G)$ if and only if there is a path between u and v in G that follows the directed edges only in the forward direction. This graph $T(G)$ is often called the transitive closure of G.

We define a clique in a directed graph as a set of vertices U such that for any two vertices u and v in U, there is a directed edge either from u to v or from v to u (or both). The size of a clique is the number of vertices in the clique.

Input

The number of cases is given on the first line of input. Each test case describes a graph G. It begins with a line of two integers n and m, where $0 \leq n \leq 1000$ is the number of vertices of G and $0 \leq m \leq 50,000$ is the number of directed edges of G . The vertices of G are numbered from 1 to n. The following m lines contain two distinct integers u and v between 1 and n which define a directed edge from u to v in G.

Output

For each test case, output a single integer that is the size of the largest clique in $T(G)$.

Sample Input

1
55
12
23
31
41
52

Sample Output

