369 Combinations

Computing the exact number of ways that \(N \) things can be taken \(M \) at a time can be a great challenge when \(N \) and/or \(M \) become very large. Challenges are the stuff of contests. Therefore, you are to make just such a computation given the following:

GIVEN:

\[
5 \leq N \leq 100, \quad \text{and} \quad 5 \leq M \leq 100, \quad \text{and} \quad M \leq N
\]

Compute the EXACT value of:

\[
C = \frac{N!}{(N - M)! \times M!}
\]

You may assume that the final value of \(C \) will fit in a 32-bit Pascal LongInt or a C long.

For the record, the exact value of 100! is:

\[
93,326,215,443,944,152,681,699,238,856,266,700,490,715,968,264,381,621, \\
468,592,963,895,217,599,993,229,915,608,941,463,976,156,518,286,253, \\
697,920,827,223,758,251,185,210,916,864,000,000,000,000,000,000,000,000,000
\]

Input

The input to this program will be one or more lines each containing zero or more leading spaces, a value for \(N \), one or more spaces, and a value for \(M \). The last line of the input file will contain a dummy \(N \), \(M \) pair with both values equal to zero. Your program should terminate when this line is read.

Output

The output from this program should be in the form:

\(N \) things taken \(M \) at a time is \(C \) exactly.

Sample Input

```
100  6
20   5
18   6
0    0
```

Sample Output

```
100 things taken 6 at a time is 1192052400 exactly.
20 things taken 5 at a time is 15504 exactly.
18 things taken 6 at a time is 18564 exactly.
```