13028 XOR Subset

Fermat's little theorem states that if p is a prime number, then for any integer a, the number $(a^p - a)$ is an integer multiple of p. In the notation of modular arithmetic, this is expressed as

$$a^p \equiv a \pmod{p}$$

For example, if a=2 and p=7, $2^7=128$, and $128-2=7\times 18$ is an integer multiple of 7. We can also write 128%7=2, here % is the modulo operator used in C/C++ or Java.

If a is not divisible by p, Fermat's little theorem is equivalent to the statement that $a^{p-1} - 1$ is an integer multiple of p, or in symbols

$$a^{p-1} \equiv 1 \pmod{p}$$

For example, if a = 2 and p = 7 then $2^6 = 64$ and 64 - 1 = 63 is a multiple of 7. We can also write 64%7 = 1.

You are given a set S which contains 1 to N. You want to find two subsets of S, X and Y such that the following conditions are met:

- 1. $X \cap Y = \emptyset$
- 2. Let bitwise XOR of every element of X equals U and Y equals V. U must be less than or equal to V.

You want to find out number of ways you can choose such subset X and Y.

Two ways (X_1, Y_1) and (X_2, Y_2) will be equal if X_1 equals X_2 and Y_1 equals Y_2 or X_1 equals Y_2 and Y_1 equals X_2 .

For example is $S = \{1, 2\}$, the ways are:

- 1. $X = \emptyset, Y = \emptyset. [U = 0, V = 0]$
- 2. $X = \emptyset$, $Y = \{1\}$. [U = 0, V = 1]
- 3. $X = \emptyset, Y = \{1, 2\}. [U = 0, V = 1 \land 2 = 3, (\land \text{ means bitwise XOR in C/C++/Java})]$
- 4. $X = \emptyset$, $Y = \{2\}$. [U = 0, V = 2]
- 5. $X = \{1\}, Y = \{2\}. [U = 1, V = 2]$

Now, given N, you need to find the number of ways you can choose two subsets of S such that the 2 conditions meet, $modulo\ 1000000007\ (10^9 + 7)$.

Input

First line contains T ($T \le 100$), the number of test cases. Each of the next T lines each contains an integer N ($0 \le N < 10^{10000}$).

Output

For each case print one line, 'Case C: W', where C is the case number, and W is the required answer for that case.

Sample Input

2

2

Sample Output

Case 1: 5 Case 2: 14