11350 Stern-Brocot Tree

In number theory, the Stern-Brocot tree is a method of listing all non-negative rational numbers as well as a point representing infinity (here represented formally as $1 / 0$).

The tree may be created by an iterative process. It is easiest to describe as a list. Beginning with the list $\{0 / 1,1 / 0\}$ representing 0 and infinity respectively, one places between any two fractions the mediant of the fractions (the mediant of a / c and b / d is $(a+b) /(c+d))$. The first few steps of this process yield:

$$
\begin{aligned}
& \{0 / 1,1 / 0\} \\
& \{0 / 1,1 / 1,1 / 0\} \\
& \{0 / 1,1 / 2,1 / 1,2 / 1,1 / 0\} \\
& \{0 / 1,1 / 3,1 / 2,2 / 3,1 / 1,3 / 2,2 / 1,3 / 1,1 / 0\}
\end{aligned}
$$

This process can be represented as a tree where each row corresponds to the new numbers added at each step.

From Wikipedia

The position of a fraction in the tree can be specified as a path consisting of $L(l e f t)$ an R (right) moves along the tree starting from the top (fraction $1 / 1$). Your have to find a fraction by a given path.

Input

The first line contains integer $N(0<N \leq 10000)$, it is number of tests. On next N lines there is a path in the tree. Path is the string if maximum length of 90 characters consisting from characters ' L ' or ' R '.

Output

For each test case print line formatted like this: ' a / b '. Where a is numerator and b is denominator of the fraction.

Sample Input

3
RL
RLR
RRL

Sample Output

3/2
5/3
5/2

