11342 Three-Square

Lagrange's four-square theorem states that every positive integer can be expressed as the sum of four squares of integers. For example:

$$
\begin{aligned}
& 3=1^{2}+1^{2}+1^{2}+0^{2} \\
& 31=5^{2}+2^{2}+1^{2}+1^{2}
\end{aligned}
$$

However some positive integers can be expressed even as the sum of three squares of non-negative integers. For example:

$$
\begin{aligned}
& 3=1^{2}+1^{2}+1^{2} \\
& 17=0^{2}+1^{2}+4^{2}
\end{aligned}
$$

In this problem you have to find expression of given integer K as the sum of three squares, or state that it is impossible.

Input

The first line contains integer $N(0<N \leq 10000)$, it is number of tests. Each of the next N lines contains a positive integers $K(0<K \leq 50000)$.

Output

For each test case print a line formatted like this: ' $a b c$ '. Where $a \leq b \leq c$ and $K=a^{2}+b^{2}+c^{2}$. If there is more than one possible answer, print the one that comes first lexicographically. If expression in three squares of non-negative integers do not exist print ' -1 ' (see examples).

Sample Input

3
13
15
17

Sample Output

023
-1
014

