11852 Knight's Trip

In chess, each move of a knight consists of moving by two squares horizontally and one square vertically, or by one square horizontally and two squares vertically. A knight making one move from location $(0,0)$ of an infinite chess board would end up at one of the following eight locations: $(1,2),(-1,2),(1,-2),(-1,-2),(2,1)$, $(-2,1),(2,-1),(-2,-1)$.

Starting from location $(0,0)$, what is the minimum number of moves required for a knight to get to some other arbitrary location (x, y) ?

Input

Each line of input contains two integers x and y, each with absolute value at most one billion. The integers designate a location (x, y) on the infinite chess board. The final line contains the word 'END'.

Output

For each location in the input, output a line containing one integer, the minimum number of moves required for a knight to move from $(0,0)$ to (x, y).

Sample Input

12
24
END

Sample Output

1

2

