D: Dominoes Magic Squares

Source file name: dominoes.c, dominoes.cpp, dominoes.java, or dominoes.py Author: Rodrigo Cardoso

A domino set is a collection of tiles of the form

$$
[a \mid b]
$$

with integer labels a and b satisfying $0 \leq a, b \leq 6$. Both $[a \mid b]$ and $[b \mid a]$ are descriptions of the same domino tile. A complete domino set has exactly 28 tiles and the sum of all its labels is 168.

A magic square is a square of integer numbers whose rows, columns, and diagonals have the same sum. Since domino tiles can be seen as planar objects of 2 unit squares, they can be used to build magic squares. For instance, the set of domino tiles

$$
[1 \mid 4],[5 \mid 2],[4 \mid 4],[2 \mid 3],[5 \mid 4],[5 \mid 3],[1 \mid 3],[3 \mid 3]
$$

can be arranged into a magic square of side 4 units with rows, columns, and diagonals adding up to 13 :

4	4	2	3
3	3	2	5
1	3	5	4
5	3	4	1

However, it is impossible to build a 4×4 magic square with the following set of titles adding up to 15 in rows, columns, and diagonals:

$$
[6 \mid 5],[2 \mid 4],[2 \mid 2],[5 \mid 5],[5 \mid 4],[5 \mid 1],[2 \mid 3],[3 \mid 6] .
$$

Assume you are given 8 domino tiles: can you arrange them into a 4×4 magic square?

Input

The input consists of several test cases. A test case comprises 8 consecutive lines of input, each one containing two blank-separated integers a and $b, 0 \leq a, b \leq 6$, representing the tile $[a \mid b]$. You can assume that a test case does not contain repeated dominoes.

The input must be read from standard input.

Output

For each test case, output one line with the unique character ' Y ' if a magic square can be built with the given domino tiles and ' N ' otherwise.

The output must be written to standard output.

Sample Input	Sample Output	
5	4	Y
5	2	N
2	4	
5	4	
5	3	
1	3	
3	3	
6	5	
2	4	
2	2	
5	4	
5	5	
5	1	
2	3	
3	6	

