```
uva Dnline Judge
```


11393 Tri-Isomorphism

Let $V(G)$ be the vertex set of a simple graph and $E(G)$ its edge set. An Isomorphism from a simple graph G to a simple graph H is a bijection f : $V(G) \rightarrow V(H)$ such that $u v \in E(G)$ if and only if $f(u) f(v) \in E(H)$. We say, G is isomorphic to H if there is an isomorphism from G to H .

A complete graph is a simple graph whose vertices are pairwise adjacent: the unlabeled complete graph with n vertices is denoted K_{n}. For example, the following figure shows K_{5}.

Finally, a decomposition of a graph is a list of subgraphs such that each edge appears in exactly one subgraph in the list.

Now, given a positive integer n, you are to determine if K_{n} decomposes into three pairwise-isomorphic subgraphs.

Input

First line of each test case consists of a positive integer $n(n \leq 100)$. The end of input will be indicated by a case where $n=0$. This case should not be processed.

Output

For each test case, print 'YES' if K_{n} can be decomposed into three pairwise-isomorphic subgraphs and ' NO ' otherwise.

Constraints

- $n<100$

Sample Input

4
5
0

Sample Output

YES
NO

