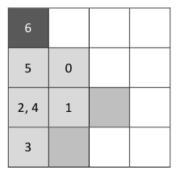
11940 Face the Maze


This problem consists of traversing deterministically a discrete surface represented by a matrix of $n \times n$ cells (n > 2), starting at a *source* cell, ending at a *target* cell, and considering the existence of static obstacles in the form of *unavailable* cells. The key idea is that from the *source* cell, the position of the *target* cell is unknown; thus, a path starting from *source* cell must be created on the run until *target* cell is found.

Only vertical and horizontal movements are allowed. The choice of the next cell visited is given by the following list of priorities.

- 1. Go to the *target* cell, if it is adjacent vertical or horizontally
- 2. Go down, if the bottom cell is available and not visited yet
- 3. Go to the right, if the right cell is available and not visited yet
- 4. Go to the left, if the left cell is available and not visited yet
- 5. Go up, if the top cell is available and not visited yet
- 6. Go back to the previous cell.

If either *source* cell or *target* cell is trapped in a dead end, eventually the path will return to the start point. In such a case, the travel must end.

For a better understanding of this problem, consider the first test case from Sample Input, where *source* cell is at (2, 2), *target* is at (1, 1), and cells (3, 3) and (2, 4) are unavailable. As can be seen in the following figure, the path from *source* to *target* considering the priorities enlisted above is as follows: 1) go down, 2) go to the left, 3) go down, 4) go back, 5) go up, 6) go to the *target*.

Input

The first line contains an integer N > 0 denoting the number of test cases.

The next N lines contain a space-separated list starting with an integer n > 1 denoting the number of rows (or columns) in the surface, and followed by $m \ge 2$ pairs of integers (i, j), such that:

- a) i is the column index
- b) j is the row index
- c) $1 \leq i, j \leq n$
- d) The first pair (i_1, j_1) denotes the position of the source cell
- e) The second pair (i_2, j_2) , such that $(i_2, j_2) \neq (i_1, j_1)$, denotes the position of the *target* cell
- f) Every pair (i_k, j_k) , such that $k \ge 3$, $(i_k, j_k) \ne (i_1, j_1)$, and $(i_k, j_k) \ne (i_2, j_2)$, denotes an *unavailable* cell (obstacle)

Output

The output consists of N lines containing the path produced at each test case. The path is specified by means of a space-separated list of m pairs of integers (i, j), such that:

- a) $1 \le i, j \le n$
- b) The first pair (i_1, j_1) denotes the position of the source cell
- c) Every pair (i_k, j_k) , where 1 < k < m, denotes the position of a cell employed in the path, such that (i_k, j_k) is not an *unavailable* cell and is horizontally or vertically adjacent to (i_{k-1}, j_{k-1})
- d) The last pair (i_m, j_m) denotes either
 - a. The position of the *target* cell, if it was successfully reached
 - b. The position of the *source* cell, otherwise

Note: Images from test cases 2 and 3

0	1	2	3	4	0, 10	5, 7	6
				5	1, 3, 9	4, 8	
		8	7	6	2		?
		9					
		10	11	12			

Sample Input

3 4 (2,2) (1,1) (3,3) (2,4) 5 (1,1) (5,5) (1,2) (2,2) (3,2) (4,2) (4,4) (5,4) 3 (1,1) (3,3) (3,2) (2,3)

Sample Output