12327 Xavier is Learning to Count

Xavier, a 9-year-old student, loves playing many kinds of puzzles. One of his favourites is the following:

Xerier, his classmate, has made many cards. She writes down a single positive number on each of them. No numbers written on different cards are the same. After that she writes down an equation, whose right side is a single positive number chosen by her, and the left side is the sum of p integers:

$$X_1 + X_2 + \dots + X_p = n$$

Then she asks Xavier put p cards on the corresponding X_i 's position to make this equation correct, with an additional condition that X_i should be ordered from smaller to bigger, i.e.

$$X_i < X_{i+1}, \quad \forall i, \ 1 \leq < p$$

Every time Xavier immediately comes up with many solutions. Now he wants to know how many solutions in total are there for any n given by Xerier.

Input

There are multiple test cases. The number of them is given in the beginning of the input. Then a series of input block comes one by one.

For each test case:

The first line contains two space-separated integers m and p $(1 \le p \le 5)$. The second line contains m distinct positive integers — the numbers written on each of the cards. None of these integers exceeds 13000.

There are about 120 test cases in total, but 90% of them are relatively small. More precisely, all numbers are less than or equal to 100 in 90% of the test cases.

Output

For each test case:

For each positive integer, output the number of ways in a single line. To keep the output finite, only numbers with positive ways should be outputted.

Output a blank line after each test case. See sample for more format details.

Sample Input

3 3 3 1 2 3 5 4 1 3 5 6 7 10 3 1 2 3 4 5 6 7 8 9 10

Sample Output

Case #1: 6: 1

Case #2:	
15:	1
16:	1
17:	1
19:	1
21:	1
Case	e #3:
6: 1	-
7: 1	-
8: 2	2
9: 3	3
10:	4
11:	5
12:	7
13:	8
14:	9
15:	10
16:	10
17:	10
18:	10
19:	9
20:	8
21:	7
22:	5
23:	4
24:	3
25:	2
26:	1
27:	1