12444 Bits and Pieces

Let A and B be non-negative integers and let $C=A \& B$ and $D=A \mid B$. Given C and D, can you find A and B such that the absolute difference $(|A-B|)$ is minimal? ($A \& B$ and $A \mid B$ are bitwise $A N D$ and $O R$ respectively).

Input

The input starts with an integer T - the number of test cases $(T \leq 100)$. T cases follow on each subsequent line, each of them containing integers C and $D\left(0 \leq C, D<2^{31}\right)$.

BITS \& PIECES

PUT TOGETHER

TO PRESENT A SEMBLANCE DF A WHOLE

Output

For each test case, print integers A and B on a line such that $A \& B=C, A \mid B=D, A \leq B$ and $B-A$ is minimal. If there are no such A and B, print ' -1 ' on the line instead.

Sample Input

3
23
32
315

Sample Output

23
-1
711

