
12421 (Jiandan) Mua(I) - Lexical Analyzer
In this problem-series, you’re to implement a subset of the Lua language (version 5.1), called mini-lua
(mua). This is one of Rujia Liu’s experimental languages, mainly for implementing algorithms, not
real-world programs.

This is the first problem in the series, which requires you to write a lexical analyzer (lexer), i.e. split
the input program into a stream of tokens (defined below).

There are six kinds of tokens in mini-lua:
RESERVED: The reserved words, listed below. Note that mini-lua is case-sensitive, so AND is not a
reserved word. Note that not all of them are actually used in mini-lua, but we want any valid mini-lua
program to be valid in Lua.

and break do else elseif
end false for function if
in local nil not or
repeat return then true until while

NUMBER: There are two kinds of numbers:

• Integers: Decimal integers consist of one or more digits (0-9), and hexadecimal integers consists
of a prefix (0x or 0X), then followed by one or more hexadecimal digits(0-9, a-f, case-insensitive).
Note that leading zeros are simply ignored (e.g. 0123 is the same as 123).

• Floating-point numbers: Always in decimal notation, e.g. 1.23. Scientific notation may be used
by adding e or E followed by a decimal exponent (e.g. 1.23e2, which has the value 123.0). Either
a decimal point or an exponent is required, but the integer part can be omitted (like .2e3). If
the integer part is omitted, the decimal point and at least one digit after the decimal point are
required (so .e2 is illegal). Hexadecimal floating-point numbers are not supported. Note that the
exponent can be prefixed by ‘+’ or ‘-’, e.g. 1e+10 and 4e-3 are legal.

Note that “negative numbers” consists of two tokens: the unary “minus” operator, and the absolute
number. For example, -34 has two tokens. Similarly, +7e8 also has two tokens.
STRING: A string enclosed by “” or ‘’. Only four escaped characters are supported: \" \' \\ \n.

A string cannot contain a real newline character.
SYMBOL: Symbols that have special meanings, listed below:

+ - * / % ^ #
== = = =
() { } []
; : ,

NAME: an identifier starting with a letter and followed by letters, digits and underscores. Note that
reserved words cannot be used as names.
EOL: End of a physical line.
COMMENT: Start with ‘--’, and may not cross a line (the newline character following the comment
is part of it. It is a separate EOL token). Note that white spaces output any string constants are
always ignored, so ‘1+1’ and ‘1+ 1’ have no differences for the lexer.

Universidad de Valladolid OJ: 12421 – (Jiandan) Mua(I) - Lexical Analyzer 2/3

The lexer should be greedy. i.e. if there are more than one way to split the input into tokens, always
maximize the length of the first token, then the second one, etc. For example, the only way to tokenize
‘abc123<=x’ is ‘abc123’, ‘<=’ and ‘x’

In order to simplify the problem, a mini-lua program can only contain ASCII characters, regardless
of your current locale (if you couldn’t understand this, just ignore it).

Input
A valid mini-lua program.

Output
Non-comment tokens, one for each line. formatted as ‘[TY PE] token’, where ‘token’ is printed as in
the input. If type is ‘EOL’, print an empty text.

Sample Input
print("Hello".." ".."--\"World\"--")
x=-3+4
this_1s_a_variable = 0xabcF-.012e-56+7.e8+9e+10--8
if 1 then

y=x
end
print (y)

Sample Output
[NAME] print
[SYMBOL] (
[STRING] "Hello"
[SYMBOL] ..
[STRING] " "
[SYMBOL] ..
[STRING] "--\"World\"--"
[SYMBOL])
[EOL]
[NAME] x
[SYMBOL] =
[SYMBOL] -
[NUMBER] 3
[SYMBOL] +
[NUMBER] 4
[EOL]
[NAME] this_1s_a_variable
[SYMBOL] =
[NUMBER] 0xabcF
[SYMBOL] -
[NUMBER] .012e-56
[SYMBOL] +
[NUMBER] 7.e8
[SYMBOL] +
[NUMBER] 9e+10

Universidad de Valladolid OJ: 12421 – (Jiandan) Mua(I) - Lexical Analyzer 3/3

[EOL]
[RESERVED] if
[NUMBER] 1
[RESERVED] then
[EOL]
[NAME] y
[SYMBOL] =
[NAME] x
[EOL]
[RESERVED] end
[EOL]
[NAME] print
[SYMBOL] (
[NAME] y
[SYMBOL])
[EOL]

