11582 Colossal Fibonacci Numbers!

The i 'th Fibonacci number $f(i)$ is recursively defined in the following way:

- $f(0)=0$ and $f(1)=1$
- $f(i+2)=f(i+1)+f(i)$ for every $i \geq 0$

Your task is to compute some values of this sequence.

Input

Input begins with an integer $t \leq 10,000$, the number of test cases. Each test case consists of three integers a, b, n where $0 \leq a, b<2^{64}$ (a and b will not both be

Oooh...pretty zero) and $1 \leq n \leq 1000$.

Output

For each test case, output a single line containing the remainder of $f\left(a^{b}\right)$ upon division by n.

Sample Input

3
112
231000
18446744073709551615184467440737095516151000

Sample Output

1
21
250

