12000 K-Transformed Permutations

Consider a sequence of n integers $< 1 \ 2 \ 3 \ 4 \ \dots \ n >$. Since all the values are distinct, we know that there are n factorial permutations. A permutation is called *K*-transformed if the absolute difference between the original position and the new position of every element is at most K.

Given n and K, you have to find out the total number of K-transformed permutations.

Example:	n = 4,	K	=	2
----------	--------	---	---	---

	1 2 3 4 (position)	Valid	Annotation
P_1	1234	Yes	The original sequence. All the elements are in their original position
P_2	$1\ 2\ 4\ 3$	Yes	3 and 4 are reordered, but each is shifted by 1 position only.
P_3	$1 \ 3 \ 2 \ 4$	Yes	
P_4	$1 \ 3 \ 4 \ 2$	Yes	2 is shifted by 2 positions. $2 \leq K$, so it's a valid one.
P_5	$1\ 4\ 2\ 3$	Yes	
P_6	$1\ 4\ 3\ 2$	Yes	
P_7	$2\ 1\ 3\ 4$	Yes	
P_8	$2\ 1\ 4\ 3$	Yes	
P_9	$2\ 3\ 1\ 4$	Yes	
P_{10}	$2\ 3\ 4\ 1$	No	1 is shifted by 3 positions. $3 > K$ and so this is an invalid permutation
P_{11}	$2\ 4\ 1\ 3$	Yes	
P_{12}	$2\ 4\ 3\ 1$	No	
P_{13}	$3\ 1\ 2\ 4$	Yes	
P_{14}	$3\ 1\ 4\ 2$	Yes	
P_{15}	$3\ 2\ 1\ 4$	Yes	
P_{16}	$3\ 2\ 4\ 1$	No	
P_{17}	$3\ 4\ 1\ 2$	Yes	
P_{18}	$3\ 4\ 2\ 1$	No	
P_{19}	$4\ 1\ 2\ 3$	No	4 is shifted by 3 positions. $3 > K$ and so this is also invalid
P_{20}	$4\ 1\ 3\ 2$	No	
P_{21}	$4\ 2\ 1\ 3$	No	
P_{22}	$4\ 2\ 3\ 1$	No	
P_{23}	$4\ 3\ 1\ 2$	No	
P_{24}	$4\ 3\ 2\ 1$	No	Here, both 4 and 1 are breaking the property.

So, for the above case, there are 14 *2-transformed* permutations.

Input

The first line of input is an integer T (T < 20) that indicates the number of test cases. Each case consists of a line containing two integers n and K. ($1 \le n \le 10^9$) and ($0 \le K \le 3$).

Output

For each case, output the case number first followed by the required result. Since the result could be huge, output result modulo 73405.

Sample Input

Sample Output

Case 1: 14 Case 2: 1 Case 3: 89