12948 Interstellar Travel

The Agency for Cross-Constellation and Interstellar Space Travel (ACIS) is ready to offer its clients space travel among several planets across the universe.

ACIS offers a list of flight options consisting of an origin planet, a destination planet, a cost, and a duration. One of the "killer" features ACIS will offer to its clients is that of being able to plan a trip between two planets under the constraint of a maximum number of stops. That is, given a natural number n, ACIS would like to offer each client the cheapest possible trip from an origin planet to a destination planet with at most n stops. Since interstellar in-flight sleep is not pleasant, it is also important to minimize the amount of time spent in a trip.

Can you help ACIS in finding an efficient algorithm for such a task?

Input

The input consists of several test cases. Each test case begins with a line with three blank-separated integers p, f, and $q(1 \leq p \leq 300,0 \leq f \leq 5000$, and $0 \leq q \leq 1000)$, indicating the number of planets, flights, and queries, respectively. The next p lines each contains a planet name $s(1 \leq|s| \leq 30)$. The next f lines each contains two planet names and two integers s_{o}, s_{d}, c, and t (separated by a blank), denoting that there is a direct flight from s_{o} to s_{d} costing c dollars $\left(0 \leq c \leq 10^{5}\right)$ with a duration of t units of time $\left(0 \leq t \leq 10^{5}\right)$. The next line contains a planet name s_{i} indicating the initial planet for the trip. The next q lines each contains a query with a destination planet name s_{f} for the trip and a natural number n, both separated by a blank $(0 \leq n \leq 300)$. You can assume that planet names consist only of alphabetic characters, and that s_{o}, s_{d}, s_{i}, and s_{f} are in the list of p planet names.

Output

For each query s_{i}, s_{f}, n output two blank-separated integers indicating the minimum cost and the corresponding minimum travel time for this cost of an interstellar trip from s_{i} to s_{f} with at most n stops. If this is not possible, then print two blank-separated asterisks (' $*$ ').

Print a line with a single period ($\left.{ }^{\prime} .{ }^{\prime}\right)$ between consecutive test cases.

Sample Input

231
Earth
Mars
Earth Mars 23
Earth Mars 41
Earth Earth 32
Earth
Mars 0
335
Tatooine
Endor
Geonosis
Tatooine Endor 30015
Endor Geonosis 1078
Geonosis Tatooine 11

Endor
Endor 0
Geonosis 0
Geonosis 4
Tatooine 0
Tatooine 1
558
Earth
Kaishin
Namek
Vegeta
NewNamek
Earth Kaishin 1010
Kaishin Namek 105
Kaishin Vegeta 1530
Earth Vegeta 2550
NewNamek Earth 1001
Earth
Kaishin 0
Kaishin 1
Kaishin 2
Namek 0
Namek 1
Vegeta 0
Vegeta 1
NewNamek 5

Sample Output

23
00
1078
1078

* *

1179

1010
1010
1010

* *

2015
2550
2540

