
334 Identifying Concurrent Events
It is important in distributed computer systems to identify those events (at identifiable points in time)
that are concurrent, or not related to each other in time. A group of concurrent events may sometimes
attempt to simultaneously use the same resource, and this could cause problems.

Events that are not concurrent can be ordered in time. For example, if event e1 can be shown to
always precede event e2 in time, then e1 and e2 are obviously not concurrent. Notationally we indicate
that e1 precedes e2 by writing e1 → e2. Note that the precedes relation is transitive, as expected. Thus
if e1 → e2 and e2 → e3, then we can also note that e1 → e3.

Sequential events in a single computation are not concurrent. For example, if a particular compu-
tation performs the operations identified by events e1, e2 and e3 in that order, then clearly and e1 → e2
and e2 → e3.

Computations in a distributed system communicate by sending messages. If event esend corresponds
to the sending of a message by one computation, and event erecv corresponds to the reception of that
message by a different computation, then we can always note that esend → erecv, since a message
cannot be received before it is sent.

In this problem you will be supplied with lists of sequential events for an arbitrary number of com-
putations, and the identification of an arbitrary number of messages sent between these computations.
Your task is to identify those pairs of events that are concurrent.

Input
A number of test cases will be supplied. For each test case the input will include first an integer, NC,
specifying the number of computations in the test case. For each of these NC computations there
will be a single line containing an integer NEi that specifies the number of sequential events in the
computation followed by NEi event names. Event names will always contain one to five alphanumeric
characters, and will be separated from each other by at least one blank. Following the specification of
the events in the last computation there will be a line with a single integer, NM , that specifies the
number of messages that are sent between computations. Finally, on each of the following NM lines
there will be a pair of event names specifying the name of the event associated with the sending of a
message, and the event associated with the reception of the message. These names will have previously
appeared in the lists of events associated with computations, and will be separated by at least one
blank. The last test case will be followed by the single integer ‘0’ on a line by itself.

Output
For each test case, print the test case number (they are numbered sequentially starting with 1), the
number of pairs of concurrent events for the test case, and any two pair of the concurrent event names.
If there is only one concurrent pair of events, just print it. And if there are no concurrent events, then
state that fact.

Example: Consider the following input data:

2
2 e1 e2
2 e3 e4
1



Universidad de Valladolid OJ: 334 – Identifying Concurrent Events 2/2

e3 e1
0

There are two computations. In the first e1 → e2 and in the second e3 → e4. A single message
is sent from e3 to e1, which means e3 → e1. Using the transitive property of the precedes relation
we can additionally determine that e3 → e2. This leaves the pairs (e1,e4) and (e2,e4) as concurrent
events.

Sample Input
2
2 e1 e2
2 e3 e4
1
e3 e1
3
3 one two three
2 four five
3 six seven eight
2
one four
five six
1
3 x y zee
0
2
2 alpha beta
1 gamma
1
gamma beta
0

Sample Output
Case 1, 2 concurrent events:
(e1,e4) (e2,e4)
Case 2, 10 concurrent events:
(two,four) (two,five)
Case 3, no concurrent events.
Case 4, 1 concurrent events:
(alpha,gamma)


