1254 Top 10

We all use search everyday; to find a file in a directory, to find an email in the inbox, to find a song in a playlist. Search is more than just a linear scan through a list of texts in a dictionary; It's binary search, it's indexing, it's using your full text search algorithms to solve one of the hardest problems we

Given a dictionary containing less than $N=20000$ words labeled from 1 to N. Each word consists of lowercase characters (from ' a ' to ' z ') with arbitrary length. The total number of characters in the dictionary is at most 100,000 . Your task is to answer at most $Q=100000$ queries. Each query q_{i} is also a word (as defined above). For each query, you have to print the "Top 10" words in the dictionary with the following rules:

- All the words in the "Top 10 " have to contain the substring q_{i}.
- All the words in the "Top 10" have to be sorted in this order:

1. The words with shorter length come first, if they have equal length then
2. The lexicographically smaller words come first, otherwise

3 . The words with smaller label come first.

- If the number of words in the dictionary that contains the substring q_{i} is less than 10 then print all the words otherwise, print only the top-10 words (note: the words are printed using their labels).
- If there is no word in the dictionary that contains the substring q_{i} then print ' -1 ' (without the quotes).

Input

The first line contains the number N. The next N lines contains the N words in the dictionary (the i-th line is the word with label i). The next line contains the number Q followed by the Q lines containing the queries.

Output

For each query, print one line containing the labels of the "Top 10" words (separated by a space) in the dictionary using the rules defined above.

Sample Input

17
acm
icpc
regional
asia
jakarta
two
thousand
and
nine
arranged
by
universitas
bina
nusantara
especially
for
you
5
a
an
win
b
z

Sample Output

18413510371415
810714
-1
1113
-1

