11347 Multifactorials

A generalization of the factorials gives us multifactorials:

$$
\begin{aligned}
& n!=n *(n-1) *(n-2) *(n-3) \ldots \\
& n!!=n *(n-2) *(n-4) *(n-6) \ldots \\
& n!!!=n *(n-3) *(n-6) *(n-9) \ldots
\end{aligned}
$$

In general (there are k marks '!'):
$n!!\ldots!=n *(n-k) *(n-2 k) \ldots(n \bmod k)$, if k doesn't divide n,
$n!!\ldots!=n *(n-k) *(n-2 k) \ldots k$, if k divides n
It this problem you are given a multifactorial, and you have to find the number of different dividers it has.

Input

The first line contains integer $N(0<N \leq 500)$, it is number of tests. Each of the next N lines contains a multifactorial. Integer part of multifactorial is less or equal to 1000 and there are no more then 20 characters '!'.

Output

For each test case print line formatted like this: 'Case i : a '. Where i is a test number, and a is the number of dividers in multifactorial. If number of dividers exceed 10^{18} print 'Infinity' (see examples).

Sample Input

3
$5!$
13!!
$230!$

Sample Output

Case 1: 16
Case 2: 64
Case 3: Infinity

