1525 Falling Leaves

Figure 1 shows a graphical representation of a binary tree of letters. People familiar with binary trees can skip over the definitions of a binary tree of letters, leaves of a binary tree, and a binary search tree of letters, and go right to **The problem**.

A binary tree of letters may be one of two things:

- 1. It may be empty.
- 2. It may have a root *node*. A node has a letter as data and refers to a left and a right subtree. The left and right subtrees are also binary trees of letters.

- 1. Empty trees are omitted completely.
- 2. Each node is indicated by
 - Its letter data,
 - A line segment down to the left to the left subtree, if the left subtree is nonempty,
 - A line segment down to the right to the right subtree, if the right subtree is nonempty.

A *leaf* in a binary tree is a node whose subtrees are both empty. In the example in Figure 1, this would be the five nodes with data 'B', 'D', 'H', 'P', and 'Y'.

The preorder traversal of a tree of letters satisfies the defining properties:

- 1. If the tree is empty, then the preorder traversal is empty.
- 2. If the tree is not empty, then the preorder traversal consists of the following, in order
 - The data from the root node,
 - The preorder traversal of the root's left subtree,
 - The preorder traversal of the root's right subtree.

The preorder traversal of the tree in Figure 1 is "KGCBDHQMPY".

A tree like the one in Figure 1 is also a binary search tree of letters. A *binary search tree of letters* is a binary tree of letters in which each node satisfies:

- 1. The root's data comes later in the alphabet than all the data in the nodes in the left subtree.
- 2. The root's data comes earlier in the alphabet than all the data in the nodes in the right subtree.

The problem

Consider the following sequence of operations on a binary search tree of letters

- 1. Remove the leaves and list the data removed
- 2. Repeat this procedure until the tree is empty

Figure 1

Starting from the tree below on the left, we produce the sequence of trees shown, and then the empty tree

by removing the leaves with data

BDHPY CM GQ K

Your problem is to start with such a sequence of lines of leaves from a binary search tree of letters and output the preorder traversal of the tree.

Input

The input file will contain one or more data sets. Each data set is a sequence of one or more lines of capital letters. The lines contain the leaves removed from a binary search tree in the stages described above. The letters on a line will be listed in increasing alphabetical order. Data sets are separated by a line containing only an asterisk (*). The last data set is followed by a line containing only a dollar sign (\$). There are no blanks or empty lines in the input.

Output

For each input data set, there is a unique binary search tree that would produce the sequence of leaves. The output is a line containing only the preorder traversal of that tree, with no blanks.

Sample Input

BDHPY CM GQ K * AC B \$

Example output

KGCBDHQMPY BAC