11356 Dates

> 30 days has September, April, June and November All the rest have 31
> And Februarys great with 28
> And Leap Years Februarys fine with 29

The Gregorian calendar, the current standard calendar in most part of the world, adds a 29 -th day to February in all years evenly divisible by 4, except for centennial years (those ending in -00) which are not evenly divisible by 400 . Thus 1600, 2000 and 2400 are leap years but $1700,1800,1900,2100$, 2200 and 2300 are not.

In this problem, we are concerned with dates. You will be given a date and an integer K. You have to find the date in the calendar after K days from the given date.

Input

The first line of input is an integer $T(T<50)$ that represents the number of test cases. Each case contains two lines. The first line is a date in the format 'yyyy-month-dd'. year is an integer in the range [1900, 3000], month is a string from the set \{January, February, March, April, May, June, July, August, September, October, November and December $\}$ and $d d$ is an integer in the range $[01,31]$. The second line contains an integer $K(0<K<10000)$.

The input date will be a valid one.

Output

For each input, output the case number followed by the date after K days in the same format as that of input. Look at the sample for exact format.

Sample Input

2
1984-December-30
2
1984-October-12
318

Sample Output

Case 1: 1985-January-01
Case 2: 1985-August-26

