11581 Grid Successors

Consider a 3×3 grid of numbers g where each cell contains either a ' 0 ' or a ' 1 '. We define a function f that transforms such a grid: each cell of the grid $f(g)$ is the sum (modulo 2) of its adjacent cells in g (two cells are considered adjacent if and only if they share a common side).

Furthermore, we define $f^{(i)}(g)$ recursively $f^{(0)}(g)=g$ and $f^{(i+1)}(g)=f\left(f^{(i)}(g)\right)($ where $i \leq 0)$. Finally, for any grid h, let $k_{g}(h)$ be the number of indices i such that $h=f^{(i)}(g)$ (we may have $k_{g}(h)=\infty$). Given a grid g, your task is to compute the greatest index i such that $k_{g}\left(f^{(i)}(g)\right)$ is finite.

Input

Input begins with the number of test cases on its own line. Each case consists of a blank line followed by three lines of three characters, each either ' 1 ' or ' 0 '. The j 'th character of the i 'th row of the test case is the value in the j^{\prime} 'th cell of the i^{\prime} th row of the grid g.

Output

For each test case, output the greatest index i such that $k_{g}\left(f^{(i)}(g)\right)$ is finite. If there is no such index, output ' -1 '.

Sample Input

3
111
100
001
101
000
101
000
000
000

Sample Output

3
0
-1

