11358 Faster Processing Feasibility

The era of technology is so hectic at times! Each \& every single day, the crying needs for faster \& faster processors are becoming more important than before with the continuously increasing complexity of applications \& tasks. One of the solutions that the processor manufacturers are successfully employing nowadays is parallel processing. Scheduling of tasks is a prime concern while designing faster processors having several components working in parallel. We are currently building a new microprocessor that has P logical sub-processors in it. Each of the logical sub-processors can act as an individual processor \& process one of the available tasks during a time slot. Note that, a logical sub-processor can process only a single task in one time slot \& a task can not be processed by more than one processor during a time slot. Now, you are given the arrival time (the time when a task becomes available to the processors), processing time (the number of time slots necessary to complete processing the task) \& deadline (the earliest time when the processing of this task is required to be completed) for T tasks. You have to figure out if it is possible to schedule the tasks using the available resources in such a way that all tasks are completed before their respective deadlines.

Let us be a bit more specific. From now on we shall assume, each time slot equals 1 micro-second. The span of the first time slot is 0 to 1 micro-second while the second time slot is 1 to 2 micro-second $\&$ so on.

For example, consider a multi-processor system with 2 logical sub-processors. You are needed to schedule 3 tasks A, B \& C with the following data.

Task	Arrival Time	Processing Time	Deadline
A	0	2	2
B	0	3	4
C	1	2	3

It is possible to schedule these 3 tasks in the given system so that all the tasks meet their respective deadlines i.e. processing of task $\mathrm{A}, \mathrm{B} \& \mathrm{C}$ are completed at (or before) time 2 micro-second, 4 microsecond and 3 micro-second respectively. Look at the following table for a possible schedule.

Time (micro-second)	Available tasks	Assigned to processor -1	Assigned to processor -2	Completed tasks	Due tasks
0	$\mathrm{~A}, \mathrm{~B}$	A	B	-	-
1	$\mathrm{~A}, \mathrm{~B}, \mathrm{C}$	A	C	-	-
2	$\mathrm{~B}, \mathrm{C}$	B	C	A	A
3	B	B	-	A, C	A, C
4	-	-	-	$\mathrm{A}, \mathrm{C}, \mathrm{B}$	$\mathrm{A}, \mathrm{C}, \mathrm{B}$

Input

The first line of the input is the number of test cases $C(1 \leq C \leq 50)$. C test cases follow. A test case begins with 2 integers $P(1 \leq P \leq 40)$ and $T(1 \leq T \leq 40)$, as described earlier. Each of the next T lines gives a task detail. A task detail consists of 3 integers - arrival time, $A_{i}\left(0 \leq A_{i} \leq 1000\right)$, processing time, $R_{i}\left(1 \leq R_{i} \leq 5000\right)$ and deadline, $D_{i}\left(A_{i}+R_{i} \leq D_{i} \leq 10000\right)$.

Output

For each test case, print 'FEASIBLE' in a line if there is a possible schedule to meet all the deadlines. Otherwise, print ' NO WAY'.

Sample Input

2
23
022
034
123
23
022
033
123

Sample Output

FEASIBLE
NO WAY

