12310 Point Location

Given a partition of the plane into disjoint regions (i.e. a planar subdivision), your task is to determine the region where each query point lies (We use labels to distinguish the regions, see below).

The planar subdivision will be given as a planar straight-line graph (PSLG) with every vertex having at least two adjacent vertices. The two sides of each segment will always belong to different regions.

Here is a sample PSG with 5 regions in the picture below (don't forget there is an exterior infinite region outside the PSGL):

There will be at most 10 test cases. Each test case begins with four integers n, m, p, q ($1 \le n \le 10,000$,

 $1 \le m \le 30,000, \ 1 \le p \le 20,000, \ 1 \le q \le 100,000)$, where n and m are the number of vertices and edges in PSLG, p is the number of labels, q is number of queries. The next n lines contain the coordinates of the vertices (coordinates are integers whose absolute values do not exceed 1,000,000). The next m lines contain the edges of the PSGL (vertices are numbered 1 to n). There will be no self-loops or parallel-edges. No two edges will be crossing each other at non-endpoints, and each vertex will be connected to at least two edges, and the two sides of each edge will always belong to different regions. The next p lines contain the coordinates of the labels (numbered 1 to p). There will be at most one label strictly inside each region (including the infinite region) of the PSGL. The vertices of the PSGL will be connected. The next p lines contain the coordinates of the query points (coordinates are real numbers whose absolute values do not exceed 1,000,000). The input terminates with p is p in the parallel parallel

Output

For each query, print the label of the region in which the query point lies. If the region does not have a label, print '0'. It is guaranteed that for each label and query point, the distance to the boundary of its region will be at least 0.0001.

Sample Input

30 10

30 20

40 20

50 30

50 40

30 40

1 2

2 9

9 8

8 7

7 9

9 10

10 11

11 3

3 4

4 5

5 6

6 1

12 13

13 14

14 12

2 3

20 20

10 20

35 10

45 39

1 60

28 11

29 14

34 7

40 38

70 1

0 0 0 0

Sample Output

1

2

4

5