
12692 Airport Sort

There are few airlines that don’t specify seat num-
bers before boarding. Instead, each passenger gets a
ticket containing a unique integer in the range [1, n]
where n indicates the total number of seats in the
airplane. Each ticket number belongs to a specified
zone. Suppose a zone contains k tickets, then tickets
with numbers [1, k] are in zone 1; tickets with num-
bers [k+1, 2k] are in zone 2 and so on. The last zone
may contain less than k tickets if n is not divisible by
k.

Before boarding, all the n passengers line up ran-
domly in a straight line. In order to expedite the
boarding process, it is convenient that the first k pas-
sengers in the line belong to zone 1, the next k in zone 2 and so on. There are two ways of rearranging
the positions of the passengers.

1) Adjacent passengers keep swapping places until the required order is accomplished. Every second,
only one pair of adjacent passengers can swap their places.

2) All the passengers walk simultaneously towards their correct positions. To walk from position x
to position y, it takes |x− y| seconds. |x− y| is the absolute difference of x and y.

As you can guess, the first approach takes more time, but it’s less ‘noisy’. For this problem, you
have to determine how much faster the 2nd approach is. More specifically, suppose the minimum time
required to rearrange the passengers using the first approach is X and the minimum time for the second
approach is Y , you have to find X − Y .

As an example, consider a plane of capacity 10 (n = 10) and zones of size 3 (k = 3). Suppose the
passengers line up in the following order

3 7 1 2 4 6 5 8 10 9

Each integer represents the ticket number of the corresponding passenger. So, for the above example,
the first passenger in the line has a ticket with number 3. Passengers with ticket numbers 7, 2, 5, 10
and 9 are not in their right positions.

Using the first strategy, it’d take a minimum of 6 swaps (and hence 6 seconds) to achieve the desired
order.

I. swap 7 with 1 ⇒ 3 1 7 2 4 6 5 8 10 9

II. swap 7 with 2 ⇒ 3 1 2 7 4 6 5 8 10 9

III. swap 7 with 4 ⇒ 3 1 2 4 7 6 5 8 10 9

IV. swap 7 with 6 ⇒ 3 1 2 4 6 7 5 8 10 9

V. swap 7 with 5 ⇒ 3 1 2 4 6 5 7 8 10 9

VI. swap 10 with 9 ⇒ 3 1 2 4 6 5 7 8 9 10 (now everyone is where they are supposed to be)

Universidad de Valladolid OJ: 12692 – Airport Sort 2/2

Using the second strategy, it’d take a minimum time of 5 seconds if we decide the final order to be
(3 2 1 4 6 5 7 8 9 10). Here passengers with ticket 3, 1 and 8 are already in their right positions;
it takes 1 second for passengers with tickets 4, 5, 6, 9 and 10 to get to their right positions; it takes 2
seconds for passenger with ticket 2 to come to her final position; it takes 5 seconds for passenger with
ticket #7 to get to her right position. So this means, after 5 seconds, everyone will be at their right
places using the 2nd strategy. There are other arrangements for which we get 5 seconds, but it’s not
possible to come up with something less.

So 2nd strategy is 1 second faster.

Input

The first line of input is an integer T (T < 50) that indicates the number of test cases. Each case consists
of 2 lines. The first line contains 2 positive integers n (n ≤ 20000) and k (k ≤ n). The meanings of
these variables are mentioned above. The next line contains n distinct integers in the range [1, n]. The
first integer represents the ticket number of the passenger standing in front of the queue.

Output

For each case, first output the case number followed by the required result (i.e. how much faster the
2nd approach is).

Sample Input

3

10 3

3 7 1 2 4 6 5 8 10 9

11 3

1 2 3 4 5 6 7 8 9 10 11

5 2

5 4 3 2 1

Sample Output

Case 1: 1

Case 2: 0

Case 3: 4

